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A numerical method based on the lattice Boltzmann equation (LBE) is developed in two dimensions to 
solve the equations of conservation of energy and momentum of a Poiseuille-Rayleigh-Benard (PRB) 
mixed-flow. The configuration considered in this work is a channel heated from below, cooled from the 
top and crossed by a fluid (Pr = 1). The study is conducted for a range of Rayleigh numbers (0 < Ra < 
5000) and Reynolds (0 < Re < 500). For Re = 0 and Ra exceeds the critical value (1707.76), the Rayleigh-
Benard (RB) mixed-flow appears. However, for Re values other than 0, the transition from Poiseuille 
flow in a cellular flow is obtained for the largest critical Ra (in limited area) and characteristics of cells 
depend on the intensity of the flow at the entrance of the channel.  
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INTRODUCTION 
 
The Poiseuille-Rayleigh-Benard (PRB) mixed-flows are 
flows subjected to a longitudinal pressure gradient in 
horizontal rectangular channels (Figure 1) which are 
heated from below and cooled from above. The Reynolds 
numbers are sufficiently low (� 500) not to trigger shear 
instability. The conductive state, characterized by a 
thermally stratified parallel flow, is stable to temperature 
differences which are sufficiently low (Mbane et al., 2007; 
Miladinova et al., 2004). Beyond a threshold defined by a 
critical Rayleigh number located in the vicinity of 1708, 
the conductive state becomes unstable and the 
thermoconvective structures appear. It is known that in a 
rectangular channel, the flow changes into a row of 
counter rotating vortices, indicating the Reynolds 
numbers are sufficiently large and moving in the direction 
of flow under the influence of longitudinal pressure 
gradient (Dondlinger et al., 2003). 

Clever and Busse (1991) numerically determined the 
temporal linear stability of flow in a structured longitudinal 
roll between two infinite plates. They show that in an area 
of the (ReynoldsRayleigh)-plane this primary instability 
becomes unstable with respect to transverse 
perturbations and passes a flow  form  of  stationary  rolls  
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independent of the longitudinal component in a set of 
sinuous unsteady rolls.  

The Poiseuille-Rayleigh-Benard (PRB) mixed-flows 
represent a vast subject and is an active topic of 
research, both for industrial problems and for numerous 
applications in wide array of different fields, ranging from 
cosmetics, food processing, oil industry and to natural 
settings such as lava mud and biology (blood, mucus). 
This configuration is rich in terms of thermoconvective 
flow structures (transverse, parallel, oblique, tortuous, 
varicose rolls form, etc.) and is a typical problem in 
analysis of stability and control runoff from a both sides 
share has applications in the study of chemical vapour 
deposition (CVD). Hydrodynamical stability studies are 
essential to understand the transition between stable and 
unstable flows, because flow instability is often 
associated with an increase in heat transfer. 

The lattice Boltzmann methods (LB) have emerged as 
a powerful technique for the computational modelling of 
wide variety of complex fluid flow problems including 
single phase flow in complex geometries. These methods 
naturally accommodate a variety of boundary conditions 
such as the wetting effects at a fluid-solid interface. The 
discrete Boltzmann methods serve as an ideal meso-
scopic approach that bridges microscopic phenomena 
with the continuum macroscopic equation. In this respect, 
the aim of our work is to use for the first time a Lattice 
Boltzmann Model (LBM) built from simple and parallelizable 
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Figure 1. The P-R-B flow’s horizontal channel. 

 
 
 
algorithms, to solve the Navier Stokes equations (Buick 
et al., 2000; Ginzburg, 2001; Ginzburg and Steiner, 2002) 
and simulate the Poiseuille-Rayleigh-Benard flows 
(Figure 1). 
 
 
BASIC THEORY OF LATTICE BOLTZMANN 
EQUATION 
 
The lattice Boltzmann equation (LBE) is often written in 
the following form (Succi et al., 1991) 
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Where iN is the population of the particle moving with 

D-dimensional velocity ic ( 0c is the zero vector), A is 

the collision matrix, F is an external force; weight 

coefficient *
pT depends on the discrete velocity set ic , 

and the index p is equal to )(, 222
iii cc c= . Equilibrium 

function 
.eqN is introduced by the hydrodynamics 

adopted Equations (Qian et al., 1992) and the coefficients 
*
pT are given in Table 1. They satisfy the following 

equations 
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There are two essential steps in Equation (1a): collision 
(a) and propagation (b). Density ρ  and momentum 

j are defined as 
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The reason of modification of the momentum as a 
function of force was studied in detail by Buick and 
Greated (2000); Ginzburg and d’Humières (2002). The 
mass and momentum conservation laws impose the 
following conditions on the collision matrix A 
 
A.1 = A. Cα = 0,  D,...,1=∀α                                       (4)                                                   
 
Where 1 = {1,…, 1}, and the (bm+1)-vector Cα is built from 
the components of the (bm + 1) population velocities in 
direction α . 

The collision matrix is determined by the choice of its 
non-zero eigenvalues and the corresponding 
eigenvectors. To satisfy the linear stability conditions 
(Higuera et al., 1989), the non-zero eigenvalues must lie 
in the interval -2, 0. Mass vector 1 and the vectors Cα are  
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Table 1. Equilibrium weights *
PT  and  *

Pr  
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the eigenvectors associated with the zero eigenvalues. 
They are the conserved modes in the model.  

Let {ek}, k = 0,…,bm denote the orthonormal basis in 
momentum space, constructed as the polynomials of the 
vectors Cα. Let us assume that this basis represents the 
set of the eigenvectors of the matrix A, associated with 
the eigenvalues �{λk}. The projection of Equation (1a) on 
this basis gives 
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Note that Equation (5a) replaces the explicit use of the 
collision matrix A. The eigenvalues can also be easily 
adjusted during computations, if necessary, providing that 
they satisfy the stability constraints. When all non-zero 
eigenvalues {λk} are set to be equal to -1/ τ , equation 
(5a) reduces to the lattice Bhatangar-Gross-Krook model 
(LBGKM) 
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Where τ  is the relaxation time. 
 
 
MATERIALS AND METHODS 
 
D2Q9 lattice (Figure 2) is adopted to solve 2D fluid flow and heat 
transfer problem by using two distribution functions approach. 

The method used is to determine the solution of the following 
equation deduced from the LBGK model (6) 
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Where if  is the distribution function of the particle moving with 

D-dimensional velocity .ic The principle of this approximation is 

based on the fact that the collision term iΩ representing the rate  

 
 
Figure 2. Orthogonal basis vectors for D2Q9 model. 

 
 
 
of change of the particle distribution due to collision may be 
replaced by a linear approach 
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Where τ is the relaxation time that controls the rate of approach to 

equilibrium and 
.eq

if  the distribution function at equilibrium 

depends on the local hydrodynamic properties. ii Fδ  is an 

external force. The function 
.eq

if defined below is used as a 

distribution function at equilibrium, 
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u and ρ  are the respective values of the macroscopic velocity and 

density. iω are the statistic weights according to each direction of 

the Boltzmann’s lattice. Macroscopic hydrodynamic quantities are 
determined in momentum space 
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The viscosity and thermal diffusivity are respectively related to the 
dimensionless relaxation times by the formulas  
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Where sc  is the speed of sound in the lattice and tδ the time 

steps. 
 
The time evolution of the particle temperature distribution function 
satisfies the following lattice Bhatangar-Gross-Krook (LBGK) 
equation  
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ig  and Tτ  represent the distribution function of energy and the 

dimensionless relaxation time for the thermal field, respectively. A 
macroscopic quantity such as the temperature of each fluid 
component is obtained by taking suitable moment sums of ig  
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ε represents the energy. 
 
The above formalism leads to velocity and thermal fields that are 
solutions of the Navier-Stokes equations. 
 
 
RESULTS AND DISCUSSION 
 
Validation of the LBGK model 
 
The model was validated by considering a differentially 
heated square cavity containing a fluid whose Prandtl 
number was set at 0.71 (Pr = 0.71). The simulations were 
performed for different values of Rayleigh number 
ranging from 103 to 106. The physical quantities such as 
speed (umax), cinematic viscosity (νmax) and Nusselt 
number (Nu) are calculated by the model and compared 
to their reference values (Table 2).  

Numerical results are in good agreement with results 
obtained by de Vahl Davis (1983) as shown in Figures 3 
a - c. Differences between reference values and values 
estimated by the model are sufficiently low (� 0.48%). 
Profiles of velocity and temperature fields presented by 
the model were also in good agreement with those of 
previous fields. 
 
 
Numerical simulations 
 
The LBGK method is applied to a horizontal channel of 
rectangular cavity whose width is four times  greater  than  
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the height (expansion ratio equal to 4). In the absence of 
jet, the convective flow within the channel is Rayleigh-
Benard. It is triggered when the Rayleigh number Ra 
exceeds the critical value Rac = 1707, with the 
appearance of four contra rotative cells (Figure 4a). The 
thermal field observed at this particular time is shown in 
Figure 4b. 

For low values of Reynolds number Re (Re < 0.1), the 
jet has no significant effect on the appearance of 
convective instabilities. However, the isotherms are 
distorted by the intensity of flow inside the channel. 
Convective transfer on the surface of the horizontal walls 
is improved. Increasing the Reynolds number Re, delays 
the appearance of convective instability within the 
channel. Indeed, for Re = 10, the convective rolls appear 
when Rac = 8500 (Figures 5). 

Convective rolls visible in Figures 5 are not stationary 
and moving under the influence of flow along the channel 
that leads to a periodic variation of macroscopic 
variables. Figure 6 shows the variation with time of the 
maximum speed on the vertical plane. This speed is very 
low values in Poiseuille flow. The appearance of 
convective cells is indicated by a significant increase in 
maximum speed: this means an improvement in heat 
transfer through the fluid. 

One can observe from Figure 6 that the intensity of the 
maximum velocity decreases with time. In other words 
the intensity of the jet at the entrance of the channel 
delays the appearance of convective cells. LBGK model 
may also help visualize the temporal variations of other 
flow characteristics such as the Nusselt number for a 
given couple of values of Reynolds and Rayleigh (Figure 
7). 
 
 
Conclusion 
 
This paper presents a review of possibilities offered by 
the LBGK model in the study of a fluid (Pr = 1) subjected 
to a longitudinal pressure gradient in horizontal rectangular 
channels which are heated from below and cooled from 
above. Unlike conventional methods based on 
macroscopic continuum equations, the LBGKM uses a 
microscopic equation, that is, the Boltzmann equation, to 
determine macroscopic fluid dynamics. The LBGKM is 
flexible, has broad applicability that is, cooling of 
electronic components and may be easily adapted for 
parallel computing. The challenge for this study is to 
acquire a better understanding of such flows simply by 
varying the Reynolds number or any other number or 
parameter that we seek to know the influence on the flow 
regime. The Lattice Boltzmann methods are currently in a 
state of evolution as the models become better 
understood and are corrected for various deficiencies. 
Results obtained in this work demonstrate the effective-
ness of the Boltzmann methods and suggest a next step 
in terms of simulation of non axisymmetric stokes flow 
between concentric cones. 
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Table 2. Model and reference data (maximum velocity, maximum viscosity and Nusselt number) for different values of 
Rayleigh ranging from 103 to 106. 
 

 Umax ννννmax Nu 
Ra Model Reference % error Model Reference % error Model Reference %  error 
103 3.699 3.697 0.05 3.650 3.649 0.027 1.116 1.118 0.18 
104 19.620 19.617 0.015 16.167 16.178 0.067 2.245 2.243 0.09 
105 68.68 68.59 0.13 33.68 34.73 0.03 4.521 4.519 0.04 
106 220.418 219.36 0.48 64.763 64.63 0.205 8.814 8.800 0.16 

 
 
 

 

 

  
 
Figure 3. Comparison between predicted and reference values of the maximum 
velocity, viscosity and Nusselt number. 
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Figure 4. Velocity field (a) and thermal field (b) predicted by LBGK model for 
Re = 0 and Ra = 1750. 

 
 

 
 
Figure 5. Velocity field (a) and thermal field (b) predicted by LBGK model for Re = 
10 and Ra = 8500. 
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Figure 6. Temporal evolution of the predicted maximum velocity for Re = 
10 and Ra = 8500. 

 
 
 

 
 
Figure 7. Temporal evolution of the predicted Nusselt number for Re = 10 
and Ra = 8500. 
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