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In this study, an analytical expression for the arbitrary derivatives of Gaussian function 
2axe  is 

developed. Using this analytical expression developed within Rodrigues representation, an alternative 
expression is presented for the Hermite functions. With the help of the expression presented here the 
Hermite functions can easily be estimated. 
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INTRODUCTION 
 
The notion of derivative which is an important topic of 
mathematics is used in physics, economics, statistics and 
engineering. It is possible to encounter the consecutive 
derivatives of the mathematical functions in science. The 
calculation of an arbitrary derivative of a mathematical 
function requires more mathematical operation and time. 
The more the value of derivative order, the more mathe-
matical operation and time it requires. Thus, to have an 
analytical expression for an arbitrary derivative of a ma-
thematical function will simplify a solution of problems 
and the coding this expression in computer programming 
language. 

In electronic structure calculations of atoms, molecules 
and solids in linear combination of atomic orbital (LCAO) 
approximation, multicenter molecular integrals are en-
countered (Roothaan, 1951). The most common basis 
functions used in LCAO approximation are Salter type or-
bitals (STOs) and Gaussian type orbitals (GTOs). It is 
well-known that STOs describe electron density better 
than GTOs do. On the other hand, GTOs are preferred in 
physics research because of the easy calculation of their 
multicenter integrals. Therefore, there are several works 
devoted to calculation of Gaussian multicenter molecular 

integrals (as a function of) 
2axe  (Boys 1950; Fieck, 1980; 

Zivkovic, 1968; Brinkmann, 1991). The founder of the 
idea of using GTOs in multicenter molecular integrals, 
Boys (1950) suggested to calculate the calculation of 
multicenter molecular integrals over s functions and then 
differentiating these integral results with respect to the 
nuclear coordinates to obtain those over the higher angu- 
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lar momentum functions. The aim of this work is to obtain 
an expression for an arbitrary derivative of a Gaussian 

function 
2axe  for being useful in calculation of Gaussian 

molecular integrals and also in expressing mathematical 
functions that include Gaussian term in their mathemati-
cal structure. As an example, the obtained expression for 
arbitrary derivative of Gaussian function will be used in 
re-expressing new formula for the Hermite functions. 

Expressions for some derivatives of function 
2axe  and 

generalization to any order. 

Some derivatives of function 
2axe  according to x ,  
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1st derivative  
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2nd derivative  
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3rd derivative  
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4th derivative  
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We generalize the expression given above for derivatives 
from order 1 to 9 to order n by using Maple symbolic pro-
gramming language (Heck, 2003) as in the following: 
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Here the symbol ( )� 2  indicates that the summation is 

to be performed in steps of two and the summation coeffi-
cient ( )αn

itC  is presented as  
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The symbol ( )nFi  in (2.8) is known as the binomial co-
efficient defined by 
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As is seen from (2.7)-(2.12), the obtained expression for 
arbitrary derivative of Gaussian functions is very simple 
and can be coded easily to compute in any programming 
language.  

As an application of the expression of arbitrary deri-
vative for Gaussian functions we presented here with 
(2.7), we want to obtain a simple expression for the Her-
mite functions. Rodrigues representation of the Hermite 
functions (Arfken, 2001) which is a special function of 
mathematics and used in many physical problems, is as 
follows: 
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Substituting (2.7) into (2.13), an alternative expression 
can be presented for the Hermite function as follows: 
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RESULTS AND DISCUSSIONS  
 
We presented a simple expression for arbitrary derivative 

of Gaussian function 
2xeα  in this paper. The obtained 

expression includes binomial coefficients and double fac-
torials, and therefore can be programmed easily in com-
puter. As an example of this expression we developed an 
alternative expression for the Hermite functions using Ro-
drigues representation. The Hermite functions can be 
easily obtained by using (2.7). Some of the Hermite func-
tions are presented in Table 1. The current study is likely 
to be useful in calculation  of  multicenter  molecular  inte- 
grals over GTOs and electronic  structural  calculations of 
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Table 1. Some Hermite Polynomials Obtained using (2.14). 
 

 

 
 
atoms, molecules and solids with GTOs as basis func-
tions. 

 Work is in progress for the calculation of multicenter 
molecular integrals over GTOs using the procedure pre-
sented in this paper.  
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