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The heat and mass transfer characteristics in mixed convection along a semi-infinite plate in a fluid 
saturated porous medium with radiative heat transfer has been investigated. Diffusion-thermo and 
thermo-diffusion effects are assumed to be significant. Using a similarity transformation, the governing 
steady boundary layer equations for the momentum, heat and mass transfer were reduced to a set of 
ordinary differential equations and then solved using a recent novel linearization method and the Keller-
box method. The results were further confirmed by using the Matlab bvp4c numerical routine. The 
effects of the Dufour and Soret parameters on the local skin friction and the local heat and mass 
transfer rates are investigated. Numerical results for the velocity and the temperature profiles are also 
presented. 
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INTRODUCTION 
 
Free convention flow due to thermal and mass diffusion 
has received widespread attention due to the importance 
of heat and mass transfer in engineering processes such 
as in petroleum and geothermal processes, drying, 
moisture migration in fibrous insulation, nuclear waste 
disposal and in the control of pollutant spread in ground 
water. Double diffusive convection driven by buoyancy 
due to temperature and concentration gradients has been 
studied by many researchers, among them Erickson et al. 
(1996) and Fox et al. (1968) who studied the effects of 
suction and injection on the problem of heat and mass 
transfer in the laminar boundary layer flow of moving flat 
surface with constant surface velocity and temperature. 
Gupta and Gupta (1977) studied heat and mass transfer 
in the boundary layer over a stretching sheet with suction 
or blowing. Bejan and Khair (1985) investigated the free 
convection boundary layer flow in a porous medium due 
to combined heat and mass transfer. 
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Heat and mass diffusing simultaneously give rise to the 
cross-diffusion effect. Weaver and Viskanta (1991) have 
pointed out that when the differences in the temperature 
and the concentration are large or when the difference in 
the molecular mass of two elements in a binary mixture is 
large, the coupled interaction is significant. The mass 
transfer caused by the temperature gradient is referred to 
as the Soret effect, while the heat transfer caused by the 
concentration gradient is called the Dufour effect 
(Mortimer and Eyringt, 1980; Tsai and Huang, 2009; 
Awad et al., 2010). Eckert and Drake (1972) presented 
several examples of the Dufour effect and reported that 
the Dufour effect was, in many instances, of sufficiently 
high order of magnitude such that it cannot be ignored. 
Investigations by Atimtay and Gill (1985), Rosner (1980) 
and Yu et al. (2007) have also shown that Soret mass 
flux and Dufour energy flux have appreciable and at 
times significant effect on heat and mass transfer rates. 
Atimay and Gill (1985) showed that an error as large as 
30% in the wall mass flux could be expected if the Soret 
effect is neglected. 

Anghel et al. (2000) investigated the Dufour  and  Soret  



 
 
 
 
effects in free convection on a boundary layer formed by 
a vertical surface embedded in a porous medium. A 
discussion of the effects of coupled cross-diffusion in a 
system with temperature and concentration gradients is 
given (Malashetty and Gaikad, 2002). Alam et al. (2006) 
and Postelnicu (2004) studied the influence of a magnetic 
field on heat and mass transfer by natural convection 
from vertical surfaces in porous media in the presence of 
Soret and Dufour effects.  

Thermal diffusion and diffusion thermo effects in 
boundary layer due to a vertical flat plate were studied by 
Abreu et al. (2006). Soret and Dufour effects have been 
presented for the steady MHD free convection flow past a 
semi-infinite moving vertical plate in a porous medium 
with viscous dissipation (Reddy and Reddy, 2010). They 
used a fourth order Runge-Kutta method with a shooting 
technique to solve the flow equations. The effect of 
suction/injection on thermophoretic particle deposition in 
free convection on a vertical plate embedded in a fluid 
saturated non-Darcy porous medium was studied by 
Partha (2009). 

Cheng (2009) studied the Dufour and Soret effects on 
the steady boundary layer flow due to natural convection 
heat and mass transfer over a downward-pointing vertical 
cone embedded in a porous medium saturated with 
Newtonian fluids with constant wall temperature and 
concentration. Mahdy (2010) numerically studied the 
mixed convection from a vertical isothermal surface 
embedded in a porous medium saturated with the 
Ostwald de-Waele type of non-Newtonian fluid under the 
influence of Soret and Dufour effects. 

For a vertical wavy surface in a Newtonian fluid 
saturated Darcy porous medium, Narayana and Sibanda 
(2010) investigated free convection of heat and mass 
transfer in the presence of cross diffusion numerically. 
The recent study by Awad et al. (2010) investigated the 
stability of double-diffusive convection of a Maxwell fluid 
in a high porosity porous medium taking cross-diffusion 
effects into account. The criterion for the onset of 
stationary and oscillatory convection was derived 
analytically in terms of the critical Darcy-Rayleigh 
number. In a recent study, Shateyi et al. (2010) 
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investigated the effects of thermal radiation, Hall currents, 
Soret and Dufour on MHD flow by mixed convection over 
a vertical surface in porous media. They showed among 
other results that the temperature increased with the 
Dufour parameter but that the concentration decreased 
as the Dufour number increased. 

Thermal radiation effects on heat and mass transfer 
over unsteady stretching surface was recently investi-
gated by Shateyi and Motsa (2009) where a Chebyshev 
pseudo spectral collocation method was used to solve 
the governing equations. Studies by Hossain and Takhar 
(1996), Rapits and Perdikis (1998), Makinde and Ogulu 
(2008) and El-Aziz (2009) are earlier investigations of the 
thermal radiation effects. Rapits (1998) studied the flow 
of a visco-elastic fluid and micropolar fluid past a 
stretching sheet in the presence of thermal radiation. 

In this work linearization technique and the Keller-box 
implicit method were used to find solutions of the coupled 
nonlinear equations that govern free convection from a 
semi-finite plate saturated in a porous medium in the 
presence of Dufour energy flux and Soret mass flux. The 
study extends the earlier work by Parand et al. (2010) to 
include Dufour and Soret effects. The paper further 
extends the study by Alam et al. (2006) to include 
radiative heat transfer. The study differs from Shateyi et 
al. (2010) in that it includes neither the effects of applied 
magnetic field nor Hall effects. We show by comparison 
with numerical results and previous studies that the 
linearization method is accurate and converges rapidly to 
the true solution. 
 
 
MATHEMATICAL FORMULATION 
 
Consider the steady two-dimensional flow along a vertical flat plate 
embedded in a fluid-saturated porous medium. The y-axis is 
measured along the flat surface and x-axis normal to it. Assuming 
the validity of the Boussinesq and boundary layer approximations, 
the governing equations are shown as follows: 
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subject to the boundary conditions 
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where u and v are the velocity components along the x- and y- 
axes, respectively, υ  is the kinematic viscosity, � is the fluid 
density, T and C are the fluid temperature and concentration across 

the boundary layer, pc  is the fluid specific heat, k and ∗D  are the 

thermal conductivity and solutal diffusivity, respectively. 
1D  and 

2D
are parameters quantifying the contribution to heat flux due to the 
concentration gradient and mass flux due to temperature gradient, 
respectively, 

rq is the radiative heat flux, 
Tβ  is the coefficient of 

thermal expansion, 
Cβ  is the volumetric coefficient of expansion 

with concentration, 
wT  is a constant temperature of the wall, ∞T  is 

the ambient fluid temperature, wTT >∞  and ∞U  is a constant   free 
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stream velocity. It is assumed that the viscous dissipation is 
neglected. Using the Rosseland approximation, the radiative heat 
flux is given as the following: 
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where 
∗σ and 

∗k  are the Stefan-Boltzmann constant and the 
mean absorption coefficient, respectively. We assume that the term 

4T  may be expressed as a linear function, 
 

434 34 ∞∞ −≅ TTTT                                                           (8)                                   
Using Equations 7 and 8 in Equation 3, yields 
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where pck ρα /= , is the thermal diffusivity and

)43/(30 += RR NNk  and 
3*4/* ∞= TkkNR σ . The 

effect of radiation is to enhance the thermal diffusivity.  
 We introduce a similarity variable �, dimensionless stream 

function f , temperature � and the solute concentration � where 
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so that the continuity Equation 1 is satisfied identically. The velocity 
components are given by 
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where the prime denotes differentiation with respect to �. 
Substituting Equation10 into Equations 1 to 4, we get the coupled 
nonlinear system as the following; 
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Equations 12 and 13 have to be solved subject to the boundary 
conditions 
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In Equations 12 to 14 DRe is the Darcy-Reynolds number, Pr is 

the Prandtl number, Sc is the Schmidt number, fD  is the Dufour 

number, rS is the Soret number, sg is the temperature buoyancy 

parameter and cg is the mass buoyancy parameter. These 

quantities are defined by the following; 
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where xGr  is the local temperature Grashof number, mGr  is the 

mass Grashof number, xRe  is the local Reynolds number and 

Da  is the Darcy number.  
In this study only a local similarity solution is obtained. Full 

similarity solutions with all the physical parameters independent of 
x  are possible, for example, when the boundary temperature and 
concentration vary linearly with x , that is, when  
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where A  and B  are constants. In all other cases only local 
similarity solutions are obtained.  The parameters of engineering interest in any heat and mass 

problem are the local Nusselt number xNu and Sherwood number

xSh . These parameters characterize the surface  heat  and  mass  



 
 
 
 
transfer rates, respectively, and is defined by the equation that 
follows; 
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METHOD OF SOLUTION 
 
Equations 12 to 14 were solved using a novel successive 
linearization method (Awad et al., 2011; Motsa et al., 2011). This 
method assumes that the independent variables can be expanded 
in the following form; 
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where if , iθ  and iφ  ),3,2,1( �=i  satisfy the conditions 
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The functions )(ηf , )(ηθ  and )(ηφ  )1( ≥n  are 
approximations which are obtained by recursively solving the linear 
parts of the equation system that results from substituting these 
expansions in Equations 12 to 14. Using the earlier assumptions, 

nonlinear terms in if , iθ , iφ  and their corresponding derivatives  
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are considered to be very small and therefore neglected. Starting 

from the initial guesses )(0 ηf , )(0 ηθ , )(0 ηφ , which are chosen 

to satisfy boundary conditions of Equation 14, the subsequent 

solutions for 1≥n  are obtained by successively solving the 
linearized form of the equations. 

The linearized equations to be solved are shown as; 
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where the coefficient parameters are defined as the following; 
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The functions if , iθ  and iφ )1( ≥i  are obtained by iteratively 

solving Equations 17 to 19. The approximate solutions for )(ηf , 

)(ηθ and )(ηφ are then obtained as the following; 
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where M is the order of the SLM approximation. Equations 17 to 19 
were solved using the Chebyshev spectral collocation method 
where the unknown functions are approximated using Chebyshev 
interpolating polynomials at the Gauss-Lobatto points 
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where N  is the number of collocation points. The physical region 
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],0[ ∞  is first transformed into the region ]1,1[ −  using the domain 
truncation technique in which the problem is solved in the interval 

],0[ L  instead of ],0[ ∞ . This leads to the following mapping; 
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where L  is the scaling parameter used to invoke the boundary 

condition at infinity. The unknown functions if , iθ  and iφ  are 

approximated at the collocation points by the following equation; 
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The derivatives at the collocation points are represented as; 
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where s is the order of differentiation and 
L
2

D = D with D being 

the Chebyshev spectral differentiation matrix. Substituting 
Equations 31 to 34 in Equation 17 to 20 leads to the following linear 
matrix equation; 
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subject to the boundary conditions; 
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In Equation 35, 

1A −i  is a )33()33( +×+ NN square matrix, and 

,Xi  1R −i  are 1)13( ×+N column vectors defined by the following 
equation; 
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In the aforementioned definitions, 1,a −ik , 1,b −ik , and 1,c −ik  

)2,1( =k are diagonal matrices of size )1()1( +×+ NN  and 

I  is an identity matrix of size )1()1( +×+ NN . After modifying 
the matrix system of Equation 35 to incorporate boundary 
conditions of Equations 36 to 37, the solution is obtained as the 
following equation; 
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1
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To show the accuracy and robustness of the linearization method, 
Equations 12 to 14 were further solved numerically using the Keller-
box implicit method described in the review paper (Keller, 1978). 
The Keller-box method gives second order accuracy and is 
unconditionally stable. Using this method the equations are first 
reduced to a system of first order equations, the resulting central 
difference equations linearized and then solved using the block-
tridiagonal-elimination technique. 
 
 
RESULTS AND DISCUSSION 
 
In order to have a sense of the accuracy and reliability of 
the linearization technique, benchmark results were 
obtained for cg and DRe  large. Table 1 gives a 

comparison between the results obtained using the 
linearization method and the numerical results based on 
the Chebyshev collocation method in Parand et al. (2010) 
as well as the homotopy analysis method (Liao,1999). It 
is evident that the linearization technique gives very 
accurate results when compared with the other two 
methods. Unless otherwise stated, the results in this 
study were obtained for 7.0Pr = , 10 =k and

700Re =D . 
Tables 2 to 4 further give a sense of the accuracy and
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Table 1. A comparison of values of )0(f ′′  obtained by the linearization method against (a) the 
Chebyshev collocation method of Parand et al. (2010) and, (b) the homotopy analysis method 
(HAM) solutions in Liao (1999) when ,0== sc gg ,Re ∞→D

 1Pr = , ,3.0=rS 1.0=fD  and 

2.0=Sc . 
 

N 
Parand et al. (2010)  Liao (1999)  Present method 

)0(f ′′   HAM 
order )0(f ′′   )0(f ′′  

 -  3 -  0.33205878 
 -  4 -  0.33205733 

6 0.33210951  5 0.28098  0.33205733 
7 0.33210735  10 0.32992  0.33205733 
8 0.33219404  15 0.33164  0.33205733 
9 0.33206974  20 0.33198  0.33205733 

 
 
 

Table 2. Effect of the temperature buoyancy parameter sg  on skin-friction, heat and mass transfer coefficients when 

,1.0=cg ,3.0=rS  1.0=fD  and 2.0=Sc . 

 

 sg  
SLM order Bvp4c 

solution Keller box 
2nd 3rd 4th 5th 

)0(f ′′  
0.1 
0.4 
0.8 

0.653361 
0.978436 
1.358986 

0.653355 
0.978111 
1.356569 

0.653355 
0.978111 
1.356569 

0.653355 
0.978111 
1.356569 

0.653360 
0.978095 
1.356526 

0.653363 
0.978122 
1.356581 

        

xxNu Re/  
0.1 
0.4 
0.8 

0.337183 
0.369061 
0.399966 

0.337179 
0.369073 
0.399857 

0.337179 
0.369073 
0.399857 

0.337179 
0.369073 
0.399857 

0.337182 
0.369085 
0.399864 

0.337182 
0.369077 
0.399860 

        

xxSh Re/  
0.1 
0.4 
0.8 

0.151676 
0.158695 
0.165702 

0.151676 
0.158668 
0.165478 

0.151676 
0.158668 
0.165478 

0.151676 
0.158668 
0.165478 

0.151685 
0.158675 
0.165481 

0.151676 
0.158667 
0.165475 

 
 
 

Table 3. Effect of the Soret parameter on the skin-friction, heat and mass transfer coefficients when 1.0== sc gg , 

,1.0=fD  and 2.0=Sc . 
 

 rS  
SLM order Bvp4c 

solution Keller box 
2nd 3rd 4th 5th 

)0(f ′′  
0.0 
0.3 
0.6 

0.637449 
0.653361 
0.669375 

0.637446 
0.653355 
0.669362 

0.637446 
0.653355 
0.669362 

0.637446 
0.653355 
0.669362 

0.637450 
0.653360 
0.669368 

0.637453 
0.653363 
0.669370 

        

xxNu Re/  
0.0 
0.3 
0.6 

0.330915 
0.337183 
0.343594 

0.330911 
0.337179 
0.343588 

0.330911 
0.337179 
0.343588 

0.330911 
0.337179 
0.343588 

0.330915 
0.337182 
0.343591 

0.330915 
0.337182 
0.343592 

        

xxSh Re/  
0.0 
0.3 
0.6 

0.205218 
0.151676 
0.095151 

0.205218 
0.151676 
0.095153 

0.205218 
0.151676 
0.095153 

0.205218 
0.151676 
0.095153 

0.205228 
0.151685 
0.095158 

0.205218 
0.151676 
0.095151 
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Table 4. Effect of the Dufour parameter on the skin-friction, heat and mass transfer coefficients when 1.0== sc gg , 

,3.0=Sr  and 2.0=Sc . 
 

 fD  
SLM order Bvp4c 

solution Keller box 
2nd 3rd 4th 5th 

)0(f ′′  
0.0 
0.4 
1.6 

0.652489 
0.656017 
0.667364 

0.652483 
0.656010 
0.667352 

0.652483 
0.656010 
0.667352 

0.652483 
0.656010 
0.667352 

0.652489 
0.656015 
0.667358 

0.652491 
0.656018 
0.667360 

        

xxNu Re/  
0.0 
0.4 
1.6 

0.339100 
0.331218 
0.303220 

0.339095 
0.331213 
0.303212 

0.339095 
0.331213 
0.303212 

0.339095 
0.331213 
0.303212 

0.339099 
0.331216 
0.303210 

0.339099 
0.331217 
0.303217 

        

xxSh Re/  
0.0 
0.4 
1.6 

0.151200 
0.153153 
0.160041 

0.151201 
0.153153 
0.160042 

0.151201 
0.153153 
0.160042 

0.151201 
0.153153 
0.160042 

0.151209 
0.153162 
0.160050 

0.151200 
0.153153 
0.160041 

 
 
 
the rate of convergence of the linearization method  when 
compared with the numerical results. Here we also 
demonstrate the effect of the physical parameters on the 
skin friction coefficient, Nusselt number and the 
Sherwood number. For all values of the physical 
parameters used, convergence of the method to the 
numerical results is achieved at the fifth order of the SLM 
approximation. 

Table 2 shows the effect of increasing the temperature 
buoyancy on the skin-friction coefficient, Nusselt number 
and the Sherwood number. In practice it has been shown 
(Chang, 2006) that buoyancy effects are significant in 
forced convection when either the fluid velocity is 
relatively low or when the temperature difference 
between the wall and the free stream is large. Increases 
in the temperature buoyancy leads to an increase in the 
skin-friction coefficient, Nusselt number and the 
Sherwood number. The results earlier mentioned are 
similar to the recent findings (Singh et al., 2010) and are 
attributed to the fact that as the buoyancy increases, the 
fluid velocity inside boundary layer increases causing an 
increase in local skin-friction coefficient. The increased 
fluid velocity near the plate surface increases the heat 
transfer rate. Consequently, the drag exerted by the fluid  
on the plate is enhanced by increases in sg . 

Tables 3 and 4 show the effects of the Soret and 
Dufour parameters on the skin-friction coefficient, Nusselt 
number and the Sherwood number, it is evident that 
increasing Sr  and Df  leads to increasing skin friction 
coefficient. The increasing values of Sr results in 
increasing Nusselt number but decreasing the Sherwood 
number. However, the effect of Dufour parameter on heat 
and mass transfer is the exact opposite of the effect of 
Soret parameter as can be seen from Table 4. 

To determine the influence of the physical parameters 
on the velocity, temperature and concentration profiles for 
the flow, we plot several curves of the velocity, 

temperature and concentration fields for different 
parameter values in Figures 1 to 9. The circles represent 
the linearization solution while the solid lines represent 
the numerical solution. 

Figures 1 and 2 show the effect of increasing the 
temperature buoyancy parameters sg  on the velocity, 
temperature and concentration profiles. We note here 
(Alam et al., 2006) that the dimensionless parameter cg  

has the same meaning and effect as sg . The buoyancy is 

assumed to be such that 1≤sg  representing pure forced 

convection ( 1<<sg ) and mixed convection ( 1=sg ). For 
pure forced convection, increasing the buoyancy leads to 
steady increases in the velocity. Figure 2 shows that 
increasing the buoyancy leads to decreases in the 
temperature )(ηθ  and in the concentration )(ηφ  profiles. 
The results are line with other studies in the literature 
(Alam et al., 2006). 

The effects of increasing the Schmidt number Sc  on 
the velocity, temperature and the concentration profiles 
are shown in Figures 3 and 4. The velocity and the 
concentration decrease with increasingSc , increasing 
Sc  leads to increases on temperature profile. The 
Schmidt number Sc characterizes a fluid flow in which 
there is simultaneous momentum and mass diffusion 
convection processes. The effects of Soret parameter on 
the velocity, temperature and the concentration have 
been shown in Figures 6 and 7. The velocity and the con-
centration profiles increase with increasing rS whereas 

the temperature decreases lightly with increases in rS .  
Figures 8 and 9 show the effects of the Dufour 

parameter on the fluid properties. The velocity and the 

temperature increase when fD   increases. However
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Figure 1. Effect of the temperature and concentration buoyancy parameters cg  and sg  on the velocity profiles when ,3.0=rS 1.0=fD  and 2.0=Sc . 

 
 
 
increasing fD  leads to decreases in the 
concentration profile. 
 
 

Conclusion 
 

In this paper we investigated the free convection 
flow with cross-diffusion and double diffusive 

using a novel successive linearization (SLM) 
method. Comparison between the solutions 
obtained using the linearization method, the 
Keller-box implicit method and the Matlab bvp4c 
numerical routine has been shown in Tables 1 to 
3. The convergence of the method is rapid. The 
influence of the governing parameters on the fluid  

properties has also been shown graphically. 
Increasing the buoyancy leads to increases in the 
velocity, but decreases the temperature and the 
concentration. The effect of the Soret parameter is 
to increase the velocity and the concentration, and 
to decrease the temperature profiles. The Dufour 
parameter    increases    the    velocity    and    the  
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Figure 2. Effect of the temperature buoyancy parameter sg  on the temperature and concentration profiles when 1.0=cg , 3.0=rS  and 1.0=fD . 

 
 
 
temperature but has only a slight effect on the 
concentration profiles. The velocity increases by 
increasing the buoyancy parameter. The 

temperature as well as concentration however 
decrease with an increase in the buoyancy 
parameter.   The   velocity  and  the  concentration  

decrease with increasing Schmidt numbers. The 
temperature however increase with increases in 
Schmidt numbers. 
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Figure 3. Variation of the velocity profile with the Schmidt number Sc  when 1.0== sc gg , 

,3.0=rS  and 1.0=fD . 

 
 
 

 
 
Figure 4. Variation of the temperature and concentration curves with Sc when 1.0== sc gg , ,3.0=rS  and 1.0=fD . 

 



4920          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 5. Variation of the temperature and concentration curves with 0k  when 1.0== sc gg , 3.0=rS , 1.0=fD and 2.0=Sc . 

 
 
 

 
 
Figure 6. Variation of the velocity profile with (a) 

0k  ( 3.0=rS ), and (b) 
rS  when 10 =k . The other parameters are 1.0== sc gg , 

2.0=Sc  and 1.0=fD . 
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Figure 7. Variation of the temperature and concentration curves with 

rS when 1.0== sc gg , 1.0=fD  and Sc = 0.2 and 2.0=Sc . 

 
 
 

 
 
Figure 8. Variation of the velocity profile with 

fD  when 1.0== sc gg , 3.0=rS  and 

2.0=Sc . 
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Figure 9. Variation of the temperature and concentration curves with 

rS  when 1.0== sc gg , 1.0=fD  and 2.0=Sc . 
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