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We show that all solutions of the max-type cyclic system of difference equations 
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 where  ,   is real positive number, and initial values 

0 0,x y
 and 

 0 0,z  
 , are  periodic with period three. Finally we generalized the results for more 

general system which is finite dimensional system. 
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INTRODUCTION 
 
Since the discrete structure underlying quantum gravity 
leads to ‘difference equations’ as the basic dynamical 
laws, new problems to determine properties of their 
solutions arise. The type of these equations is different 
from standard ones, and questions asked sometimes 
differ from what traditional investigations were interested 
in, which requires new tools to be developed. One issue 
is how to derive semi-classical properties of solutions in 
regimes where difference equations are close to 
continuum behavior. More generally, an important 
question is how such semi classical behavior can emerge 
dynamically in a quantum system. 

Recently, there has been a great interest in studying 
nonlinear difference equations since many models 
describing real life situations in population biology, 
economics, probability theory, genetics, psychology, 
sociology etc. are represented by these equations. As we 
know the  investigation of max-type  difference  equations 

attracted some attention recently. Some of the max-type 
difference equations arises naturally in certain models in 
automatic control theory (Stevic, 2010), and other fields. 
There has been some recent interest in studying max-
type difference equations, see, for instance, (Berenhaut 
et al., 2006; Cinar et al., 2005; Grove and Ladas, 2005; 
Iricanin and Stevic, 2009; Mishev et al., 2003) and 
references cited therein. These papers study mostly 
some particular cases of the following max-type 
difference equations  
 

  (1) 

  

Where    are 

 

E-mail: tfibrahem@mans.edu.eg or  tfoze@kku.edu.sa 



 

630          Int. J. Phys. Sci. 
 
 
 
natural numbers such that 
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 is eventually periodic with period  
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  is periodic with period . Period is called a 

minimal one if there is no 1p p
that is a period for the 

sequence  
 

k
n n s

x


  (Berg and Stevic, 2006; Grove and 

Ladas, 2005). If = 1 then such solutions are called 
eventually constant, or trivial ones (Iricanin and Stevic, 
2009). The next particular case of Equation (1):  
 

                      (2) 
 

where , and  is a sequence of real 
numbers, attracted some attention recently (for example, 
(Elsayed and Iricanin, 2009; Elsayed et al., 2010; 
Elsayed and  Stevic, 2009; Iricanin and Stevic, 2009). 
Positive solutions of Equation (2) are usually related with 
periodicity. If solutions are not of constant sign then it is 
known that Equation (2) can have non-periodic solutions 
which could be even unbounded (Elsayed et al., 2010). 
Simsek et al. (2006) studied the solutions of the 
difference equation 
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Elsayed and Stevic (2009) obtained the behavior of the 
max-type equation 
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Xiao and Shi (2013) satisfied the periodic solutions of the 
max-type equation 
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Iricanin and Touafek (2012) gave the complete solution of 
the max-type system: 
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Motivated by above mentioned papers, we investigated 
the global periodicity of the three-dimensional max-type 
cyclic difference system of the form 
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where  ,   is real positive number, and 

initial values 0 0,x y
 and 

 0 0,z  
. 

 
 
THE CLOSED FORM SOLUTION 
 
Now we study the behavior of the solutions of system (3). 
For the sake of easier presentation, we formulate and 
prove eight theorems. 
 

Case 1:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (1)   
 

Suppose that 
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Proof  
 

First, note that the conditions 0 0 0 0 0 0, ,x y y z and x z    
 

imply 
1 0 0

0

max{ , }x y y
x


 

,
1 0 0

0

max{ , }y z z
y


 

, 
1 0 0

0

max{ , }z x x
z


 

 
 
By the same way we can see that 
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By continuing we will get Equations (4), (5) and (6). 
 

Case 2:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (2)   
 

Suppose that 
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is a solution of system (3) such 

that 0 0 0 0 0 0, ,x y y z and x z    
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Proof  
 

From conditions 0 0 0 0 0 0, ,x y y z and x z    
 we 

have that, 
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By continuing we will get Equations (7), (8) and (9). 
 
 

Case 3:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (3)   
 

Suppose that 
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Proof 
 

By using conditions 0 0 0 0 0 0, ,x y y z and x z    
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By continuing we will get Equations (10), (11) and (12). 
 

Case 4:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (4)   
 

Suppose that 
 , ,n n nx y z

is a solution of system (3) such 

that 0 0 0 0 0 0, ,x y y z and x z    
. Then the solution 
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Proof  
 

The proof is given as in theorem (1) 
 

Case 5:  0 0 0 0 0 0, ,x y y z x z    
 

 
 

Theorem (5)   
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 , ,n n nx y z

is a solution of system (3) such 
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The proof is given as in theorem (2). 
 

Case 6:  0 0 0 0 0 0, ,x y y z x z    
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Proof 
 
The proof is given as in theorem (2). 
 

Case 7:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (7)   
 

Suppose that 
 , ,n n nx y z

is a solution of system (3) such 
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Proof  
 
The proof is given as in theorem (2). 
 

Case 8:  0 0 0 0 0 0, ,x y y z x z    
 

 
 
Theorem (8)   
 

Suppose that 
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that 0 0 0 0 0 0, ,x y y z and x z    
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Proof 
 
The proof is given as in theorem (2). 
 
 
GENERAL M-DIMENSIONAL SYSTEM 
 
The previous results can be generalized to the following 
more general system which is m-dimensional system : 
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Theorem 9  
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that 
       1
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