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6
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appropriate conditions. 
 
Key words: Ricci curvature, H-convex submanifold, hypersurface, de Sitter space. 

 
 
INTRODUCTION 
 
Let 7L  be the 7-dimensional Lorentz-Minkowski space 
endowed with the Lorentzian metric tensor g% given by 
 

6

7 7
1

( , ) i i
i

g V W v w v w
=

= −�%  

 

and let 6 7
1S L⊂  be the 6-dimensional unitary de Sitter 

space 6
1S , that is       

 

{ }6 7
1  :  ( , ) 1S X L g X X= ∈ =%                     

 

As is well known, the de Sitter space 6
1S  is the stan-dard 

simply connected Lorentzian space form of positive 
constant sectional curvature. A smooth immer-
sion, 6 7

1M S L→ ⊂  of an 5-dimensional connected 
manifold, M, is said to be spacelike hypersurface if the 
induced metric is a Riemannian metric on M which is 
denoted by g .  

In the last years, the study of spacelike hypersurfaces 
in de Sitter space has been of substantial interest from 
both physical and mathematical points  of  view.  In  this  
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work, we obtain a result for a H-strictly convex space-like 
hypersurface in de Sitter space to be spherical in terms of 
a pinching condition for the Ricci curvature. 

Let xT M ⊥  be the normal space to M at x. We denote 

by ∇  (resp. ∇%) the covariant    differentiation on M 

(resp. 6
1S ). Then, for tangent vector fields X, Y and the 

unit normal field ζ  on M, as is well known, the formulas 
of Gauss and Weingarten are; 
    

( , ) ,X XY Y X Yσ∇ = ∇ +%          (1)  
 

( )X A Xζζ∇ = −%    (2)                                               

 
Where; σ  is the second fundamental form of M and 
satisfies ( , ) ( , )X Y Y Xσ σ=  and A is the symmetric 
linear transformation on each tangent space to M, which 
is called the shape operator. Since M is a hypersurface 
we may write 
 

( , ) ( , )X Y h X Yσ ζ=                          (3)                                 
 
Then it can be seen that 
 

 ( , ) ( ( , ), ) ( ( ), ).h X Y g X Y g A X Yζσ ζ= =%        (4)           

 
The eigenvalues  1 2 5, ,...,λ λ λ   of  the  shape  operator  A 



 
 
 
 
are called principal curvatures of M and an orthonormal 

basis { }1 2 5, ,...,e e e  such that: 
 

,i i iA e eζ λ=   1 5,i≤ ≤  
 
are called principal vectors on M. In this case, 

( , ),i i ih e eλ =  where 1,2,...,5.i =  
 
Furthermore, the mean curvature vector of the hyper-
surface M is defined by 1 tracenH σ=  and  

5 1 2 3 4 5K λ λ λ λ λ=  is called the Gaussian curvature of M. 
The second fundamental form σ  is said to be semi-

definite at x M∈  if ( , ) 0X Xσ ≥  or ( , ) 0X Xσ ≤  for 

all non-zero vectors xX T M∈ , that is, h is either positive 
semidefinite or negative semidefinite. It is well known that 
if M is convex at x M∈ , then the h is semidefinite at the 
point x. The second fundamental form σ  is said to be 
definite at x M∈  if ( , ) 0X Xσ ≠  for all non-zero 

vectors xX T M∈ , that is, h is either positive definite or 
negative definite. In this case the hypersurface M is said 
to be strictly convex at  the point x . σ  is said to be non-
degenerate at x if h is non-degenerate at x. Taking the 
mean curvature vector H to M instead of the unit normal 
field ζ  on M, an H strictly−  convex submanifold, can 
be define in a Riemannian space form (Chen, 1999; 
Udri�te, 1986). 
 
 
Definition 1 
 
A Riemannian submanifold is said to 
be H strictly− convex submanifold if the shape operator 

HA  is positive definite at each point of the submanifold. 
Denote by R the Riemannian curvature tensor of M. 

Then the equation of Gauss is given by 
 

( , ; , ) ( ( , ) ( , ) ( , ) ( , ))R X Y Z W g X W g Y Z g X Z g Y W= −  

                     ( ( , ), ( , )) ( ( , ), ( , ))g X W Y Z g X Z Y Wσ σ σ σ+ −      (5)              
 
For vector fields X,Y,Z,W tangent to M. For the 
hypersurface M, denote by ( )K π  the sectional curvature 

of a 2-plane section xT Mπ ⊂ , x M∈ and choose an 

orthonormal basis 1 2 5{ , ,..., }e e e  of  xT M  such that 

1e X= , then we may define the Ricci  curvature of xT M  
at x by 
 

5

1
2

( ) j
j

R i c X K
=

= � ,                             (6)                                 
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where; ijK  denotes the sectional curvature of the 2-plane 

section spanned by ,i je e . The scalar curvature τ  of the 

hypersurface M is defined by 
 

1 5

( ) i j
i j

M Kτ
≤ ≤ ≤

= �                     (7)                                             

 
 
RICCI CURVATURE OF A H-CONVEX 

HYPERSURFACE �N 
6
1S  

 
Now, following Chen (1999), a Riemannian invariant on 
the hypersurface M of the 6-dimensional de Sitter space 

6
1S  of constant sectional curvature 1 is introduced, 

defined by 
 

1
5 4

, 1
( ) ( ) inf ( ),  .

xX T M X
x Ric X x Mq

Î =
= Î                    (8) 

 

In this study, the following theorem for the hypersurface 
M of the 6-dimensional de Sitter space 6

1S  is proved. 
 
 

Theorem 1 
 

Let M be a hypersurface of the 6-dimensional de Sitter 
space 6

1S , for any point 6
1x SÎ  we have: i ) If 5 ( ) 1xq ¹ , 

then the shape operator at the mean curvature vector 
satisfies     
 

4
55 ( ( ) 1) ,HA x I x Mq> - Î                                       (9) 

 

ii)   If 5 ( ) 1xq = , then 0HA ³  at x. 
 
 
Proof 
 

Let 1 2 5{ , ,..., }e e e  be an  orthonormal basis of xT M . 
Considering Equation 6, 7 and 8, we have 
 

5( ) 10. ( )x xτ θ≥                                                         (10) 
 
Then by following Chen (1999), the equation below is 
obtain 
 

2 1
10( ) ( ) 1H x xt³ -                                                  (11) 

 

Now, from Equation 10 and 11, 2
5( ) ( ) 1H x xq³ -  is 

obtain. This shows that only when 5 ( ) 1xq £ , ( ) 0H x =  
and in this case i) and ii) is clearly satisfied, so it  may  be  
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assumed that  ( ) 0H x ≠ . Choose an orthonormal basis 

1 2 6{ , ,..., }e e e  at x such that 6e  is in the direction of the 

mean curvature vector H(x) and 1 2 5, ,...,e e e  diagonalize 

the shape operator HA . Then we have 
 

1

2

3

4

5

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

H

a

a

A a

a

a

� �
� �
� �
� �=
� �
� �
� �� �

                    (12)                

 
From the equation of Gauss, the equation below is 

obtain 1i j i ja a K= -                           (13)                                                 
 
and from  Equation 13, the Equation below is obtain 

1 2 5 1( . . . ) ( ) 4a a a R ic e+ + = +             (14)                                       
 

If 1e X=  in  Equation 13, taking into account  Equation 
8, Equation 14 becomes 
  

2
1 1 2 5 5 1( ... ) 4( ( ) 1)a a a a x aq+ + + ³ - +           (15)                   

 
In similar way, the following equalities for any j, 

1, 2,...,5j = , can be obtain 
 

2
1 2 5 5( ... ) 4( ( ) 1)j ja a a a x aq+ + + ³ - +           (16)                    

 
Which yields 
 

4
55 ( ( ) 1 )HA x Iq³ -                       (17)                                           

 
Here, the equality case only occurs when one of the 
vectors 1 2 5, ,...,e e e  is in the null space, but for the 
hypersurfaces this is impossible, so the inequality (17) 
must be sharp, that is  
 

4
55 ( ( ) 1)HA x Iq> -                                (18)                                                 

 
From the Theorem 1, the following can be obtained. 
 
 
Corollary 1 
 
Let M be a hypersurface of the 6-dimensional de Sitter 

space 
6

1S  of constant sectional curvature 1, if the Ricci 
curvature of M is positive, then M is a H-strictly convex 

hypersurface immersed in
6

1S  . All hypersurfaces in 6
1S  

are bounded, that is, M is contained in a closed  geodesic  

 
 
 
 
ball of finite radius r . Without loss of generality, we take 

such a geodesic ball as the closed ball ( , )B a r  with the 

center (0,0,...,1)a = . By simple trigonometry, it can be 

deduce that the distance in 7L from the timelike direction 
a to a point of the geodesic sphere ( , ) ( , )S a B ar = ¶ r  is 

2 s in h ( / 2 )t = r . 

By the generalized extremum principle, the present 
author obtained some upper bound estimations for the 
Ricci curvatures of hypersurfaces in the sphere and the 
hyperbolic manifold (Erdo�an, 1996, 1998). However, 
Being motivated by (Erdo�an, 1996, 1998, 2009) Alias 
(2000) proved the following:  
 
 

Theorem 2 
 

Let M be a complete hypersurface in 6-dimensional de 
Sitter space 6

1S  whose  sectional curvatures  are 
bounded away from −∞ . If M  is contained in the region 

{ }6
1( , )  : ( , ) sinh( ) 0a x S g a xρ ρΩ = ∈ ≤ − <  for the 

timelike direction 7a L∈  and a positive real number ρ  

and  if  r is assume to be less than / 2p , then,  
 

2, 1,

4
lim inf ( , ) .

cosh ( )pX T M X p M
Ric X X

rÎ = Î
£   (19)                         

 

Now, obtaining a sharp result for the best possible 
approximation of the Ricci curvature of a H-strictly convex 
hypersurface immersed in 6

1S ; According to the Corollary 
1, for such an hypersurface, the left side of the inequality 
(Equation 19) must be positive. On the other hand, to be 
a H-strictly convex hypersurface, M must satisfy the 
condition (Equation 18), that is,  
 

4
55 ( ( ) 1 )HA x Iq> -   or 

 

1 4
i n f

5 5HA r i c> − .      

 

Hence, M is definitely H-strictly convex if inf 4ric ≥ . 
Therefore, combining two conditions, the equation below 
is obtain  
 

2

4
 4 inf

cosh ( )
ric

ρ
≤ ≤                                           (20)  

 

Thus, considering that 2cosh ( ) 1ρ ≥ , from  Equation  20,  



 
 
 
 
the following conclusion can be drawn. 
 
 

Theorem 3 
 

Let M be a H strictly−  convex hypersurface in 6-

dimensional de Sitter space 6
1S  such that all sectional 

curvatures of M are bounded away from −∞ . If M  is 
contained in the region 

{ }6
1( , )  : ( , ) sinh( ) 0a x S g a xρ ρΩ = ∈ ≤ − <  for the 

timelike direction 7a L∈  and a positive real number ρ , 

then for any point x M∈ , the best possible 
approximation for the minimum Ricci curvature of M  is 4 
and M is a round 5-sphere of radius cosh( )ρ . 
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