
International Journal of the Physical Sciences Vol. 6(7), pp. 1814-1821, 4 April, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.235
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Optimization of software engineering resources using
improved genetic algorithm

Lu Lu* and Xiuxia Quan

School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China.

E-mail: lul@scut.edu.cn.

Accepted 14 March, 2011

The arrangement of the human and material resources is an important issue in the software development
process. To effectively solve the distribution optimization of software engineering resources, an
improved genetic algorithm with heuristic feedback is constructed in this work. The proposed approach
employs the executive matrix as chromosome which covers the matrix coding chromosome planning
and allocation of resources, extracts the heuristic feedback from these obtained solutions, and applies
the heuristic feedback to guide the subsequent optimization process. The experimental results suggest
that this proposed approach makes a rational distribution of resources and provides a scientific basis
for improving the efficiency of software development and the quality of software.

Key words: Genetic algorithms, software engineering, allocation of resources, activity network.

INTRODUCTION

As the emergence of software thoroughly changed our
working, studying and life style, there is no doubt that
software is the foundation of information society, and
consequently becomes one of strategic point of
competition among nationalities (Wang and Patel, 2009;
Carbone et al., 2008). However, the process of software
development exposes various problems, such as the
overrun of costs. ‘Software crisis’ has been influencing the
development and management of software, therefore, the
improvement of software process has important practical
significance to defuse software crisis (O’Hagan et al.,
2010).

Software process, which is a representative
multi-element nonlinear complicated system, is the
sequential set of procedure related to activities,
constraints and resources in software life cycle (Distefano
et al., 2010; Zhang et al., 2009). As the expansion of
software development scale, traditional software resource
configuration model has significant limitations. In view of
this, scholars nowadays propose plenty of solutions,
mainly focusing on utilization of material resources and
modeling targeting to cost and construction period in
software process (Garcia et al., 2010).

Since software development is a knowledge-intensive
activity, the keynote of software engineering modeling is
rational distribution of human resources (Zeng, 2009;
Santillan et al., 2009). Combining with genetic algorithms,

this paper introduces a model for resources distribution of
optimal trade-off for cost and construction period that is
rationally distributed in human resources. An improved
genetic algorithm with heuristic feedback is proposed to
effectively solve the distribution optimization of software
engineering resources.

Recently, more and more scholars have studied
applications of the interaction between evolution and
learning (Xing et al., 2008a, 2008b, 2010a). Normally,
these approaches keep useful features of previous
individuals to improve the performance of current
individuals (Xing et al., 2006a, 2007, 2009). In fact, such
approaches outperform traditional evolutionary algorithms
on several benchmarks (for example, flexible job shop
scheduling problem, traveling salesman problem,
capacitated arc routing problem) (Xing et al., 2006b,
2010b; Ho et al., 2007; Louis and McDonnell, 2004). In a
similar fashion, an improved Genetic Algorithm with
Heuristic Feedback (HFGA) is proposed in this work.
HFGA extracts some heuristic feedbacks from
near-optimal solutions to guide the subsequent evolution.

PROBLEM FORMULATION

In the distribution optimization problem of software
engineering resources, the hypothesis can be

summarized as follows:

1) Activity in this paper means an integral part of
technology, and it cannot stop once starts.
2) Every activity in network cannot start until all its
prepositive activates complete.
3) The cost of project contains: common cost to maintain
normal running of project, and development cost of
software developers, which points at cost resulted by
various level of software developers.
4) The total period of project represents the length of
critical path calculated in the condition of determinate
period.

Activities

Activity is the fundamental element of optimized model in
software engineering, suppose there are a total
of N activates and M persons in the software
development process.

1) Node denotes the No. of Nodes in the network
diagram.
2) diT denotes the period of activity ()1, 2, ,i N= ⋅⋅⋅ .

3) c
diT denotes the time remainder of

activity ()1, 2, ,i N= ⋅⋅⋅ .

4) n
diT denotes the actual completion time of

activity ()1, 2, ,i N= ⋅⋅⋅ .

5) ,i jRole denotes the thi ()1, 2, ,i N= ⋅⋅⋅ activity can be

done by the thj ()1,2, ,j M= ⋅⋅⋅ person.

6) iRoleNum denotes the completion persons number of

activity ()1, 2, ,i N= ⋅⋅⋅ .

7) DT denotes the planned completion time of
engineering project.
8) NT denotes the actual completion time of engineering
project.
9) DC denotes the planned cost of engineering project.

10) NC denotes the actual cost of engineering project.

11) ()Tf EM denotes the completion date function of

engineering project.
12) ()Cf EM denotes the cost function of engineering

project.

According to the order among activities and the probable
completion time of each activity, calculate the critical path
of network, and the length of it is the value of NT . The

Lu and Quan 1815

method is as follows: based on the assumption for
network, each activity cannot start until all the prepositive
activities finished. In accordance with executive
matrix EM , find the probable completion time of each
activity. The latest time of completion among all the
activities is the value of NT .

The cost of software process contains: management fee
and development fee. The former is daily cost 1C which
maintaining software development and cost of
administrators 2C . The latter points at cost of device

resources 3C and development cost 4C of different
developers with various abilities and labor-hours.

1 2 3 4

4
1

M

i i
i

CN C C C C

C c T
=

= + + +�
�
� =�
�

�
 (1)

Here, ic and iT denote the development cost and
labor-hour of developers respectively.

Constraints

1) The activity period constraint, it is d c

di di di diT T T T≤ ≤ + .
2) Process constraints. Activity sequence of software
engineering is working sequence which satisfying
sequencing. The activity set of

procedure j is () {p j i= activity i is the prepositive of

activity j , j i dit t T− ≥ , () }, 1, 2, ,i p j j N⊆ = ⋅⋅⋅ .

1) Construction period constraint, that is N DT T≤ .

2) Cost constraint, it is N DC C≤ .

Resource problems

A device resource is both a key link in software
development process and a ingredient of software
development cost. Compare with human resources, it is
easily be quantified, not constitute of difficulty of
resources distribution. In the circumstances of definite
software development, the composition of device
resources is relatively fixed, with little space to improve.
Moreover, the distribution of device resources cannot be
the focus of proposed model.

Rational distribution of human resources is the nucleus
of resources distribution in software process. As software
is a work of concentration of brain power, the organization,
division of labor and distribution of developers is critical

1816 Int. J. Phys. Sci.

Figure 1. The computational flow of HFGA.

for software process, which is directly influencing whether
the software project can be successful or not.

Effort estimation

Effort estimation is the foundation of resources distribution.
To realize rational resource distribution, exact effort
estimation must be conducted owing that engineering
experience only offers qualitative guide of resource
distribution. The effort estimation contains two parts: effort
estimation for each activity and estimation for working
ability of each member. This model adopts the expert
judgment method.

The way of expert judgment commonly uses the
estimation method in the following equation, in
which oE means Optimistic Effort, pE represents

Pessimistic Effort, and mE indicates the Most Probable
Effort.

4

6
o m pE E E

E
+ +

= (2)

Suppose there are N activities in network, M persons
organize software development. As the expert judgment,
the effort estimation matrix for various activities of various
people is obtained as follows:

11 12 1

21 22 2

1 2

n

n

m m mn m n

a a a

a a a
TM

a a a
×

⋅ ⋅ ⋅� �
� 	⋅ ⋅ ⋅� 	=
� 	⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
� 	⋅ ⋅ ⋅
 �

Here, ija denotes the probable time of

developer i completes activity j .

Objective functions

Cost and construction period is the main attributes of
software process. Assume the sum weight of cost and
period as optimized objective function, the definition of
which is as shown in the following equation. In
which, C means cost, T signifies the weight value of
construction period 1x , 2x determined by demand of

decision makers, EM is the executive matrix.

()
()
()

1 2

1

2

1 2

max ,

. . 0 1
0 1

1

Fitness C T x C x T

C cost EM

T Time EM
s t x

x

x x

= ∗ + ∗

� =
� =�� ≤ ≤�
� ≤ ≤
�
� + =�

 (3)

GENETIC ALGORITHM WITH HEURISTIC FEEDBACK

This proposed improved genetic algorithm, Genetic
Algorithm with Heuristic Feedback, is characterized by the
extraction and application of heuristic feedback in the
whole evolution process. In fact, the significant size of the
infeasible region in the search space poses the difficulty
of finding good quality feasible solutions using the genetic
algorithm alone. For this reason, the near-optimal
solutions obtained throughout the search are analyzed to
extract the heuristic feedback firstly, and then the obtained
heuristic feedback is used to guide the subsequent search.
The computational flow of HFGA is shown in Figure 1.

Heuristic feedback

The first kind of heuristic feedback is called the activity
assignment position which is applied to establish a
beneficial order for the given activity. A matrix 1HF with

size N N× is defined for the activity assignment position,

()1 ,HF i j denotes the total number of times of assigning

the activity i to the thj position among the near-optimal
solutions obtained throughout the search.

The second kind of heuristic feedback is called the
activity assignment person which is applied to establish
the beneficial person for one given activity. A
matrix 2HF with size N M× is defined for the activity

assignment person, ()2 ,HF i j denotes the total number of

times of assigning the activity i to the thj person among
the near-optimal solutions obtained throughout the
search.

Population Initialization

Chromosome, also called individual, is the encoded
solution for specific problems. The solutions of activity
planning and resource distribution problem are a series of
scheme. There remain limitations when traditional binary
string encoding describes complicated programming
problems, hence, this paper adopts a matrix EM with
the ()1M N+ × size as one chromosome.

The chromosome of proposed encoding matrix covers
activity planning and resource distribution. The first row of
matrix is natural number sequence without repetition from
1 to N , representing initial activity sequence, the second
row to 1M + row means matching relation between
human resource and activity. Unless there exists no
confliction among activities which is closely before and
after initial planning sequence and personnel distribution,
these two activities cannot be executed simultaneously.

Population is the set of chromosomes. In terms of
particularity of chromosome structures in this paper, the
population initialization is divided into two steps: activity
planning initialization and resource distribution
initialization. The activity planning section is the natural
sequence which satisfies constraint relation, produced by
topological sorting algorithm. The resource distribution
section is initialized using random generation.

Selection operation

In the proposed HFGA, the Binary Tournament is applied
to execute the selection operation. That is, two different
chromosomes are randomly selected, and the least-cost

Lu and Quan 1817

one is kept. In order to improve the quality of HFGA, the
elitism among the current population is directly copy to the
next population, and the population consists exclusively of
unique phenotypes and identical solutions are never
accepted.

Crossover operation

In the genetic algorithms, crossover operator is a main
method for producing new individuals. The chromosome
in proposed model is matrix structure, which determines
crossover operator cannot adopt traditional character
string swap mode. Concrete crossover operation includes
the following two steps:

Step 1: Identify the crossover columns of chromosome.
Produce a random integer distributed in section [0,]N ,
which is applied to denote the crossover length (such as
crossover columns).
Step 2: Determine crossover range of chromosome.
Maintain relative sequence of column selected to join
crossover operation in chromosome, and then exchange
corresponding columns of two chromosomes.

As displayed in Figure 2, suppose crossover column is 3,
and crossover range is 3, 4 and 6 respectively. Generate
offspring chromosome according to sequence crossover
method, so as to solve parallel machine scheduling
problem with technology constraints. In virtue of
combining the relative and absolute sequence of
chromosome genes, sequence crossover method not only
ensures the efficiency of solutions, but also effectively
solves the constraint of complicated prepositive relation
among activities in software process.

In our proposed HFGA, the activity assignment position
is applied to guide the crossover operation. The activity
assignment position is employed to determine one
beneficial position for the given activity. To the activity
assignment position matrix displayed in Table 1, if we
want to determine the beneficial position for activity 3,
then we can obtain the following probabilities, and the
beneficial position to activity 3 is decided by a random
way with the following probability distribution.

Mutation operation

Mutation operation is classified into two stages, the first is
activity planning mutation and the second is resource
distribution mutation. On one hand, identifying the
mutation position of parent chromosome by the use of
random number function, and on the other hand, in the
condition of satisfying transposed prepositive constraint
relation of activities, reselect planning sequence of
mutation position identification. At last, conduct resource
distribution mutation, and reselect resource organization
for undertaking the activity. The concrete mutation

1818 Int. J. Phys. Sci.

Figure 2. A simple example of crossover operation.

Table 1. An example of activity assignment position.

3 5 4 2 1 0
1 5 6 2 1 0
0 1 2 8 2 2
0 2 2 6 5 1
0 0 4 5 6 0
0 0 2 3 4 6

operation is as shown in Figure 3.

In our proposed HFGA, the activity assignment person
is applied to guide the mutation operation. The activity
assignment person is employed to determine one
beneficial person for the given activity. To the activity
assignment person matrix displayed in Table 2, if we want
to determine the beneficial person for activity 6, then we
can obtain the following probabilities, and the beneficial
person to activity 6 is decided by a random way with the
following probability distribution.

Termination conditions

The HFGA is terminated when one of the following
conditions satisfied: the elitism is not improved in the
successive SI generations, and the maximum MI

generations are exhausted.

EXPERIMENTAL RESULTS

The HFGA was implemented using Visual C++ language,
and executed on a personal computer with the 2 GHz
processor and 2 GB memory. We established a favorable
choice of parameters, as listed in Table 3, by means of
systematic experimentation. In this paper, the final
experimental results were averaged over 30 trials, and 10
testing instances were randomly produced to validate the
performance of our approach.

In order to validate the performance of our HFGA, the
standard genetic algorithm (SGA), the intelligent genetic
algorithm (IGA) (Xing et al., 2006a) and the
multiprogramming genetic algorithm (MGA) (Xing et al.,

Lu and Quan 1819

Figure 3. A simple example of mutation operation.

Table 2. An example of activity assignment person.

4 2 5 2 4 6
5 7 5 11 6 6
6 6 5 2 5 3

Table 3. A favorable choice of parameters to the HFGA.

Name Role Value

sP Population size 200

XP Crossover rate 0.80

MP Mutation rate 0.10

SI The elitism is not improved in the successive generations 100

MI The maximum generations 1000

2007) are applied to compare with the HFGA. These
different versions of genetic algorithms were implemented
using Visual C++ language by us. The final experimental
results were summarized in Tables 4 and 5.

The optimal objectives obtained by these four different
methods are summarized in Table 4. From the

experimental results of Table 4, we can see that, there
exists a small gap among these approaches to the small
instances, and HFGA largely outperforms to other
algorithms to these large instances. In terms of the
optimal objective, HFGA is powerful than other different
genetic algorithms.

1820 Int. J. Phys. Sci.

Table 4. The optimal objective obtained by different methods.

SN N M SGA IGA MGA HFGA

1 20 5 82.4 80.2 80.5 79.6
2 20 5 93.3 91.9 91.4 90.1
3 20 5 85.7 85.2 84.1 83.8
4 50 10 212.7 209.5 206.3 201.4
5 50 10 363.5 349.7 336.2 320.5
6 50 10 410.2 398.4 381.6 359.8
7 200 30 780.9 755.8 731.6 701.6
8 200 30 993.6 962.5 933.8 915.7
9 200 30 884.5 857.6 847.2 820.0

10 200 30 956.3 921.4 909.8 873.6

Table 5. The computational time different methods (seconds).

SN N M SGA IGA MGA HFGA

1 20 5 50.2 53.6 52.3 54.2
2 20 5 56.8 57.3 58.5 56.2
3 20 5 61.3 62.8 59.6 58.4
4 50 10 223.6 225.8 220.9 228.5
5 50 10 259.6 261.3 266.1 258.2
6 50 10 288.4 280.9 283.3 286.7
7 200 30 683.5 696.7 662.8 677.5
8 200 30 725.3 716.7 719.8 723.6
9 200 30 810.9 803.5 811.2 799.5
10 200 30 956.1 936.8 944.7 950.2

The computational time of these four different methods
are summarized in Table 5. From the experimental results
of Table 5, we can see that, there exists a small gap
among these approaches to all instances. In fact, the
parameters to these algorithms are similar, and the total
times of fitness evaluations of these algorithms are similar
too. For this reason, the gap between the computational
time of these four different methods is small.

In total, the experimental results suggest that this
proposed approach makes a rational distribution of
resources and provides a scientific basis for improving the
efficiency of software development and the quality of
software.

CONCLUSIONS

The contribution of this paper can be summarized as
follows: An improved genetic algorithm with heuristic
feedback is constructed to effectively solve the distribution
optimization of software engineering resources. The
proposed approach employs the executive matrix as
chromosome which covers the matrix coding

chromosome planning and allocation of resources,
extracts the heuristic feedback from these obtained
solutions, and applies the heuristic feedback to guide the
subsequent optimization process.

The future research directions can be listed as follows:
enhance the performance of HFGA by improving the
genetic operators, and employ the HFGA to other
practical engineering fields.

ACKNOWLEDGMENT

This paper is supported by the China National Science
Fund and the Guangzhou Government Special Fund.

REFERENCES

Carbone P, Buglione L, Mari L (2008). A comparison between

foundations of metrology and software measurement. IEEE T. Instrum.
Meas., 57(2): 235-241.

Distefano S, Puliafito A, Scarpa M (2010). Implementation of the
Software Performance Engineering Development Process. J. Softw.,
5(8): 872-882.

Garcia I, Pacheco C, Calvo-Manzano J (2010). Using a web-based tool

to define and implement software process improvement initiatives in a
small industrial setting. IET Softw., 4(4): 237-251.

Ho NB, Tay JC, Lai EMK (2007). An Effective Architecture for Learning
and Evolving Flexible Job-Shop Schedules. Eur. J. Oper. Res., 179(2):
316-333.

Louis SJ, McDonnell J (2004). Learning with Case-Injected Genetic
Algorithms. IEEE Trans. on Evo. Comp., 8(4): 316-328.

OHagan P, Hanna E, Territt R (2010). Addressing the corrections crisis
with software technology. Comp., 43(2): 90-93.

Santillan CG, Cruz-Reyes L, Meza E (2009). Improving Distributed
Resource Search through a Statistical Methodology of Topological
Feature Selection. J. Comp., 4(8): 727-733.

Wang YX, Patel S (2009). Exploring the cognitive foundations of
software engineering. Int. J. Soft. Sci. Comp. Intel., 1(2): 1-19.

Xing LN, Chen YW, Cai HP (2006a). An intelligent genetic algorithm
designed for global optimization of multi-minima functions. Appl. Math.
Comp., 178(2): 355-371.

Xing LN, Chen YW, Shen XS (2006b). A Constraint Satisfaction
Adaptive Neural Network with Dynamic Model for Job-Shop
Scheduling Problem. Lect. Notes Comput. Sci., 3973: 927-932.

Xing LN, Chen YW, Shen XS (2007). Multiprogramming Genetic
Algorithm for Optimization Problems with Permutation Property. Appl.
Math. Comp., 185(1): 473-483.

Xing LN, Chen YW, Yang KW (2008a). A hybrid approach combining an
improved genetic algorithm and optimization strategies for the
asymmetric traveling salesman problem. Eng. Appl. Artif. Intel., 21(8):
1370-1380.

Lu and Quan 1821

Xing LN, Chen YW, Yang KW (2008b). Double Layer Ant Colony

Optimization for Multi-objective Flexible Job Shop Scheduling
Problems. New Generat. Comput., 26(4): 313-327.

Xing LN, Chen YW, Yang KW (2009). An Efficient Search Method for
Multi-objective Flexible Job Shop Scheduling Problems. J. Intell.
Manuf., 20(3): 283-293.

Xing LN, Philipp R, Chen YW (2010a). An Evolutionary Approach to the
Multi-depot Capacitated Arc Routing Problem. IEEE Trans.
Evo. Comp., 14(3): 356-374.

Xing LN, Chen YW, Wang P (2010b). A Knowledge-based Ant Colony
Optimization for Flexible Job Shop Scheduling Problems. Appl. Softw.
Comp., 10(3): 888-896.

Zeng Q (2009). Study and implementation of distributed resource
management information service. Comput. Eng., 35(4): 72-77.

Zhang S, Wang YJ, Ruan L (2009). Personal Software Process
Capability Assessment Method. J. Softw., 20(12): 3137-3149.

