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The arrangement of the human and material resources is an important issue in the software development 
process. To effectively solve the distribution optimization of software engineering resources, an 
improved genetic algorithm with heuristic feedback is constructed in this work. The proposed approach 
employs the executive matrix as chromosome which covers the matrix coding chromosome planning 
and allocation of resources, extracts the heuristic feedback from these obtained solutions, and applies 
the heuristic feedback to guide the subsequent optimization process. The experimental results suggest 
that this proposed approach makes a rational distribution of resources and provides a scientific basis 
for improving the efficiency of software development and the quality of software. 
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INTRODUCTION 
 
As the emergence of software thoroughly changed our 
working, studying and life style, there is no doubt that 
software is the foundation of information society, and 
consequently becomes one of strategic point of 
competition among nationalities (Wang and Patel, 2009; 
Carbone et al., 2008). However, the process of software 
development exposes various problems, such as the 
overrun of costs. ‘Software crisis’ has been influencing the 
development and management of software, therefore, the 
improvement of software process has important practical 
significance to defuse software crisis (O’Hagan et al., 
2010). 

Software process, which is a representative 
multi-element nonlinear complicated system, is the 
sequential set of procedure related to activities, 
constraints and resources in software life cycle (Distefano 
et al., 2010; Zhang et al., 2009). As the expansion of 
software development scale, traditional software resource 
configuration model has significant limitations. In view of 
this, scholars nowadays propose plenty of solutions, 
mainly focusing on utilization of material resources and 
modeling targeting to cost and construction period in 
software process (Garcia et al., 2010). 

Since software development is a knowledge-intensive 
activity, the keynote of software engineering modeling is 
rational distribution of human resources (Zeng, 2009; 
Santillan et al., 2009). Combining with genetic algorithms, 

this paper introduces a model for resources distribution of 
optimal trade-off for cost and construction period that is 
rationally distributed in human resources. An improved 
genetic algorithm with heuristic feedback is proposed to 
effectively solve the distribution optimization of software 
engineering resources. 

Recently, more and more scholars have studied 
applications of the interaction between evolution and 
learning (Xing et al., 2008a, 2008b, 2010a). Normally, 
these approaches keep useful features of previous 
individuals to improve the performance of current 
individuals (Xing et al., 2006a, 2007, 2009). In fact, such 
approaches outperform traditional evolutionary algorithms 
on several benchmarks (for example, flexible job shop 
scheduling problem, traveling salesman problem, 
capacitated arc routing problem) (Xing et al., 2006b, 
2010b; Ho et al., 2007; Louis and McDonnell, 2004). In a 
similar fashion, an improved Genetic Algorithm with 
Heuristic Feedback (HFGA) is proposed in this work. 
HFGA extracts some heuristic feedbacks from 
near-optimal solutions to guide the subsequent evolution. 
 
 
PROBLEM FORMULATION 
 
In the distribution optimization problem of software 
engineering   resources,   the   hypothesis  can  be 



 
 
 
 
summarized as follows: 
 
1) Activity in this paper means an integral part of 
technology, and it cannot stop once starts. 
2) Every activity in network cannot start until all its 
prepositive activates complete. 
3) The cost of project contains: common cost to maintain 
normal running of project, and development cost of 
software developers, which points at cost resulted by 
various level of software developers. 
4) The total period of project represents the length of 
critical path calculated in the condition of determinate 
period. 
 
 
Activities 
 
Activity is the fundamental element of optimized model in 
software engineering, suppose there are a total 
of N activates and M persons in the software 
development process. 
 
1) Node denotes the No. of Nodes in the network 
diagram. 
2) diT denotes the period of activity ( )1, 2, ,i N= ⋅⋅⋅ . 

3) c
diT denotes the time remainder of 

activity ( )1, 2, ,i N= ⋅⋅⋅ . 

4) n
diT denotes the actual completion time of 

activity ( )1, 2, ,i N= ⋅⋅⋅ . 

5) ,i jRole denotes the thi ( )1, 2, ,i N= ⋅⋅⋅ activity can be 

done by the thj ( )1,2, ,j M= ⋅⋅⋅ person. 

6) iRoleNum denotes the completion persons number of 

activity ( )1, 2, ,i N= ⋅⋅⋅ . 

7) DT denotes the planned completion time of 
engineering project. 
8) NT denotes the actual completion time of engineering 
project. 
9) DC denotes the planned cost of engineering project. 

10) NC denotes the actual cost of engineering project. 

11) ( )Tf EM denotes the completion date function of 

engineering project. 
12) ( )Cf EM denotes the cost function of engineering 

project. 
 
According to the order among activities and the probable 
completion time of each activity, calculate the critical path 
of network, and the length of it is the value of  NT .  The 
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method is as follows: based on the assumption for 
network, each activity cannot start until all the prepositive 
activities finished. In accordance with executive 
matrix EM , find the probable completion time of each 
activity. The latest time of completion among all the 
activities is the value of NT . 

The cost of software process contains: management fee 
and development fee. The former is daily cost 1C which 
maintaining software development and cost of 
administrators 2C . The latter points at cost of device 

resources 3C and development cost 4C of different 
developers with various abilities and labor-hours. 
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Here, ic and iT denote the development cost and 
labor-hour of developers respectively. 
 
 
Constraints 
 
1) The activity period constraint, it is d c

di di di diT T T T≤ ≤ + . 
2) Process constraints. Activity sequence of software 
engineering is working sequence which satisfying 
sequencing. The activity set of 

procedure j is ( ) {p j i= activity i is the prepositive of 

activity j , j i dit t T− ≥ , ( ) }, 1, 2, ,i p j j N⊆ = ⋅⋅⋅ . 

1) Construction period constraint, that is N DT T≤ . 

2) Cost constraint, it is N DC C≤ . 

 
 
Resource problems 
 
A device resource is both a key link in software 
development process and a ingredient of software 
development cost. Compare with human resources, it is 
easily be quantified, not constitute of difficulty of 
resources distribution. In the circumstances of definite 
software development, the composition of device 
resources is relatively fixed, with little space to improve. 
Moreover, the distribution of device resources cannot be 
the focus of proposed model. 

Rational distribution of human resources is the nucleus 
of resources distribution in software process. As software 
is a work of concentration of brain power, the organization, 
division of labor and distribution of developers is  critical
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Figure 1. The computational flow of HFGA. 

 
 
 
for software process, which is directly influencing whether 
the software project can be successful or not. 
 
 
Effort estimation 
 
Effort estimation is the foundation of resources distribution. 
To realize rational resource distribution, exact effort 
estimation must be conducted owing that engineering 
experience only offers qualitative guide of resource 
distribution. The effort estimation contains two parts: effort 
estimation for each activity and estimation for working 
ability of each member. This model adopts the expert 
judgment method. 

The way of expert judgment commonly uses the 
estimation method in the following equation, in 
which oE means Optimistic Effort, pE represents 

Pessimistic Effort, and mE indicates the Most Probable 
Effort. 
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Suppose there are N activities in network, M persons 
organize software development. As the expert judgment, 
the effort estimation matrix for various activities of various 
people is obtained as follows: 
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Here, ija    denotes    the    probable    time    of 

developer i completes activity j . 
 
 
Objective functions 
 
Cost and construction period is the main attributes of 
software process. Assume the sum weight of cost and 
period as optimized objective function, the definition of 
which is as shown in the following equation. In 
which, C means cost, T signifies the weight value of 
construction period 1x , 2x  determined by demand of 

decision makers, EM is the executive matrix. 
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GENETIC ALGORITHM WITH HEURISTIC FEEDBACK 
 
This proposed improved genetic algorithm, Genetic 
Algorithm with Heuristic Feedback, is characterized by the 
extraction and application of heuristic feedback in the 
whole evolution process. In fact, the significant size of the 
infeasible region in the search space poses the difficulty 
of finding good quality feasible solutions using the genetic 
algorithm alone. For this reason, the near-optimal 
solutions obtained throughout the search are analyzed to 
extract the heuristic feedback firstly, and then the obtained 
heuristic feedback is used to guide the subsequent search. 
The computational flow of HFGA is shown in Figure 1. 



 
 
 
 
Heuristic feedback 
 
The first kind of heuristic feedback is called the activity 
assignment position which is applied to establish a 
beneficial order for the given activity. A matrix 1HF with 

size N N× is defined for the activity assignment position, 

( )1 ,HF i j denotes the total number of times of assigning 

the activity i to the thj position among the near-optimal 
solutions obtained throughout the search. 

The second kind of heuristic feedback is called the 
activity assignment person which is applied to establish 
the beneficial person for one given activity. A 
matrix 2HF with size N M× is defined for the activity 

assignment person, ( )2 ,HF i j denotes the total number of 

times of assigning the activity i to the thj person among 
the near-optimal solutions obtained throughout the 
search. 
 
 
Population Initialization 
 
Chromosome, also called individual, is the encoded 
solution for specific problems. The solutions of activity 
planning and resource distribution problem are a series of 
scheme. There remain limitations when traditional binary 
string encoding describes complicated programming 
problems, hence, this paper adopts a matrix EM with 
the ( )1M N+ × size as one chromosome. 

The chromosome of proposed encoding matrix covers 
activity planning and resource distribution. The first row of 
matrix is natural number sequence without repetition from 
1 to N , representing initial activity sequence, the second 
row to 1M + row means matching relation between 
human resource and activity. Unless there exists no 
confliction among activities which is closely before and 
after initial planning sequence and personnel distribution, 
these two activities cannot be executed simultaneously. 

Population is the set of chromosomes. In terms of 
particularity of chromosome structures in this paper, the 
population initialization is divided into two steps: activity 
planning initialization and resource distribution 
initialization. The activity planning section is the natural 
sequence which satisfies constraint relation, produced by 
topological sorting algorithm. The resource distribution 
section is initialized using random generation. 
 
 
Selection operation 
 
In the proposed HFGA, the Binary Tournament is applied 
to execute the selection operation. That is, two different 
chromosomes are randomly  selected, and the least-cost 
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one is kept. In order to improve the quality of HFGA, the 
elitism among the current population is directly copy to the 
next population, and the population consists exclusively of 
unique phenotypes and identical solutions are never 
accepted. 
 
 
Crossover operation 
 
In the genetic algorithms, crossover operator is a main 
method for producing new individuals. The chromosome 
in proposed model is matrix structure, which determines 
crossover operator cannot adopt traditional character 
string swap mode. Concrete crossover operation includes 
the following two steps: 
 
Step 1: Identify the crossover columns of chromosome. 
Produce a random integer distributed in section [0, ]N , 
which is applied to denote the crossover length (such as 
crossover columns). 
Step 2: Determine crossover range of chromosome. 
Maintain relative sequence of column selected to join 
crossover operation in chromosome, and then exchange 
corresponding columns of two chromosomes. 
 
As displayed in Figure 2, suppose crossover column is 3, 
and crossover range is 3, 4 and 6 respectively. Generate 
offspring chromosome according to sequence crossover 
method, so as to solve parallel machine scheduling 
problem with technology constraints. In virtue of 
combining the relative and absolute sequence of 
chromosome genes, sequence crossover method not only 
ensures the efficiency of solutions, but also effectively 
solves the constraint of complicated prepositive relation 
among activities in software process. 

In our proposed HFGA, the activity assignment position 
is applied to guide the crossover operation. The activity 
assignment position is employed to determine one 
beneficial position for the given activity. To the activity 
assignment position matrix displayed in Table 1, if we 
want to determine the beneficial position for activity 3, 
then we can obtain the following probabilities, and the 
beneficial position to activity 3 is decided by a random 
way with the following probability distribution. 
 
 
Mutation operation 
 
Mutation operation is classified into two stages, the first is 
activity planning mutation and the second is resource 
distribution mutation. On one hand, identifying the 
mutation position of parent chromosome by the use of 
random number function, and on the other hand, in the 
condition of satisfying transposed prepositive constraint 
relation of activities, reselect planning sequence of 
mutation position identification. At last, conduct resource 
distribution mutation, and reselect resource organization 
for undertaking the  activity.  The  concrete  mutation
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Figure 2. A simple example of crossover operation. 

 
 
 

Table 1. An example of activity assignment position. 
 

3 5 4 2 1 0 
1 5 6 2 1 0 
0 1 2 8 2 2 
0 2 2 6 5 1 
0 0 4 5 6 0 
0 0 2 3 4 6 

 

 
 
 
 
operation is as shown in Figure 3. 

In our proposed HFGA, the activity assignment person 
is applied to guide the mutation operation. The activity 
assignment person is employed to determine one 
beneficial person for the given activity. To the activity 
assignment person matrix displayed in Table 2, if we want 
to determine the beneficial person for activity 6, then we 
can obtain the following probabilities, and the beneficial 
person to activity 6 is decided by a random way with the 
following probability distribution. 
 
 
Termination conditions 
 
The HFGA is terminated when one of the following 
conditions satisfied: the elitism is not improved in the 
successive SI  generations,  and  the  maximum MI  

generations are exhausted. 
 
 
EXPERIMENTAL RESULTS 
 
The HFGA was implemented using Visual C++ language, 
and executed on a personal computer with the 2 GHz 
processor and 2 GB memory. We established a favorable 
choice of parameters, as listed in Table 3, by means of 
systematic experimentation. In this paper, the final 
experimental results were averaged over 30 trials, and 10 
testing instances were randomly produced to validate the 
performance of our approach. 

In order to validate the performance of our HFGA, the 
standard genetic algorithm (SGA), the intelligent genetic 
algorithm (IGA) (Xing et al., 2006a) and the 
multiprogramming genetic algorithm (MGA) (Xing  et  al.,
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Figure 3. A simple example of mutation operation. 

 
 
 

Table 2. An example of activity assignment person. 
 

4 2 5 2 4 6 
5 7 5 11 6 6 
6 6 5 2 5 3 

 

 
 
 
 

Table 3. A favorable choice of parameters to the HFGA. 
 

Name Role Value 

sP  Population size 200 

XP  Crossover rate 0.80 

MP  Mutation rate 0.10 

SI  The elitism is not improved in the successive generations 100 

MI  The maximum generations 1000 
 
 
 
2007) are applied to compare with the HFGA. These 
different versions of genetic algorithms were implemented 
using Visual C++ language by us. The final experimental 
results were summarized in Tables 4 and 5. 

The optimal objectives obtained by these four different 
methods are  summarized  in  Table  4.  From  the 

experimental results of Table 4, we can see that, there 
exists a small gap among these approaches to the small 
instances, and HFGA largely outperforms to other 
algorithms to these large instances. In terms of the 
optimal objective, HFGA is powerful than other different 
genetic algorithms. 
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Table 4. The optimal objective obtained by different methods. 
 

SN N  M  SGA IGA MGA HFGA 

1 20 5 82.4 80.2 80.5 79.6 
2 20 5 93.3 91.9 91.4 90.1 
3 20 5 85.7 85.2 84.1 83.8 
4 50 10 212.7 209.5 206.3 201.4 
5 50 10 363.5 349.7 336.2 320.5 
6 50 10 410.2 398.4 381.6 359.8 
7 200 30 780.9 755.8 731.6 701.6 
8 200 30 993.6 962.5 933.8 915.7 
9 200 30 884.5 857.6 847.2 820.0 

10 200 30 956.3 921.4 909.8 873.6 
 
 
 

Table 5. The computational time different methods (seconds). 
 

SN N  M  SGA IGA MGA HFGA 

1 20 5 50.2 53.6 52.3 54.2 
2 20 5 56.8 57.3 58.5 56.2 
3 20 5 61.3 62.8 59.6 58.4 
4 50 10 223.6 225.8 220.9 228.5 
5 50 10 259.6 261.3 266.1 258.2 
6 50 10 288.4 280.9 283.3 286.7 
7 200 30 683.5 696.7 662.8 677.5 
8 200 30 725.3 716.7 719.8 723.6 
9 200 30 810.9 803.5 811.2 799.5 
10 200 30 956.1 936.8 944.7 950.2 

 
 
 

The computational time of these four different methods 
are summarized in Table 5. From the experimental results 
of Table 5, we can see that, there exists a small gap 
among these approaches to all instances. In fact, the 
parameters to these algorithms are similar, and the total 
times of fitness evaluations of these algorithms are similar 
too. For this reason, the gap between the computational 
time of these four different methods is small. 

In total, the experimental results suggest that this 
proposed approach makes a rational distribution of 
resources and provides a scientific basis for improving the 
efficiency of software development and the quality of 
software. 
 
 
CONCLUSIONS 
 
The contribution of this paper can be summarized as 
follows: An improved genetic algorithm with heuristic 
feedback is constructed to effectively solve the distribution 
optimization of software engineering resources. The 
proposed approach employs the executive matrix as 
chromosome   which   covers   the   matrix  coding 

chromosome planning and allocation of resources, 
extracts the heuristic feedback from these obtained 
solutions, and applies the heuristic feedback to guide the 
subsequent optimization process. 

The future research directions can be listed as follows: 
enhance the performance of HFGA by improving the 
genetic operators, and employ the HFGA to other 
practical engineering fields. 
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