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This paper is concerned with the development of an inventory-production model for a special class of 
generalized extreme value, that is, gumbel distributed deterioration items. The production system with 
inventory-level-dependent demand is considered and Pontryagin maximum principle is used to 
determine the optimal control, which is the production rate that minimizes the optimal control model, 
while satisfying the system dynamics. The necessary optimality conditions are also derived in this 
case. It is then illustrated with the help of examples. 
 
Key words: Inventory-production systems, gumbel distributed deterioration, optimal control, pontryagin 
maximum principle. 

 
 
INTRODUCTION 
 
Inventory problems for deteriorating items and the 
variations in the demand rate with time have been 
studied extensively by many researchers from time to 
time. This type of research started with the work of Whitin 
(1957) who considered the deterioration of the fashion 
goods at the end of a prescribed shortage period. 
Importance of items deteriorating in inventory modeling is 
now widely acknowledged and has received a lot of 
attention (Raafat, 1991; Shah and Shah, 2000; Goyal and 
Giri, 2001). A reasonable model of an inventory system 
was developed by Ghare and Schrader (1963), 
considering the inventory depletion not only by demand 
but also by item’s deterioration. Their observation led to 
the modeling of the inventory items with decaying 
processes by the differential equation: 
 

( )
( ) ( ),

dx t
x t y t

dt
θ+ = −  

 
where θ  is the constant decay rate, ( )x t is the inventory 

level at time ,t  and ( )y t is the demand rate at time .t  
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This paper develops an optimal control model and utilizes 
Pontryagin maximum principle by Pontryagin et al. (1962) 
to derive the necessary optimality conditions for 
inventory-production systems, which, to the best of our 
knowledge, is an optimal control theory that has never 
been applied in conjunction with a special class of 
generalized extreme value, which is, gumbel distributed 
deterioration items. During the last two decades, various 
researches attacked on inventory-production problem 
with the application of optimal control theory. It has been 
successfully applied in production planning when only 
deterioration items were involved (Bounkhel and Tadj, 
2005; Bounkhel et al., 2005; Tadj et al., 2006; Benhadid 
et al., 2008; Awad et al., 2009). In this context, a few 
researches are found for Weibull distributed deterioration 
items (Ghosh and Chaudhuri, 2004; Al-khedhairi and 
Tadj, 2007; Baten and Kamil, 2009) for Pareto distribution 
deterioration rate (Srinivasa et al., 2005, 2007; Baten and 
Kamil, 2010). But no attempt has been made to develop 
the inventory model as an optimal control model and to 
derive an explicit solution of an inventory model with 
gumbel distribution deterioration using Pontryagin 
maximum principle. The continuous review policy of 
optimal control approach is to be novel in this framework. 
There seems to be no literature on the optimal control of 
continuous   review   manufacturing    systems   with   this 
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gumbel distribution deterioration items rate. 

The novelty we take into consideration in this study is 
that, the time of deterioration is a random variable 
followed by three-parameter generalized extreme value 
distribution. The probability density function of a 
generalized extreme value distribution having probability 
distribution of the form: 
 

( ){ } ( ){ }{ }1 11
( ) exp / exp exp /f t t t

ξ ξµ σ µ σ
σ

+ +
= − − − − −

 
 

where Rµ ∈ is the location parameter and ( )0,σ ∈ ∞
 

is the scale parameter and  ( ),ξ ∈ −∞ ∞  is the shape 

parameter. 
 
The shape parameter ξ

 
governs the tail behavior of the 

distribution. The family defined by 0ξ →
 
corresponds to 

a special case of generalized extreme value distribution, 
that is, Gumbel distribution. This distribution can be used 
to model either maximum or minimum rate of 
deterioration. The probability density function and 
probability distribution function of Gumbel corresponds to 
a special class of extreme (here maximum) value 
distribution 
 

( ){ } ( ){ }{ }max

1
( ) exp / exp exp / , 0,f t t t tµ σ µ σ

σ
= − − − − − >  

 
and 
 

( ){ }{ }max ( ) 1 exp exp / , 0F t t tµ σ= − − − − >
 

 
respectively. 
 
The instantaneous rate of deterioration of Gumbel 
distribution corresponds to a maximum value of the on-
hand inventory and is given by: 
 

( ){ }max

max

( ) 1
( ) exp / , 0.

1 ( )
f t

t t t
F t

θ µ σ
σ

= = − − >
−

 

 
In developing inventory models, continuous-time models 
of time-varying demands have been considered in this 
study. The time of deterioration rate is assumed to follow 
Gumbel distribution as well as a non-negative discount 
rate is considered for the inventory-production systems. 
We assume that all the functional forms are non-negative 

continuous and differentiable on [ ]0, .∞  

This paper develops a first model in which the dynamic 
demand is a function of time. We then extend this first 
model to an  even  more  general  model  in  which  items 

 
 
 
 
deterioration are taken into account which refer to a 
special class of generalized extreme value, which is, 
Gumbel distribution. The paper also derives explicit 
optimal policies for the inventory models where items are 
deteriorating with this type of Gumbel distribution that can 
be used in the decision making process. 
 
 
MATERIALS AND METHODS 
 
Model without item deterioration and notations 
 
We assume that an inventory goal level and a production goal rate 
are set, and penalties are incurred when the inventory level and the 
production rate deviate from these goals. We introduce the 
following notations to write the optimal control model:  
 
q :  Inventory holding cost incurred for the inventory level to deviate 
from its goal.  
r : Production unit cost incurred for the production rate to deviate 
from its goal. 
ˆ( )x t : Inventory goal level.  

ˆ( )u t : Production goal rate.  

0ρ ≥  : Constant non-negative discount rate.   
 

We want to keep the inventory ( )x t  as close as possible to its 

goal ˆ( )x t , and also keep the production rate ( )u t  as close to its 

goal level ˆ( ).u t  The quadratic terms 
2ˆ[ ( ) ( )]q x t x t−  and 

2ˆ[ ( ) ( )]r u t u t−  impose 'penalties' for having either x  or u  not 
being close to its corresponding goal level. 

The optimal control model can be expressed as the quadratic 
form that we need to minimize 
 

( ) [ ] [ ]{ }2 2

0

1ˆ ˆ ˆminimize , , ( ) ( ) ( ) ( ) (1)
2

T
tJ u x u e q x t x t r u t u t dtρ−= − + −�

 
subject to the dynamics of the inventory level of the state equation 
which says that the inventory at time t is increased by the 
production rate ( )u t  and decreased by the demand rate ( )y t  
can be written as:  
 

( ) [ ( ) ( ) ] ( 2 )d x t u t y t d t= −
 

 

with initial condition ( ) 0x T =  and the non-negativity constraint  
 

[ ]( ) 0 , f o r  a l l  0 , ( 3 )u t t T≥ ∈
 

 
where the fixed length of the planning horizon is T,  ( ) :x t  

inventory level function at any instant of time [0, ],t T∈  ( )u t : 

production rate at any instant of time [0, ]t T∈  and ( )y t  : 

demand rate at any instant of time [0, ].t T∈  

 
The   current-value   Hamiltonian   of   the   model   is    defined    as 



  

 
 
 
 

( ) ( ) ( ) ( )( )

[ ] [ ]{ } ( ) ( ) ( )2 2

0

ˆ, , , ,

1 ˆ ˆ( ) ( ) ( ) ( ) . (4)
2

T
t

H t x t u t u t t

e q x t x t r u t u t t u t y tρ

γ

γ−=− − + − + −� �� ��
 

 
 
Model with item deterioration 
 
Consider a system where items, subject to Gumbel distributed 
deterioration, corresponds to a special class of extreme value 

distribution. For 0,t ≥   let ( ){ }1
( ) exp /t tθ µ σ

σ
= − −  be 

the deterioration rate at the inventory level ( )x t  at time t. Keeping 
same notation and the same optimal control model as in the 
previous section, the dynamics of the inventory level of the state 
equation which says that the inventory at time t is increased by the 
production rate ( )u t  and decreased by the demand rate ( )y t  

and the rate of deterioration ( ){ }1
exp /t µ σ

σ
− −  of Gumbel 

distribution corresponds to a special class of extreme value 
distribution can be written as according to 
 

( ){ }1
( ) [ ( ) ( ) exp / ( )] (5)dx t u t y t t x t dtµ σ

σ
= − − − −

 
 

with initial condition ( ) 0x T =  and the non-negativity constraint 

[ ]( ) 0, for all 0, .u t t T≥ ∈  

The current-value Hamiltonian of the model is defined as 
 

( ) ( ) ( ) ( )( )

[ ] [ ]{ } ( ) ( ) ( ) ( ){ }2 2

0

ˆ, , , ,

1 1ˆ ˆ() () () () exp / (). (6)
2

T
t

Ht xt ut ut t

e qxt xt rut ut t ut yt t xtρ

γ

γ µ σ
σ

− � �=− − + − + − − − −� �� �
�

 

 
 
RESULTS 
 
Development of the optimal control models  
 
Let us consider a manufacturing firm, producing a single 
product, selling some and stocking the rest in a 
warehouse. We assume that the production deteriorates 
while in stock and the demand rate varies with time. The 
firm has set an inventory goal level and production goal 
rate. Since the constraint 

( ) [ ]( ) 0, for all 0,u t y t t T− ≥ ∈  with the state 

equation x is nondecreasing. Therefore, shortages are 
not allowed in this study. 

Define the variables ( ), ( ) ( )z t z t and tη� such that: 
 

( ){ }
ˆ ˆ( ) ( ) ( ), (7) ( ) ( ) ( ), (8)

1ˆ ˆand ( ) ( ) ( ) exp / ( ). (9)

z t x t x t z t u t u t

t u t y t t x tη µ σ
σ

= − = −

= − − − −

�
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Adding and subtracting the last term 

( ){ }1 ˆexp / ( )t x tµ σ
σ

− −  from the right hand side of 

Equation (9) to Equation (5) and rearranging the terms, 
we have: 
 

( ) ( ){ } ( ){ }1 1ˆ ˆ ˆ() () [ exp / ( () ()) () () exp / ()] .d xt xt t xt xt ut yt t xt dtµ σ µ σ
σ σ

− =− − − − + − − − −
  

Hence by Equation (7) 
 

( ){ } ( ){ }1 1 ˆ( ) [ exp / ( ) ( ) ( ) exp / ( )] . (10)dz t t z t u t y t t x t dtµ σ µ σ
σ σ

= − − − + − − − −
  

Now, substituting Equations (8) and (9) in (10) yields: 
 

( ){ }1
( ) [ exp / ( ) ( ) ( )] . (11)dz t t z t z t t dtµ σ η

σ
= − − − + +�

  
The optimal control model (1) becomes: 
 

( ) 2 2

0

1
minimize , { [ ( ) ] [ ( ) ]} (12)

2

T
tJ z z e q z t r z t dtρ−= +�� �

 
 
subject to an ordinary differential Equation (11) and the 
non-negativity constraint [ ]( ) 0, for all 0, .z t t T≥ ∈�  

By the virtue of (2), the instantaneous state of the 
inventory level ( )x t  at any time t is governed by the 
differential equation: 
 

( )
( ) ( ) , 0 , ( ) 0 (1 3 )

d x t
u t y t t T x T

d t
= − ≤ ≤ =

  
The boundary conditions with Equation (13) are: at 

( )(0) 0, 0x x T= =  

 
( )( ) ( ) , fo r  0 . (1 4 )x t u t y t t t T= − ≤ ≤� �� �

  
Assuming that (0)x x=  is known and note that the 

production goal rate ˆ( )u t can be computed using the 
state Equation (13) as: 
 
� ˆ ( ) ( ) ( 1 5 )u t y t=                                 (15)

  
By the virtue of Equation (5), the instantaneous state of 
the inventory level ( )x t  at any time t is governed by the 
differential equation: 
 

( ){ }( ) 1
exp / ( ) ( ) ( ), 0 , ( ) 0 (16)

dx t
t x t u t y t t T x T

dt
µ σ

σ
+ − − = − ≤ ≤ =
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This is a linear ordinary differential equation of first order 
and its integrating factor is: 
 

( ){ } ( ){ }1
exp{ exp / } exp exp / .t dt tµ σ µ σ

σ
� �= − − = − −� ��

  
Multiplying both sides of Equation (16) by 

( ){ }exp exp /t µ σ� �− −� � and then integrating over 

[0, ],T  we have: 
 

( ){ } ( ){ }
0

()exp exp / (0) [ () ()]exp exp / . (17)
T

xt t x yt ut t dtµ σ µ σ� � � �− − − =− − − −� � � ��  

 
Substituting this value of (0)x  in Equation (16), we 
obtain the instantaneous level of inventory at any time 

[0, ]t T∈  is given by 
 

( ){ } ( ){ }
( ){ }

1

0 0

[ () ()]exp exp / [ () ()]exp exp /
() .

exp exp /

t T

yt ut t dt yt ut t dt
xt

t

µ σ µ σ

µ σ

� � � �− − − − − − −� � � �
=

� �− −� �

� �
 

 
Solving the differential equation, the on-hand inventory at 
time t is obtained as  
 

( ) ( ){ }
0

( ) 0 exp exp / [ ( ) ( )] 0 . (18)
T

x t x t y t u t dt t Tµ σ� �= − − − − ≤ ≤� � �
 
Assuming that (0)x x= is known and note that the 

production goal rate ˆ( )u t can be computed using the 
state Equation (16) as: 
 

( ){ }1ˆ ˆ( ) ( ) exp / ( ) (19)u t y t t x tµ σ
σ

= + − −
  

 
Solution to the optimal control models 
 
In order to solve the optimal control model (1) subject to 
state Equations (2) and (5), we derive the necessary 
optimality conditions using Pontryagin maximum principle 
developed by Pontryagin (1962), also, Sethi and 
Thompson (2000).  
 
 
Solution of the optimal control model without item 
deterioration 
 
The optimal control approach consists in determining the 
optimal control ˆ( )u t  that minimizes the optimal control 
model (1) subject to the state Equation (2). By the 
maximum   principle  of  Pontryagin  (1962),  there  exists 

 
 
 
 
adjoint function ( )tγ  such that the Hamiltonian functional 
form (4) satisfies the control equation: 
 

( )ˆ, ( ), ( ), ( ), ( ) 0, (20)
( )

H t x t u t u t t
u t

γ∂ =
∂  

 
the adjoint equation 
 

( )ˆ, ( ), ( ), ( ), ( ) ( ), ( ) 0 (21)
( )

d
H t x t u t u t t t T

x t dt
γ γ γ∂ =− =

∂  
 
and the state equation 
 

( )ˆ, ( ), ( ), ( ), ( ) ( ), (0) 0. (22)
( )

d
H t x t u t u t t x t x

t dt
γ

γ
∂ = =

∂  
 
Then the control Equation (20) is equivalent to: 
 
�

ˆ( ) ( ) ( ) . ( 2 3 )
te

u t u t t
r

ρ

γ= +
                 (23)

  
The adjoint Equation (21) is equivalent to: 
 

( ) ( )ˆ( ) , ( 2 4 )td
t q e x t x t

d t
ργ −= −� �� �  

 
and the state Equation (22) is similar to (2). 
 
Substitution expression (23) into the state Equation (2) 
yields  
 

( )ˆ( ) ( ) ( ) . ( 2 5 )
td t e

x t u t y t
d t r

ργ= + −
 

 
From Equation (25) we have 
  

( ) ˆ( ) ( ) ( ) . ( 2 6 )
tt e d

x t u t y t
r d t

ργ = − +
  

By differentiating Equation (25), we obtain: 
 

2

2

1ˆ( ) ( ) ( ) ( ) ( ) . (27)t td d d d
x t u t y t e t t e

dt dt dt r dt
ρ ργ ργ� �= − + +� �� �

 
 
Substitution expression (24) into Equation (27) yields 
 

[ ] ( )
2

2
ˆ ˆ( ) ( ) ( ) ( ) ( ) . (28)td d d q

x t u t y t x t x t e t
dt dt dt r r

ρρ γ= − + − +
 

 
Finally, substituting expression  (26)  into  (28)  to  Obtain 



  

 
 
 
 

[ ]
2

2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) . (29)

d q d d q
x t x t u t y t x t y t u t

dt r dt dt r
ρ− = − − + −

 

 

Since a closed form solution is not possible, so this 
boundary value problem can be solvednumerically 

together with initial condition  (0) 0x =  and the terminal 

condition ( ) 0.Tγ =  
 
 
Solution of the optimal control model with item 
deterioration 
 
The optimal control approach consists in determining the 

optimal control ˆ( )u t  that minimizes the optimal control 
model (1) subject to the state Equation (5). By the 
maximum principle of Pontryagin (1962), there exists 

adjoint function ( )tγ
 such that the Hamiltonian functional 

form (6) satisfies the necessary conditions (20), (21) and 
(22). Then, here, the control Equation (20) is equivalent 
to (23) also. 

The adjoint Equation (21) is equivalent to: 
 

( ) ( ){ } ( )ˆ( ) exp / , (30)t td
t qe t t qe x t

dt
ρ ργ γ µ σ− −� �= + − − −� �

 
 

And the state Equation (22) is similar to (5).  
Substituting expression (23) into the state Equation (5) 

yields  
 

( ){ }( ) 1ˆ( ) ( ) ( ) ex p / ( ), (3 1)
td t e

x t u t y t t x t
d t r

ργ µ σ
σ

= + − − − −
 

 

From Equation (31) we have 
 

( ){ }( ) 1ˆ( ) ( ) ( ) exp / ( ). (32)
tt e d

x t u t y t t x t
r dt

ργ µ σ
σ

= − + + − −

  

By differentiating (31), we obtain 
 

( ){ } ( ){ }
2

2

1ˆ( ) ( ) ( ) ( ) ( ) exp / / . (33)t td d d d
x t u t y t e t t e t t

dt dt dt r dt
ρ ργ ργ µ σ µ σ� �= − + + − − − − −� �� �

 
 
Substituting expression (30) into the Equation (33) yields 
 

[ ] ( ) ( ) ( ){ }
( ){ } ( ){ }

2

2

1ˆ ˆ( ) ( ) ( ) ( ) ( ) exp /

exp / / . (34)

td d d q
x t u t y t x t x t e t x t t

dt dt dt r r
t t

ρ γ µ σ ρ

µ σ µ σ

� �= − + − + − − +� �

− − − − −  
 
Finally, substituting expression (32) into (34) to obtain 
 

( ) ( ){ } ( ){ }

[ ]

2

2 ( ) exp / exp / ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) . (35)

ttd q
x t e t t x t

dt r r

d d q
u t y t x t y t u t

dt dt r

ργ
µ σ µ σ

ρ

� �
− + − − − − −� �
� �

= − − + −
  

 
Since   a   closed  form   solution   is   not   possible,  this 
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boundary value problem can be solved numerically

 together with initial condition  (0) 0x =  and the terminal 

condition ( ) 0.Tγ =

 
 
 
DISCUSSION 
 
Illustrative examples 
 
In order to present illustrative examples of the results 
obtained, we use the following parameters where the 

planning horizon has length T=12 months, 0.001,ρ =
 

the inventory holding cost coefficient 5q =  the 

production cost coefficient 5.r =  The goal inventory level 

is considered ˆ( ) 1 sin( ),x t t t= + + and the location and 
scale parameters of the Gumbel distribution rate are 

considered as 1 and 1µ σ= = respectively. Then the  
deterioration rate of Gumbel distribution becomes 

( ){ }( ) e x p 1 , [ 0 , ] .t t t Tθ = − − ∈  
Numerical examples are given for different cases of 

demand rates. 
 
1. Demand rate is constant: ( ) 20,y t y= =  
2. Demand rate is linear function of time:  

1 2y(t)=y ( ) ( ) 15,t t y t t+ = +  
3. Demand rate is quadratic function of time: 

2( ) 30 0.1 0.001 .y t t t= + +  
4. Demand is sinusoidal function of time: 

( )( ) 1 sin .y t t= +  

5. Demand is co-sinusoidal function of time: 

( )( ) 1 cos .y t t= +  

6. Demand is exponential increasing function of time: 

( )( ) exp .y t t=  

7. Demand is exponential decreasing function of time: 
( )( ) e x p .y t t= −  

 

The inventory level ( )x t in-terms of the first-order 
differential equation from (5) and the second-order 
differential Equation (35) considering the above demand 
functions are solved numerically using the version 6.5 of 
the mathematical package MATLAB. 

The constant demand rate is assumed to have fixed 
value 20 units per unit time. Note that here demand and 
deterioration does not decrease the inventory level 
displayed in Figure 1. From Figure 2, it is clear that the 
production rate is following the constant demand rate.  In 
case of linear demand, it is the form 2y (t)= 15.t + The 
inventory level x( t) in-terms of the first-order differential 
equation in terms of linear demand is displayed in Figure 
3. The result is shown in Figure 4 and it is found  that  the
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Figure 1. The inventory level ( )x t  in-terms of the first-order differential equation in 
terms of constant demand. 

 
 
 

 
 
Figure 2. Optimal production policy with constant demand. 

 
 
 

 
 

Figure 3. The inventory level ( )x t  in-terms of the first-order differential equation in 
terms of linear demand. 
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Figure 4. Optimal production policy with linear demand. 

 
 
 

 
 

Figure 5. The inventory level ( )x t  in-terms of the first-order differential equation 
in terms of quadratic demand. 

 
 
 

 
 
Figure 6. Optimal production policy with quadratic demand. 

 
 
 
production rate is following the linear demand rate. The 
production rate starts with quite large amount due to the 
large desired production rate. The inventory level x( t) in-
terms of the  first-order  differential  equation  in  terms  of 

quadratic demand is revealed by Figure 5. From Figure 6, 
it is displayed that the production rate tracks the 
quadratic demand. The inventory is again increasing 
because   the   initial  production  which  is  a  function  of
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Figure 7. The inventory level ( )x t  in-terms of the first-order differential equation in 
terms of sinusoidal demand. 

 
 
 

 
 
Figure 8. Optimal production policy with sinusoidal demand. 

 
 
 

 
 

Figure 9. The inventory level ( )x t  in-terms of the first-order differential 
equation in terms of co-sinusoidal demand. 

 
 
 
desired production rate is high.        

Figures 7 to 9 show the slight variations of the 
inventory   and  optimal  production  level  with  time  with 

changing the shape of the demand functions. In case of 
sinusoidal, co-sinusoidal and exponential decreasing 
demand   oriented   optimal   inventory   levels  over  time
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Figure 10. Optimal production policy with co-sinusoidal demand. 

 
 
 

 
 

Figure 11. The inventory level ( )x t  in-terms of the first-order differential 
equation in terms of exponential increasing demand. 

 
 
 

 
 
Figure 12. Optimal production policy with exponential increasing demand. 

 
 
 
almost have no variations that support the findings of 
Baten and Kamil (2009). It is observed that the optimal 
production rates are not very sensitive to changes in the 
demand functions in case of Gumbel distribution. Optimal 
production policy with co-sinusoidal demand  was  shown 

by Figure 10. On the other hand, Figures 11 and 13 show 
the large variations of the optimal inventory level with 
time with changing the shape of the demand functions. 
From Figures 12 and 14, it is observed that the optimal 
production rates  are  very  sensitive  to  changes  in  the
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Figure 13. The inventory level ( )x t  in-terms of the first-order differential equation in terms of 
exponential decreasing demand. 

 
 
 

 
 
Figure 14. Optimal production policy with exponential decreasing demand. 

 
 
 
demand functions. The similar results also available in 
case of Pareto distributed deterioration study of Baten 
and Kamil (2010). 

The solution of the second-order differential equation is 
represented by Figure 15 and shows the state of optimal 
inventory level is increasing. 

However, in further discussions, we present the model 
to measure the performance using different demand 
patterns. The production level with time t  given ˆ( )u t from 
the Equation (19) considering the mentioned above 
different demand rates and we take the inventory goal 
level is as ˆ( ) 10x t =  keeping all other parameters 
unchanged. 

Constant demand function 
 

Here, we present the model with constant demand 
function. Substituting 1 1constant ( ) 20y t y= =  instead 

of ( )y t  in the controlled system we have: 
 

( ){ }1
1 1 1

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =

  

from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }1 1 1
1ˆ ˆ( ) ( ) e x p / ( ) .u t y t t x tµ σ

σ
= + − −  
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Figure 15. The inventory level ( )x t  in-terms of the second-order differential equation. 

 
 
 
Linear demand function 
 
Here, we present the model with linear demand function. 
Substituting 2linear y (t)= 15t +  instead of ( )y t  in the 
controlled system we have: 
 

( ){ }2
2 2 2

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =

  
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }2 2 2

1ˆ ˆ( ) ( ) exp / ( ).u t y t t x tµ σ
σ

= + − −
  

 
Quadratic demand function 
 
Here, we present the model with linear demand function. 
Substituting 2

3Quadratic ( ) 30 0.1 0.001y t t t= + +  

instead of ( )y t  in the controlled system we have: 
 

( ){ }3
3 3 3

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =

 
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }3 3 3
1ˆ ˆ( ) ( ) exp / ( ).u t y t t x tµ σ
σ

= + − −  

Sinusoidal demand function 
 
Here, we present the model with sinusoidal demand  
function. Substituting 4 ( ) 1 sin( )y t t= +  instead of ( )y t  
in the controlled system we have: 
 

( ){ }4
4 4 4

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =

  
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }4 4 4

1ˆ ˆ( ) ( ) exp / ( ).u t y t t x tµ σ
σ

= + − −
  

 
Co-sinusoidal demand function 
 
Here, we present the model with sinusoidal demand 
function. Substituting 5( ) 1 cos( )y t t= +  instead of ( )y t  
in the controlled system we have: 
 

( ){ }5
5 5 5

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T xT

dt
µ σ

σ
= − − − − ≤ ≤ =

  
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }5 5 5
1ˆ ˆ( ) ( ) exp / ( ).u t y t t x tµ σ
σ

= + − −
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Exponential increasing demand function 
 
Here, we present the model with sinusoidal demand 
function. Substituting ( )6 ( ) expy t t=  instead of ( )y t  in 

the controlled system we have: 
 

( ){ }6
6 6 6

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =

  
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }6 6 6
1ˆ ˆ( ) ( ) ex p / ( ).u t y t t x tµ σ
σ

= + − −
  

Exponential decreasing demand function 
 
Here, we present the model with sinusoidal demand 
function. Substituting ( )6 ( ) expy t t= −  instead of ( )y t  

in the controlled system we have: 
  

( ){ }7
7 7 7

( ) 1
( ) ( ) exp / ( ), 0 , ( ) 0

dx t
u t y t t x t t T x T

dt
µ σ

σ
= − − − − ≤ ≤ =  

 
from which the production goal rate ˆ( )u t can be 

computed (assuming (0)x x= ) as: 
 

( ){ }7 7 7

1ˆ ˆ( ) ( ) exp / ( ).u t y t t x tµ σ
σ

= + − −
 

 
 
Conclusion 
 
In this paper, we developed an optimal control model in 
inventory-production system with a special class of 
generalized extreme value, which is, Gumbel distribution 
deteriorating items. This paper derived the explicit 
solution of the optimal control models of an inventory-
production system under a continuous review-policy 
using Pontryagin maximum principle. However, we gave 
numerical illustrative examples and numerical solution of 
optimal inventory-production system with Gumbel 
distribution deteriorating items using different types of 
demand functions. 
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