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In this paper, the adaptive and non-adaptive stabilization of the generalized Korteweg-de Vries (KdV)-
Burgers equation by nonlinear boundary control are analyzed. This is motivated by the method 
proposed by Smaoui (2004). We use this method to resolve the adaptive control of the generalized KdV-
Burgers equation. For the non-adaptive case, using Lyapunov method, we show that the controlled 
system is exponentially stable in 2L . As for the adaptive case, we show the 2L  regulation of the solution 
of the generalized KdV-Burgers equation. 
 
Key words: Adaptive control, KdV-Burgers equation, stabilization. 

 
 
INTRODUCTION 
 
In recent year, extensive attention has been paid to the 
problems of control and stabilization for the KdV 
equation, Burgers equation and KdV-Burgers equation, 
where most of these studies involved non-adaptive 
control (Balogh and Krstic, 2000; Burns and Kang, 1992; 
Byrnes et al., 1998; Krstic, 1999; Lixin and Xiaoyan, 
2003; Rosier, 1997; Russell and Bingyu, 1996). Adaptive 
control was also used to investigate different distributed 
parameter systems (Smaoui, 2004; Weijiu and Krstic, 
2001; Xiaoyan et al., 2009). However, adaptive control 
methods have been developed only for a few of the 
classes of partial differential equations for which non-
adaptive controllers exist. The KdV equation and KdV-
Burgers equation are nonlinear mathematical models that 
incorporate effects of both dispersion and dissipation. 
They serve as models of long waves in shallow water and 
some other physical phenomena. 
The main difference between adaptive control and non-

adaptive control is that in adaptive control, good control 
performance can be directly achieved even in the 
presence of undesirable or unpredictable disturbances. 
Here, we focus on the adaptive control. Nonlinear 
boundary   control  laws  that  achieve  global  asymptotic 
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stability were derived by Krstic (1999) for both the 
viscous and inviscid Burgers equation, and in 2001, 
adaptive control of Burgers equation with unknown 
viscosity was investigated by Weijiu and Krstic (2001) to 
regulate the solution of the closed-loop system to zero in 

2L  sense using an extension to Barbalat’s lemma. In 
2004, adaptive control of the generalized Burgers 
equation was studied by Smaoui (2004). The adaptive 
control of the generalized KdV-Burgers equation seems 
not yet to have been discussed. By Lyapunov method 
and applying the proved lemmas 1 to 3, more elegant 
than the Barbalat’s lemma, we get the adaptive control of 
the generalized KdV-Burgers equation. 

In this paper, we consider the adaptive and non-
adaptive control of the generalized Korteweg-de Vries-
Burgers (KdVB) equation: 
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where ε  is a positive constant, m is a small positive 

constant, a, b, c and d are all constants, )(1 tω and )(2 tω

are inputs and ),0( tu  and ),2( tu π are outputs. This paper 
is organized as follows: the global exponential stability in 

2L  for the system (1)-(3) when non-adaptive control is 

used was shown (that is, when ε , cba ,, and d are 
known),  2L  regulation of the solution of the generalized 
KdV-Burgers system was established in the case of 

adaptive control (that is, where ε , cba ,, and d are 
unknown) using an approach that used in Smaoui (2004), 
and finally, conclusion was presented. 
 
 
THE NON-ADAPTIVE CASE 
 
Theorem 1  
 
The generalized KdV-Burgers equation given in the 
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system of Equations (1)-(3) with 
28 πε m>  is globally 

exponentially stable in )2,0(2 πL under the following 
control laws: 
 

 (4)   
 
Proof   
 
We start our analysis from the Lyapunov function: 
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Taking the time derivative of )(tV , we get: 
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Using integration by parts, we get: 
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Now, using the boundary condition stated in Equations  
 

 
 
 
 
(2)-(3), Equation (7) becomes: 
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If we apply the following control law: 
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Then, Equation (8) can be rewritten as: 
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Letting 
28π

εα −= m
, then )(2)( tVtV α≤&

, that is, 
teconsttV α2)( ⋅≤ . Therefore, if 0<α  or 

28 πε m> , 

then )(tV converges to zero exponentially as t  tends to 
∞ . 
 
 
THE ADAPTIVE CASE 
 
Here, an adaptive regulator design is constructed for the 
generalized KdV-Burgers equation given in the system of 

Equations (1)-(3), where ε , cba ,, and d are unknowns. 

The 
2L  regulation of Burgers equation was proved by 

Weijiu and Krstic (2001) using an extension to Barbalat’s 
lemma, and in Smaoui (2004) applied a novel approach 

that seems to be more elegant to show the 
2L  regulation 

of the generalized Burgers equation. Here, we use the 

approach used in Smaoui (2004) to show the 
2L  

regulation of the generalized KdV-Burgers equation, we 
first state the following lemmas: 
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Setting τ−= ts  on the right-hand side of the first 
integral term of Equation (13), we get: 
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Consequently, the first term on the right-hand side of 
Equation (14) can be estimated by the following: 
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Hence, the first term on the right-hand side of Equation 
(14) can be written as: 
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Similarly, we can estimate the second term on the right-
hand side of Equation (14) by the following: 
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Now, letting τ−= tv , then Equation 19 becomes: 
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2L  sense under the following control law: 
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(28) 
 
 
Using the control law illustrated in Equation (26), the  
 

aforementioned inequality for )(tV&  becomes: 
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Therefore, )(tV& can be rewritten as: 
 

           (30) 
 
 
Now, let us introduce a non-negative energy function  )(tE  as follows: 
 
 

    (31)
 
 
If we evaluate the time derivative of the energy function  

 
 
illustrated, above: 

∫ 






 −






 +−−−≤
π

επ
ωε

π
ε 2

0

2
1

2
2

),0(
3

1
),0(

2

1
)(

1
),0(),()

8
()( tutu

a

b
t

a
tudxtxumtV&  






 −−+ ),2(
3

1
),2()(

1
),2( 2

2 tutu
c

d
t

c
tu π

ε
πωπε  

∫−≤
π

π
ε 2

0

2
2

),()
8

()( dxtxumtV& ),0(
3

1
),2(

3

1
),0(

2
322 tututu +−+ π

π
ε

 

[ ]






 −++− ),0(),0()(),0()(),0()(

1
),0( 3

2
2

3
1 tu

a

b
tutktutktutk

a
tuε  

[ ]






 −++− ),2(),2()(),2()(),2()(

1
),2( 6

2
5

3
4 tu

c

d
tutktutktutk

c
tu πππππε  

∫ 






 −−−−≤
π εε

π
ε 2

0

32412
2

),0(
3

1)(
),0(

)(
),()

8
()( tu

a

tk
tu

a

tk
dxtxumtV&  

),2()(),0(
2

)( 4
4

23 tutk
c

tu
a

b

a

tk πεε
π
εε

+






 −−−  

),2(
)(

),2(
3

1)( 2635 tu
c

d

c

tk
tu

c

tk πεεπε







 −+






 −− . 

( )
2

3

3

2

2

2

2
1

1 2

)(

23

1)(

2
)(

2
)()( 







 −−







+







 −







+








+=

a

b

a

tk

r

a

a

tk

r

a
tk

ar
tVtE

ε
π
εε

ε
ε

ε
ε

 

( )
2

6

6

2

5

5

2
4

4

)(

23

1)(

2
)(

2







 −







+







 −







+








+

c

d

c

tk

r

c

c

tk

r

c
tk

cr

εε
ε

ε
ε

ε
.  



Deng et al.          1589 
 
 
 

               (32) 
 
 

Now, substituting )(tV&  from Equation (30) and 
,6,,1),( ⋅⋅⋅=ntkn  from Equation (27) into Equation (32), 

we get: 
 

.),()
8

()(
2

0

2
2 ∫−≤

π

π
ε

dxtxumtE&
                         (33) 

 

This implies that if 
0)

8
(2

2
<−=

π
εα m

, then  

).0()( EtE ≤  Thus, one can conclude that 
,6,,1),( ⋅⋅⋅=ntkn  are bounded for any 0≥t . Therefore, 

),0(),0(),0( 42 ∞∞∈ LLtu I  and 

),0(),0(),2( 42 ∞∞∈ LLtu Iπ . 

To show the 
2L regulation of the generalized KdV-

Burgers equation, we see that from Equation (30): 
 

 
 

(34) 
 
Using Gronwall’s inequality, we get: 
 

(35)    
 
or 
 

(36) 

)(
2

)(1
)(

3

1)(1
)()()()( 3

3

3
2

2

2
11

1

tk
a

b

a

tk

r
tk

a

tk

r
tktk

ar
tVtE &&&&& 







 −−+






 −+







+= ε

π
εεεε

)(
)(1

)(
3

1)(1
)()( 6

6

6
5

5

5
44

4

tk
c

d

c

tk

r
tk

c

tk

r
tktk

cr
&&& 






 −+






 −+







+ εεεε

.  

∫











 −+−+−≤
π

ε
ε

π
ε 2

0

324
1

2
2

),0(
)(

3

1
),0()(

1
),()

8
()( tu

a

tk
tutk

a
dxtxumtV&  

),2(
3

1
)(

1
),2()(

1
),0(

)(

2

1 3
5

4
4

23 tutk
c

tutk
c

tu
a

b

a

tk π
ε

πε
π








 −+


+












 +−+












 −+ ),2(
)( 26 tu

c

d

c

tk π .  

∫











 −+
−

+≤
tt u

a

k
u

a

k
eVtV

0

3241 ),0(
)(

3

1
),0(

)(
)0()( ττ

ε
ττεα  

∫


+












 +−+ − tt u
c

k
deu

a

b

a

tk
0

44)(23 ),2(
)(

),0(
)(

2

1 τπτεττ
π

τα  

ττπττπ
ε

τ τα deu
c

d

c

k
u

c

k t )(2635 ),2(
)(

),2(
3

1)( −












 −+






 −  

ττττε ταα duuueCeVtV
t tt )],0(),0(),0([)0()( 2

0

34)(
max +++≤ ∫

−  

ττπτπτπε τα duuueC
t t )],2(),2(),2([ 2

0

34)(
max +++ ∫

− ,  



1590          Int. J. Phys. Sci. 
 
 
 
where 
 

(37) 
 
                     
Now using Lemmas (1)-(3), one can deduce from 
Equation 36 that: 
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Conclusion 
 
We have shown the adaptive and non-adaptive 
stabilization of the generalized KdV-Burgers equation by 
nonlinear boundary control. As for the adaptive case, we 
refer to the new approach proposed by Smaoui (2004) to 

show the 
2L  regulation of the generalized KdV-Burgers 

equation. This approach seems more elegant than using 
an extension to Barbalat’s lemma. It should be noted that 
the control laws is a general control law that can be used 
for the Neumann boundary conditions and the mixed 
boundary conditions. 
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