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This paper presents the development of an efficient security constrained economic dispatch using 
multi-thread parallel computations. One of the main obstacles in wide application of economic dispatch 
is the slowness of algorithm execution time, especially when a large system is utilized. Aside from the 
model development to overcome this, we have proposed a technique to perform parallel computing of 
the problem which can make solution converged in shorter time. In this sense, the serial economic 
dispatch is decomposed into four sub-process alternatives for multi-thread programming. Among them, 
the two processes of loss-coefficient and barrier-optimization are potentially qualified for multi-thread 
parallel computing. Results obtained shows that the multi-threaded loss-coefficient process has 
improved the speed-up for the serial computations in all the cases at where the multi-threaded barrier-
optimization process can improve the speed-up only if the execution time for the process at single 
iteration can take more than one second, which mostly happens in the systems with a large number of 
units. The performance results of the multi-thread economic dispatch exhibit improved speed-up and 
performance characteristics compared to the serial execution time in all cases. A variety of case studies 
of standard IEEE 118, 300 bus and practical utility 664, 4995 bus are employed to validate the promising 
performance characteristics.  
 
Key words: Security constrained economic dispatch, multi-thread parallel computing, barrier optimization, exact 
loss. 

 
 
INTRODUCTION 
 
Economic dispatch is one of the major problems in 
electrical power system analysis. It treats the system by 
an efficient allocation of the generator outputs in such a 
way that minimizes the total costs of the system while all 
the operating and physical constraints taken into account 
(Chowdhury and Rahman, 1990).  

Economic dispatch problem has been traditionally 
solved by a set of coordination equations using Lambda-
iteration method, the Newton method (Wood and 
Wollenberg, 1984), and the gradient method (Lee et al., 
1984). A method to calculate the penalty factor which 
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uses load flow Jacobian matrix has also been 
investigated (Happ, 1974). Quadratic programming has, 
however, been applied to solve the economic dispatch 
problems. This method possesses the good convergence 
characteristics and handles constraints efficiently. Also, it 
requires more computational storage than the classical 
algorithm and is restricted to quadratic cost functions. 
Apart from these methods, an algorithm developed in 
Khalid and Abdul (1991), by correctly fixing the output of 
the generators violating the constraints.  

One of the major applications of economic dispatch is 
in unit commitment solution. Unit commitment is basically 
the most economical solution in power system operations 
and the speed of its solution is greatly tied to the 
economic dispatch problem. Therefore, its accuracy 
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is crucial to the final solution. In other words, the 
challenges in economic dispatch algorithm are in solution 
accuracy, nonlinear objectives and constraints, trans-
mission loss models as well as execution speed (Nimje et 
al., 2011). It is noted that the previous works on unit 
commitment used simplified models of economic dispatch 
problems as a way of reducing the amount of time taken 
to solve the large number economic dispatch problems 
(Güvenç, 2010).  

The advent of parallel computing offered opportunities 
for numerically intensive applications such as analysis 
and simulation of large-scale systems. The use of parallel 
computation in power system analysis has been 
investigated since 1990’s, (IEEE Committee Report, 
1992; Wu and Anjan, 1995). Three main issues identified 
in the application of parallel computation to power system 
analysis are processor architecture, software 
development and algorithm development.  

As far as algorithm change is concerned, works 
reported in the literature tends to decompose the NR and 
FD algorithms so that they are amenable to parallel 
computation. The detailed calculations remain essentially 
the same. Therefore, what have been investigated has 
not significantly modified the actual computation in NR 
and FD methods.  

Many efforts that have been reported in implementing 
parallel computation, concentrate on the processor 
architecture issue (Chen and Chen, 2001a, Chen 2004b; 
Tu and Flueck, 2001). In the past parallel processing 
computer system tends to consist of a number of physical 
processors connected externally by a very fast 
communication system (Chen and Chen, 2001a; Chen, 
2004b). The system can be of distributed memory type 
where many memories are physically separate modules 
and each memory is accessed by specified processor. 
The other type is shared memory where all processors 
assess the same memory.  

A few variations of parallel implementation of load flow 
analysis used the type of parallel computing architecture 
mentioned previously (Chen and Chen, 2001a; Chen, 
2004b). One of the implementations is by using clusters 
of five transputers (Chen and Chen, 2001a; Chen 2004b). 
In another version, the hardware is based on clusters 
eight single processors connected by a Fast Ethernet 
network (Tu and Flueck, 2001). These systems used a 
specialized hardware which is more expensive than a 
general purpose computer. 

The off-processor inter-process communication in the 
parallel computer systems discussed earlier creates 
speed latency. One of the ways to reduce the speed 
latency is by having the processors connected in a single 
chip package, such as by using multiple programmable 
chips connected in a cluster implemented in a single chip 
FPGA (Wang et al., 2007). The technique of using 
configurable chip designed specially to solve the power 
flow problem is diverging from the path of using 
 

 
 
 
commercial off the shelf (COTS) system, such as the 
personal computer (PC) or workstation. A specialized 
system that runs only load flow application would not be 
cost effective than the present serial (also known as 
sequential) load flow algorithm running in a serial 
computer that is available as COTS. In this case, the 
same serial computer can be used for many other 
applications, which is very important, as the PC has 
become one of the major computing platforms for 
engineering software applications. 

However, in terms of the inter-process communication, 
the arrangement of multi-processing by using many cores 
in a single die is more efficient than if the same number of 
physically separate processor cores is con-nected 
through an external communication system. This 
arrangement is called the multi-core computing. Lately, 
nearly all the recent PCs are multi-core machines. In 
addition to being parallel due to its multiple processor 
cores, each core can execute multi-thread instructions. In 
other words, the PC is now a cost effective parallel 
computer.  

There are a number of industry standards parallel 
application programming interfaces (API) that can help to 
develop a parallel program (OpenMP review Band, 2008; 
Brown and Ilya, 2007) in a parallel computer. These API’s 
are integrated into compilers such as C/C++ and 
FORTRAN. An API manages the memory, under 
programming control, to ensure no conflicts arise. One of 
the API’s is the OpenMP whose design makes it easy to 
modify an existing sequential code (Brown and Ilya, 
2007). Furthermore, a program with OpenMP can run in 
serial computer as the OpenMP command will be treated 
just as a comment statement. In other words, the same 
program can be used for parallel and serial computation. 

The combination of the multi-core and multi-thread 
hardware and the parallel compiler resolved the issue of 
software development for parallel processing identified 
earlier (IEEE Committee Report, 1992). The parallel 
compiler enables applications to be developed in a 
transparent manner, which means that they can be used 
for any number of cores and threads without rewriting. 
Serial program developed on the PC platform is portable 
in hardware that varies from notebooks, desktops and 
workstation computers. As the PC is practically a COTS 
system it is cheaper than the specialized parallel 
computing system of the past. 

The objective of the research work reported in this 
paper is to develop the security constrained economic 
dispatch using multi-thread parallel computing.  
 
 
MULTI-THREAD COMPUTING 
 
In general an operating system controls the execution of 
many processes by a microprocessor core. Each process 
is independent of each other with its own state information, 
 



  
 
 
 
address space and only interact with each other through 
an inter-process communication system. By using context 
switching, the processes are run in a multi-tasking 
environment but each process is run sequentially at any 
instance of time. Context switching is a process of saving 
and restoring the state of a CPU such that multiple 
processes can share a single resource. 

Most common microprocessors nowadays, such as 
those from INTEL Corporation or AMD Corporation, are of 
the multi-core processor type, which consist of two or four 
execution processors on a single die. In this case, the 
operating system will control the many processes which 
some can be run in parallel at the same time, according 
to the number of core, instead of being multi-tasked.  

Each core of an INTEL multi-processor, can execute 
two threads in parallel (Deborah et al., 2002). The time-
division multiplexing used by multi-threading creates an 
environment where a program is configured to allow 
processes to fork or split into two or more threads of 
execution, as shown by Figure 1. Creating a fresh thread 
is very similar to forking a new process, but when a new 
process is forked, it shares relatively little data with the 
parent process which created it. This is in contrast with a 
fresh thread created at a point where much information 
are shared, such as all the global variables and static 
local variables, the open files and the process ID. A single 
process might contain multiple threads, which share the 
same state and same memory space. Since threads in a 
process share the same variables they communicate with 
each other directly (Deborah et al., 2002). This is more 
efficient than a multi-process as the time taken to pass 
control from one process to another is longer than the 
time required in passing control from a thread to another 
thread. 

Multi-threading is purposely planned to achieve a more 
efficient use of computer resources by allowing resources 
that are already in use to be simultaneously utilized by a 
slight variant of the same process. As an example, when 
a thread gets a lot of cache misses the other threads can 
take advantage of the unused computing resources to 
continue. This is accomplished by context switching, 
which enables the saving and restoring the state of 
threads so that they can share a single resource, which is 
just as similar as context switching between processes. 
This will lead to faster overall execution, as those 
resources would have been idle had there been only a 
single thread executed sequentially (Deborah et al., 
2002). 

One of the slight disadvantages of multi-threading 
computing is that the speed-up may result in some 
conflicts between threads when attempting to share 
caches or other hardware resources. Multi-threading 
could also lower the response time of each single thread 
in the process affecting time savings that are generated 
by the multi-thread computing. 
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Figure 1. Multi-threading operational model. 

 
 
 
PROBLEM FORMULATION 
 
The intent of the economic dispatch is to allocate the 
generator’s output while the total generation costs 
minimized and all constraints satisfied. Generator cost 
functions usually considered as quadratic polynomial 
functions, so in this work the total cost of all generators in 
the economic dispatch problem can be expressed as the 
follows: 
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The constraints can be listed as: 

The total active power generation must be equal to the 
sum of demand plus the network losses, which can be 
expressed as:  
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It is said that each generator has a certain capacity that 
should not be violated and has to be confined within the 
specific up and down bounds as: 
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Line flows have to be monitored and retain within the 
transmission line capacities to avoid any unseen 
insecurity events. A set of generalized Z-Bus distribution 
factors (GZBDF) (Brar et al., 2004) is thus used to impose 
the line security in the problem as: 
 

max

1

),( m

NG

i
gip PPimG ≤�

=                                                 (4) 
4276          Int. J. Phys. Sci. 
 



  
 
 
Loss formulation  
 

Transmission fixed loss is normally used in power system 
problems such as unit commitment, but it led an 
inaccurate result as the power loss in transmission lines 
is the function of active power injection into the network. 
Further, in each set of optimal generation schedules, the 
amount of loss is different. At this work, the most exact 
loss formula has been used. It is based on �, � loss 
coefficient, which can be derived as: 
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Line distribution factors 
 

The most accurate line distribution factors are derived 
through a set of GZBDF factors. These factors enable 
one to add the security line constrained into the economic 
dispatch solution. These are the factors that behaving as 
a function of active power injections into the buses which 
can be expressed as Brar et al. (2004). 
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Execution time breakdown statistics 
 

Economic dispatch analysis has been traditionally solved 
by a single processing machine used for its sequential 
process. This serial computation can be broken down into 
four sub-processes in order to examine which 
computational processes have excessive demand of 
getting parallelism. These are load-flow, loss-coefficient, 
line-distribution-factor and barrier-optimization pro-
cesses. Table 1 shows the results for the serial economic 
dispatch and detailed execution time that has been 
apportioned into the five aforementioned processes. In 
this case, a variety of test systems ranging from standard 
IEEE 118, 300 bus up to practical utilities with 664, 4995 
bus are employed to validate the performance 
characteristics of the economic dispatch at serial and 
multi-thread versions. 
 
 
MULTI-THREAD ECONOMIC DISPATCH 
 
Implementing the multi-threading computing pattern  into  
 

 
 
 
the economic dispatch process required an observation of 
what processes are more potential for multi-thread 
computing. However, these potential alternatives are 
determined through the serial economic dispatch solution. 
The key is to find a process which consumes more 
computing powers in serial version. Therefore, the result 
obtained for serial economic dispatch tends to ease these 
decisions. Table 2 showed the execution time 
contributions of each process in serial economic dispatch 
in various test cases. In general, the results reveal the 
major execution times spent in the calculations of load-
flow, loss-coefficient and barrier-optimization. As seen in 
Table 2, in the case of the 118 bus system with a total 
unit of 54, the load-flow by 18% and barrier-optimization 
by 75% computing times mostly occupied the major time 
of economic dispatch process, whereas in the case of the 
300 bus system with 69 units, dominant execution times 
were taken by three processes of load-flow with 13%, 
loss-coefficient with 13% and barrier-optimization by 71%. 
In addition, these processes are noticed in the case of the 
practical large systems of 664 with 144 units and 4995 
bus systems with 483 units. However, the major costly 
processes are those of loss-coefficient with 30 and 51% 
respectively and barrier-optimization processing time of 
58 and 40% accordingly.  

The proposed multi-thread economic dispatch is coded 
using C++ programming with the INTEL C++ compiler in 
Visual Studio IDE, INTEL (2009). A PC with an INTEL 
Pentium Core Duo E2180, 2.00 GHz with 2.00 GB of 
RAM has been used as the hardware platform. 
 
 
Multi-thread load flow 
 
Load-flow computation happens in every iteration 
throughout the economic dispatch process. In other 
words, whenever any generator’s output changes there 
has always been an essential need of the fresher load-
flow solution in order to re-establish the present state of 
the system in terms of voltage and angle across the grid. 
This process has been earlier nominated as a potential 
alternative process to bend multi-threading parallel 
computing right into its calculations at all cases. However, 
the computations in the full Newtown-Raphson load-flow 
can be commonly summarized into four sub-procedures 
as of the mismatch, constructing Jacobian matrix 
elements, solving the linear equation and the update of 
the variables. Among these common tasks, the most 
challenging part of computation is in the solution of a set 
of linear equations, which can be typically cast as: 
 

BAX =                                                                       (7) 
 
It is noted that the solution to this equation plays an 
important role in the load-flow entire performance. This 
solution is depended on a massively matrix  operation  to
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Table 1. Serial execution times in Milisecond. 
 

Gen Iter LF sLoss DF sBO Total 
54 4 17.81 5.29 2.00 76.20 101.4 
69 5 41.86 42.20 6.13 225.2 315.7 

144 4 48.12 168.6 23.63 327.4 568.5 
483 6 754.8 9824 1017 7622 19223 

 
 
 

Table 2. Percentage of execution times in economic dispatch. 
 

Gen Iter LF sLoss DF sBO 
54 4 18 5 2 75 
69 5 13 13 2 71 

144 4 8 30 4 58 
483 6 4 51 5 40 

 
 
 
invert the Jacobian matrix A where it has greatly taken 
excessive processing power to end up the process. 
However this calculation is the dominant total execution 
time in load-flow process. In this case, SuperLU direct 
linear solver can be used to yield a sharper solution for 
the load flow process and facilitate inverting the Jacobian 
matrix A in the less computational cost (Demmel et al., 
1999). As a result, it is recognized that SuperLU package 
is one of the efficient software, which is freely available in 
the public domain. Further, it has been universally 
accepted for its powerful performance, especially in 
solving large sparse matrix set of linear equations. This 
software has three libraries which include: sequential 
SuperLU, Multi-thread SuperLU and distributed SuperLU 
at which every package is aimed in certain aspect of the 
solution with predefined memory architectures. Multi-
thread SuperLU library is eventually used in our load flow 
where it is designed to work on a shared memory 
architecture.  

Enforcement of multi-threading in load-flow 
computations was previously sound demanding but there 
are certain bottlenecks for a forceful multi-thread load-
flow process. First of all, Tables 1 and 2 show that albeit 
load-flow has significant contribution time of 18% in 118 
bus case as well as 13% in 300 bus systems but since 
their quantities are 17.81 ms out of 101.4 ms and 41.85 
ms out of 315.72 ms, which are basically considered as 
the short-living processes compared the total execution 
time require for serial economic dispatch thus they are 
technically unwilling to become multi-threaded. It should 
be noted that the multi-thread technique has been 
designed to alleviate the process with massively high 
computational cost. However, the key is that the time 
spent for load flow process is relatively very small, and 
even it becomes crucial when the dimension of the 

system grows up. Additionally, it is noted that the quantity 
of the time given in the Table 1 should be divided by the 
number of its iterations, which eventually worsen the case 
for seeking multi-threading opportunities in the load-flow 
process. It is technically worthwhile if one can pick the 
processes that are computationally costly, another way, it 
is avoided applying the multi-threading at where it is 
barely required.  

Since a power system by nature is a sparse system at 
where a few connections are only drawn among 
generations in the far and the loads in an area. Therefore, 
the number of non-zero elements of the Jacobian matrix 
is always small. As Table 3 shows, the percentage of 
non-zero elements has been drastically reducing while the 
size of the system increased. Although in the case of a 
large 4995 bus system, a small percentage of non-zero 
elements made it very sparse so that the case is 
unattractive for multi-threading to over come the process. 
Generally speaking, in the systems with a set of linear 
equation multi-threading approach is said to be extremely 
precious whenever it involves with a matrix that has a 
great number of non-zero elements in the matrix.  

Thereby, the sequential load flow would be a better 
alternative for an efficient economic dispatch where the 
serial value seemed unnecessary to get multi-threaded. 
However the complete proposed multi-thread economic 
dispatch algorithm has been depicted in Figure 2, where 
necessary parts for parallel computation have been 
painted as the symbol in Figure 1. Figure 2 shows that 
there are two most cumbersome processes in economic 
dispatch which required parallel computation, although 
the other process looked demanding at first glance but 
they have appeared uncompetitive to other heavy pro-
cesses. In the subsequently, the procedure and results on
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Table 3. Sparsity and problem size for both full and decoupled Newton-Raphson power-flow methods. 
 

No. of bus (N) No. of Gen No. of lines (M) 
Full Jacobian matrix 

Problem size Non-zero elements 
2N×2N 4N+8M % 

118 54 179 55696 1904 3.42 
300 69 409 360000 4472 1.24 
664 144 757 1763584 8712 0.49 

4995 483 5217 9980010 61716 0.06 
 
 
 
how the parallel programming helps the existing serial 
economic dispatch will be assessed. 
 
 
Multi-thread loss coefficient 
 
Loss coefficients have to be obtained by Equation 5, and 
this process took a number of summation loops in its 
calculation. It is explicitly seen in the shape of equation in 
the Equation 1. The process of making loss-coefficient 
has been increasingly soliciting for better speed up. 
Similarly, it was also discovered that one of the potential 
processes that multi-thread computing can be advant-
ageous. Therefore, this process has been going through 
the multi-threading computing pattern and results are 
reflected in Table 4. It showed how multi-threading is 
acting when a certain number of the threads is applied. In 
case of the 118 bus system with the serial solution of 5.28 
ms has been boosted to a faster solution of 1.29 ms when 
a total of two threads handled the process concurrently. 
Further acceleration obtained by using three and four 
threads, which respectively reduced the execution time of 
the process to 0.954 ms and 0.795 ms. The same story 
goes for the other case studies which all then came up 
with better performance once the number of used threads 
increased. In order to examine how fast each additional 
thread can speed up the loss-coefficient process. 
Therefore, Table 4 has also provided the amount of 
speed up received by multiple use of threads. For 
instance, in the case of 54 units the speed up for using 
two threads rather than one thread or serial version 
marked by 4.09, and even it becomes faster by using 
three and four threads at where the speed up climbed to 
5.54 and 6.65, respectively. Identical improvements and 
speed up can be achieved for other case studies over 
their serial values, which have been given in Table 4.  

Having said that the initial intent of multi-threading or in 
general sense the parallel computing is to solve the 
massively complex problems with a heavy computational 
burden. Therefore, it likely has been designed to gain the 
speed up in the process that employs a large and 
complex system. Results emphasize that better speed up 
are achieved with extra thread used. 

�

 
 
Figure 2. Flow chart for multi-thread security constrained 
economic dispatch. 

 
 
 
Multi-thread barrier optimization 
 
Solving the economic dispatch problem with a set of 
linear and quadratic constraints required appropriate opti-
mization alternatives. Among the interior point optimization 
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Table 4. Comparative performance of multi-thread and serial loss calculation. 
 

Gen 
Execution time (ms) Speed-Up 

1 TD 2 TD 3 TD 4 TD 
Tread
Serial

2
 

Tread
Serial
3

 
Tread
Serial

4
 

54 1.43 0.31 0.31 0.30 4.58 4.60 4.73 
69 5.3 1.29 0.95 0.80 4.10 5.54 6.65 

144 42.2 9.59 6.33 5.22 4.40 6.66 8.08 
483 168 37.9 25.9 19.3 4.46 6.49 8.72 

 
 
 

Table 5. Comparative performance of multi-thread and serial barrier optimization. 
 

Unit 
Execution time (ms) Speed-Up 

1 TD 2 TD 3 TD 4 TD 
Tread
Serial

2
 

Tread
Serial
3

 
Tread
Serial

4
 

54 76 220 249 335 0.35 0.31 0.23 
69 225 376 443 665 0.60 0.51 0.34 

144 327 479 549 521 0.68 0.60 0.63 
483 7622 5556 4776 4299 1.37 1.60 1.77 

 
 
 

optimization methods, the barrier optimization technique 
has been used to solve the economic dispatch problem. 
Interior point barrier algorithm, an efficient quadratic 
programming algorithm, is used to solve economic 
dispatch problem. The barrier algorithm also caters for 
any combination of polynomial functions such as 
polynomial cost functions. Nonlinear characteristics of an 
electrical power system such as generators limitations, 
transmission losses and nonlinear cost functions are 
considered in the economic dispatch formulation. More-
over, this process in economic dispatch has previously 
qualified as an alternative process for multi-threading 
technique to fork in.  

As a result, Table 5 shows how multi-thread computing 
technique is working on the process where a particular 
number of concurrent threads utilized. Unlike the 4995 
bus case with total 483 units, in all the test cases the 
degrees of speed up are declining by the rising number of 
threads used.  

An ILOG CPLEX Barrier Optimizer used, which is 
available as a callable C/C++ library, IBM ILOG CPLEX. It 
tends to provide a solution for quadratic constrained 
programs and second-order cone programming (SOCP) 
problems. ILOG CPLEX barrier optimizer which is based 
on a primal-dual, predictor-corrector method, is able to 
deal with large-scale linear programs. In this work, a 
multi-thread CPLEX used to achieve the promising 
performance.  
 
 
DISCUSSION 
 
The multi-thread parallel computing is developed in  

security constrained economic dispatch process. There 
have been three sub-processes required the multi-thread 
computation, which are the load-flow, loss-coefficient and 
barrier-optimization.  

The load-flow process has been dismissed for multi-
threading computations as of its quick solution and the 
highly sparse Jacobian matrix that appears in the load 
flow equations. 

The loss-coefficient process has been multi-threaded 
and an improved speed up attained by multi-thread 
computing of the loss-coefficient process which is 
promising for all the case studies. Table 6 demonstrates 
the speed-up obtained in multi-thread economic dispatch 
where only a loss-coefficient process has been multi-
threaded. The speed-up amounts can be yielded by 
comparison of multi-threaded economic dispatch values, 
using four threads, over its serial values. Therefore, it is 
clearly showing that the performance of multi-thread 
economic dispatch enhanced in all the test systems with a 
rising degree of speed-up in all cases. Moreover, the 
number of buses is a key word in the calculations of the 
loss-coefficients because the volume of the computations 
is tied with the number of buses, in other words, having a 
huge number of repetitive loops in the formulation of 
Equation 5 of the loss-coefficient which makes the 
calculation for loss-coefficients quite hefty. Hence, the 
results shown in Table 6 acknowledge that the higher 
speed-up attained for the larger system with a bigger 
number of buses they have. 

The barrier-optimization process has also been going 
through the multi-threading effort and the performance 
results for the multi-thread economic dispatch over its 
serial version have been depicted in Table 7. However, it
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Table 6. Comparative performance of attending multi-thread loss coefficient in economic dispatch. 
 

Unit Iter sED mtED Speed-up 
54 4 101.40 96.91 1.05 
69 5 315.72 278.75 1.13 

144 4 568.59 419.26 1.36 
483 6 19223.22 11135.47 1.73 

 
 
 

Table 7. Comparative performance of attending multi-thread barrier optimization in economic 
dispatch. 
 

Unit Iter sED mtED Speed-up 
54 4 101.40 360.31 0.28 
69 5 315.72 755.02 0.42 

144 4 568.59 762.10 0.75 
483 6 19223.22 15899.88 1.21 

 
 
 
is noted that the results are with the situation that only the 
barrier-optimization process has been multi-threaded. 
Furthermore, results show that the multi-threading can 
sometimes even prolong a process. It is happening if the 
number of the optimization variables was few, in the other 
hand, the number of units in the system becomes 
determinative in such a way to gain better improvement 
on the execution time when the multi-threading is applied. 
Thereby, the system with 483 units has been boosted its 
speed up over the serial version. It can be seen that in 
such a huge system with a larger number of variables the 
speed up can be growing by the number of the threads 
used. However, the speed up of 1.20 is achieved in the 
case with 483 units and a number of four concurrent 
threads applied. 

As a result, enforcing the multi-thread loss-coefficient in 
the all cases plus the multi-thread barrier-optimization 
where it needed. It can increase the speed-up for the final 
multi-thread economic dispatch as shown in Table 8 at 
which demonstrated an efficient speed-up in all the cases 
occurred. Speed-up for multi-thread economic dispatch 
has been growing up where a 1.05 speed-up is achieved 
in 54 unit system, and the speed-up rate has been 
climbed up to the 2.47 for the 483 unit system.  
 
 
Conclusions 
 
The idea of multi-thread computing technique has been 
implemented on the security constrained economic 
dispatch in order to exploit the powerful processing 
capacity of multi-thread parallel computing for ace-lerating 
the execution time of the solution. In this sense, serial 
economic dispatch can be decomposed into four sub-
processes at which one can deftly observe what process 

needs to be multi-threaded. The most potential processes 
found to be those of load-flow, loss-coefficient and 
barrier-optimization processes. The detail results of the 
multi-thread economic dispatch have then unveiled that 
the most advantageous process for multi-thread 
computation is the loss-coefficient process along with the 
barrier-optimization process. The multi-threading of the 
loss-coefficient process has always improved the speed-
up of the process itself as well as infused the speed-up 
for the whole economic dispatch, whereas the multi-
threaded barrier-optimization process can be effective 
when the number of system units is large and the 
processing time taken for the calculations in a single 
iteration can jump beyond one second. 

As the future direction to this research, the algorithm 
can be modified in such a way that it can encompass 
more practical constraints in economic dispatch. The 
security assessment of economic dispatch has highly 
been an enticing issue recently in power market and 
system restructuring, where the system operator should 
be borne, excessive financial strain to draw enough 
security in the system. Therefore, the mechanism of 
practical economic dispatch may become more 
complicated and the beauty of parallel computing outfit 
can effectively make the problem working in the place. 
The authors are undergoing a process to verify how 
parallel computing may untie the computational burdens 
in practical contingency-based economic dispatch and 
unit commitment. 
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Table 8. Multi-thread economic dispatch. 
 

Unit Iter sED mtED Speed-up 
54 4 101.40 96.91 1.05 
69 5 315.72 278.75 1.13 

144 4 568.59 419.26 1.36 
483 6 19223.22 7792.30 2.47 

 
 
 
Nomenclature: i, j, Suffix or prefix of busbar indices; 
sED, serial economic dispatch; sLoss, serial loss-
coefficient; sBO, serial barrier optimization; mtED, serial 
economic dispatch; mtLoss, multi-threaded loss-
coefficient; mtBarr, multi-threaded barrier optimization; 
Iter, number of iterations; NB, NG, number of buses and 
generators; M, number of branches; NNZ, number of non-
zero elements; PTm, active line flow; ,gip maxmin , gigi pp , 

active generation, minimum and maximum generations in 
bus i; ),(),,( imGimG Qp , active and reactive line 

distribution factor.  
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