

International Journal of the Physical Sciences Vol. 6(17), pp. 4273-4281, 2 September, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.488
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Security constrained economic dispatch using multi-
thread parallel computing

Alimorad Khajeh Zadeh, Hossein Zeynal and Khalid Mohamed Nor*

Centre of Electrical Energy Systems (CEES), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, (UTM),

81310 Skudai, Johor, Malaysia.

Accepted 05 May, 2011

This paper presents the development of an efficient security constrained economic dispatch using
multi-thread parallel computations. One of the main obstacles in wide application of economic dispatch
is the slowness of algorithm execution time, especially when a large system is utilized. Aside from the
model development to overcome this, we have proposed a technique to perform parallel computing of
the problem which can make solution converged in shorter time. In this sense, the serial economic
dispatch is decomposed into four sub-process alternatives for multi-thread programming. Among them,
the two processes of loss-coefficient and barrier-optimization are potentially qualified for multi-thread
parallel computing. Results obtained shows that the multi-threaded loss-coefficient process has
improved the speed-up for the serial computations in all the cases at where the multi-threaded barrier-
optimization process can improve the speed-up only if the execution time for the process at single
iteration can take more than one second, which mostly happens in the systems with a large number of
units. The performance results of the multi-thread economic dispatch exhibit improved speed-up and
performance characteristics compared to the serial execution time in all cases. A variety of case studies
of standard IEEE 118, 300 bus and practical utility 664, 4995 bus are employed to validate the promising
performance characteristics.

Key words: Security constrained economic dispatch, multi-thread parallel computing, barrier optimization, exact
loss.

INTRODUCTION

Economic dispatch is one of the major problems in
electrical power system analysis. It treats the system by
an efficient allocation of the generator outputs in such a
way that minimizes the total costs of the system while all
the operating and physical constraints taken into account
(Chowdhury and Rahman, 1990).

Economic dispatch problem has been traditionally
solved by a set of coordination equations using Lambda-
iteration method, the Newton method (Wood and
Wollenberg, 1984), and the gradient method (Lee et al.,
1984). A method to calculate the penalty factor which

*Corresponding author. E-mail: khalidmn@fke.utm.my.

uses load flow Jacobian matrix has also been
investigated (Happ, 1974). Quadratic programming has,
however, been applied to solve the economic dispatch
problems. This method possesses the good convergence
characteristics and handles constraints efficiently. Also, it
requires more computational storage than the classical
algorithm and is restricted to quadratic cost functions.
Apart from these methods, an algorithm developed in
Khalid and Abdul (1991), by correctly fixing the output of
the generators violating the constraints.

One of the major applications of economic dispatch is
in unit commitment solution. Unit commitment is basically
the most economical solution in power system operations
and the speed of its solution is greatly tied to the
economic dispatch problem. Therefore, its accuracy
4274 Int. J. Phys. Sci.

is crucial to the final solution. In other words, the
challenges in economic dispatch algorithm are in solution
accuracy, nonlinear objectives and constraints, trans-
mission loss models as well as execution speed (Nimje et
al., 2011). It is noted that the previous works on unit
commitment used simplified models of economic dispatch
problems as a way of reducing the amount of time taken
to solve the large number economic dispatch problems
(Güvenç, 2010).

The advent of parallel computing offered opportunities
for numerically intensive applications such as analysis
and simulation of large-scale systems. The use of parallel
computation in power system analysis has been
investigated since 1990’s, (IEEE Committee Report,
1992; Wu and Anjan, 1995). Three main issues identified
in the application of parallel computation to power system
analysis are processor architecture, software
development and algorithm development.

As far as algorithm change is concerned, works
reported in the literature tends to decompose the NR and
FD algorithms so that they are amenable to parallel
computation. The detailed calculations remain essentially
the same. Therefore, what have been investigated has
not significantly modified the actual computation in NR
and FD methods.

Many efforts that have been reported in implementing
parallel computation, concentrate on the processor
architecture issue (Chen and Chen, 2001a, Chen 2004b;
Tu and Flueck, 2001). In the past parallel processing
computer system tends to consist of a number of physical
processors connected externally by a very fast
communication system (Chen and Chen, 2001a; Chen,
2004b). The system can be of distributed memory type
where many memories are physically separate modules
and each memory is accessed by specified processor.
The other type is shared memory where all processors
assess the same memory.

A few variations of parallel implementation of load flow
analysis used the type of parallel computing architecture
mentioned previously (Chen and Chen, 2001a; Chen,
2004b). One of the implementations is by using clusters
of five transputers (Chen and Chen, 2001a; Chen 2004b).
In another version, the hardware is based on clusters
eight single processors connected by a Fast Ethernet
network (Tu and Flueck, 2001). These systems used a
specialized hardware which is more expensive than a
general purpose computer.

The off-processor inter-process communication in the
parallel computer systems discussed earlier creates
speed latency. One of the ways to reduce the speed
latency is by having the processors connected in a single
chip package, such as by using multiple programmable
chips connected in a cluster implemented in a single chip
FPGA (Wang et al., 2007). The technique of using
configurable chip designed specially to solve the power
flow problem is diverging from the path of using

commercial off the shelf (COTS) system, such as the
personal computer (PC) or workstation. A specialized
system that runs only load flow application would not be
cost effective than the present serial (also known as
sequential) load flow algorithm running in a serial
computer that is available as COTS. In this case, the
same serial computer can be used for many other
applications, which is very important, as the PC has
become one of the major computing platforms for
engineering software applications.

However, in terms of the inter-process communication,
the arrangement of multi-processing by using many cores
in a single die is more efficient than if the same number of
physically separate processor cores is con-nected
through an external communication system. This
arrangement is called the multi-core computing. Lately,
nearly all the recent PCs are multi-core machines. In
addition to being parallel due to its multiple processor
cores, each core can execute multi-thread instructions. In
other words, the PC is now a cost effective parallel
computer.

There are a number of industry standards parallel
application programming interfaces (API) that can help to
develop a parallel program (OpenMP review Band, 2008;
Brown and Ilya, 2007) in a parallel computer. These API’s
are integrated into compilers such as C/C++ and
FORTRAN. An API manages the memory, under
programming control, to ensure no conflicts arise. One of
the API’s is the OpenMP whose design makes it easy to
modify an existing sequential code (Brown and Ilya,
2007). Furthermore, a program with OpenMP can run in
serial computer as the OpenMP command will be treated
just as a comment statement. In other words, the same
program can be used for parallel and serial computation.

The combination of the multi-core and multi-thread
hardware and the parallel compiler resolved the issue of
software development for parallel processing identified
earlier (IEEE Committee Report, 1992). The parallel
compiler enables applications to be developed in a
transparent manner, which means that they can be used
for any number of cores and threads without rewriting.
Serial program developed on the PC platform is portable
in hardware that varies from notebooks, desktops and
workstation computers. As the PC is practically a COTS
system it is cheaper than the specialized parallel
computing system of the past.

The objective of the research work reported in this
paper is to develop the security constrained economic
dispatch using multi-thread parallel computing.

MULTI-THREAD COMPUTING

In general an operating system controls the execution of
many processes by a microprocessor core. Each process
is independent of each other with its own state information,

address space and only interact with each other through
an inter-process communication system. By using context
switching, the processes are run in a multi-tasking
environment but each process is run sequentially at any
instance of time. Context switching is a process of saving
and restoring the state of a CPU such that multiple
processes can share a single resource.

Most common microprocessors nowadays, such as
those from INTEL Corporation or AMD Corporation, are of
the multi-core processor type, which consist of two or four
execution processors on a single die. In this case, the
operating system will control the many processes which
some can be run in parallel at the same time, according
to the number of core, instead of being multi-tasked.

Each core of an INTEL multi-processor, can execute
two threads in parallel (Deborah et al., 2002). The time-
division multiplexing used by multi-threading creates an
environment where a program is configured to allow
processes to fork or split into two or more threads of
execution, as shown by Figure 1. Creating a fresh thread
is very similar to forking a new process, but when a new
process is forked, it shares relatively little data with the
parent process which created it. This is in contrast with a
fresh thread created at a point where much information
are shared, such as all the global variables and static
local variables, the open files and the process ID. A single
process might contain multiple threads, which share the
same state and same memory space. Since threads in a
process share the same variables they communicate with
each other directly (Deborah et al., 2002). This is more
efficient than a multi-process as the time taken to pass
control from one process to another is longer than the
time required in passing control from a thread to another
thread.

Multi-threading is purposely planned to achieve a more
efficient use of computer resources by allowing resources
that are already in use to be simultaneously utilized by a
slight variant of the same process. As an example, when
a thread gets a lot of cache misses the other threads can
take advantage of the unused computing resources to
continue. This is accomplished by context switching,
which enables the saving and restoring the state of
threads so that they can share a single resource, which is
just as similar as context switching between processes.
This will lead to faster overall execution, as those
resources would have been idle had there been only a
single thread executed sequentially (Deborah et al.,
2002).

One of the slight disadvantages of multi-threading
computing is that the speed-up may result in some
conflicts between threads when attempting to share
caches or other hardware resources. Multi-threading
could also lower the response time of each single thread
in the process affecting time savings that are generated
by the multi-thread computing.

Zadeh et al. 4275

Figure 1. Multi-threading operational model.

PROBLEM FORMULATION

The intent of the economic dispatch is to allocate the
generator’s output while the total generation costs
minimized and all constraints satisfied. Generator cost
functions usually considered as quadratic polynomial
functions, so in this work the total cost of all generators in
the economic dispatch problem can be expressed as the
follows:

�
=

=
NG

i
iip

PFF
gi 1

)(min)(
1

2
�

=

++=
NG

i
iiiii PcPba

 (1)

The constraints can be listed as:

The total active power generation must be equal to the
sum of demand plus the network losses, which can be
expressed as:

 DL

NB

i
gi PPp +=�

=1
 (2)

It is said that each generator has a certain capacity that
should not be violated and has to be confined within the
specific up and down bounds as:

maxmin
gigigi ppp ≤≤ (3)

Line flows have to be monitored and retain within the
transmission line capacities to avoid any unseen
insecurity events. A set of generalized Z-Bus distribution
factors (GZBDF) (Brar et al., 2004) is thus used to impose
the line security in the problem as:

max

1

),(m

NG

i
gip PPimG ≤�

= (4)
4276 Int. J. Phys. Sci.

Loss formulation

Transmission fixed loss is normally used in power system
problems such as unit commitment, but it led an
inaccurate result as the power loss in transmission lines
is the function of active power injection into the network.
Further, in each set of optimal generation schedules, the
amount of loss is different. At this work, the most exact
loss formula has been used. It is based on �, � loss
coefficient, which can be derived as:

�� ��
= = = =

−+=
NB

i

NB

j

NB

i

NB

j
gjijiijdigjgiijL pQpppp

1 1 1 1

)(2 βαα

 ����
= == =

+−+
NB

i

NB

j
jiji

NB

i

NB

j
djijiijdi QQpQp

1 11 1

)2(αβα (5)

 ij
ji

Nij
ij VV

R
θα cos=

ij
ji

Nij
ij VV

R
θβ sin

−
=

Line distribution factors

The most accurate line distribution factors are derived
through a set of GZBDF factors. These factors enable
one to add the security line constrained into the economic
dispatch solution. These are the factors that behaving as
a function of active power injections into the buses which
can be expressed as Brar et al. (2004).

�
=

−=
Ng

i
GiQGipTm QimGPimGP

1

]),(),([
 m = 1, 2, NL (6)

Execution time breakdown statistics

Economic dispatch analysis has been traditionally solved
by a single processing machine used for its sequential
process. This serial computation can be broken down into
four sub-processes in order to examine which
computational processes have excessive demand of
getting parallelism. These are load-flow, loss-coefficient,
line-distribution-factor and barrier-optimization pro-
cesses. Table 1 shows the results for the serial economic
dispatch and detailed execution time that has been
apportioned into the five aforementioned processes. In
this case, a variety of test systems ranging from standard
IEEE 118, 300 bus up to practical utilities with 664, 4995
bus are employed to validate the performance
characteristics of the economic dispatch at serial and
multi-thread versions.

MULTI-THREAD ECONOMIC DISPATCH

Implementing the multi-threading computing pattern into

the economic dispatch process required an observation of
what processes are more potential for multi-thread
computing. However, these potential alternatives are
determined through the serial economic dispatch solution.
The key is to find a process which consumes more
computing powers in serial version. Therefore, the result
obtained for serial economic dispatch tends to ease these
decisions. Table 2 showed the execution time
contributions of each process in serial economic dispatch
in various test cases. In general, the results reveal the
major execution times spent in the calculations of load-
flow, loss-coefficient and barrier-optimization. As seen in
Table 2, in the case of the 118 bus system with a total
unit of 54, the load-flow by 18% and barrier-optimization
by 75% computing times mostly occupied the major time
of economic dispatch process, whereas in the case of the
300 bus system with 69 units, dominant execution times
were taken by three processes of load-flow with 13%,
loss-coefficient with 13% and barrier-optimization by 71%.
In addition, these processes are noticed in the case of the
practical large systems of 664 with 144 units and 4995
bus systems with 483 units. However, the major costly
processes are those of loss-coefficient with 30 and 51%
respectively and barrier-optimization processing time of
58 and 40% accordingly.

The proposed multi-thread economic dispatch is coded
using C++ programming with the INTEL C++ compiler in
Visual Studio IDE, INTEL (2009). A PC with an INTEL
Pentium Core Duo E2180, 2.00 GHz with 2.00 GB of
RAM has been used as the hardware platform.

Multi-thread load flow

Load-flow computation happens in every iteration
throughout the economic dispatch process. In other
words, whenever any generator’s output changes there
has always been an essential need of the fresher load-
flow solution in order to re-establish the present state of
the system in terms of voltage and angle across the grid.
This process has been earlier nominated as a potential
alternative process to bend multi-threading parallel
computing right into its calculations at all cases. However,
the computations in the full Newtown-Raphson load-flow
can be commonly summarized into four sub-procedures
as of the mismatch, constructing Jacobian matrix
elements, solving the linear equation and the update of
the variables. Among these common tasks, the most
challenging part of computation is in the solution of a set
of linear equations, which can be typically cast as:

BAX = (7)

It is noted that the solution to this equation plays an
important role in the load-flow entire performance. This
solution is depended on a massively matrix operation to

Zadeh et al. 4277

Table 1. Serial execution times in Milisecond.

Gen Iter LF sLoss DF sBO Total
54 4 17.81 5.29 2.00 76.20 101.4
69 5 41.86 42.20 6.13 225.2 315.7

144 4 48.12 168.6 23.63 327.4 568.5
483 6 754.8 9824 1017 7622 19223

Table 2. Percentage of execution times in economic dispatch.

Gen Iter LF sLoss DF sBO
54 4 18 5 2 75
69 5 13 13 2 71

144 4 8 30 4 58
483 6 4 51 5 40

invert the Jacobian matrix A where it has greatly taken
excessive processing power to end up the process.
However this calculation is the dominant total execution
time in load-flow process. In this case, SuperLU direct
linear solver can be used to yield a sharper solution for
the load flow process and facilitate inverting the Jacobian
matrix A in the less computational cost (Demmel et al.,
1999). As a result, it is recognized that SuperLU package
is one of the efficient software, which is freely available in
the public domain. Further, it has been universally
accepted for its powerful performance, especially in
solving large sparse matrix set of linear equations. This
software has three libraries which include: sequential
SuperLU, Multi-thread SuperLU and distributed SuperLU
at which every package is aimed in certain aspect of the
solution with predefined memory architectures. Multi-
thread SuperLU library is eventually used in our load flow
where it is designed to work on a shared memory
architecture.

Enforcement of multi-threading in load-flow
computations was previously sound demanding but there
are certain bottlenecks for a forceful multi-thread load-
flow process. First of all, Tables 1 and 2 show that albeit
load-flow has significant contribution time of 18% in 118
bus case as well as 13% in 300 bus systems but since
their quantities are 17.81 ms out of 101.4 ms and 41.85
ms out of 315.72 ms, which are basically considered as
the short-living processes compared the total execution
time require for serial economic dispatch thus they are
technically unwilling to become multi-threaded. It should
be noted that the multi-thread technique has been
designed to alleviate the process with massively high
computational cost. However, the key is that the time
spent for load flow process is relatively very small, and
even it becomes crucial when the dimension of the

system grows up. Additionally, it is noted that the quantity
of the time given in the Table 1 should be divided by the
number of its iterations, which eventually worsen the case
for seeking multi-threading opportunities in the load-flow
process. It is technically worthwhile if one can pick the
processes that are computationally costly, another way, it
is avoided applying the multi-threading at where it is
barely required.

Since a power system by nature is a sparse system at
where a few connections are only drawn among
generations in the far and the loads in an area. Therefore,
the number of non-zero elements of the Jacobian matrix
is always small. As Table 3 shows, the percentage of
non-zero elements has been drastically reducing while the
size of the system increased. Although in the case of a
large 4995 bus system, a small percentage of non-zero
elements made it very sparse so that the case is
unattractive for multi-threading to over come the process.
Generally speaking, in the systems with a set of linear
equation multi-threading approach is said to be extremely
precious whenever it involves with a matrix that has a
great number of non-zero elements in the matrix.

Thereby, the sequential load flow would be a better
alternative for an efficient economic dispatch where the
serial value seemed unnecessary to get multi-threaded.
However the complete proposed multi-thread economic
dispatch algorithm has been depicted in Figure 2, where
necessary parts for parallel computation have been
painted as the symbol in Figure 1. Figure 2 shows that
there are two most cumbersome processes in economic
dispatch which required parallel computation, although
the other process looked demanding at first glance but
they have appeared uncompetitive to other heavy pro-
cesses. In the subsequently, the procedure and results on

4278 Int. J. Phys. Sci.

Table 3. Sparsity and problem size for both full and decoupled Newton-Raphson power-flow methods.

No. of bus (N) No. of Gen No. of lines (M)
Full Jacobian matrix

Problem size Non-zero elements
2N×2N 4N+8M %

118 54 179 55696 1904 3.42
300 69 409 360000 4472 1.24
664 144 757 1763584 8712 0.49

4995 483 5217 9980010 61716 0.06

how the parallel programming helps the existing serial
economic dispatch will be assessed.

Multi-thread loss coefficient

Loss coefficients have to be obtained by Equation 5, and
this process took a number of summation loops in its
calculation. It is explicitly seen in the shape of equation in
the Equation 1. The process of making loss-coefficient
has been increasingly soliciting for better speed up.
Similarly, it was also discovered that one of the potential
processes that multi-thread computing can be advant-
ageous. Therefore, this process has been going through
the multi-threading computing pattern and results are
reflected in Table 4. It showed how multi-threading is
acting when a certain number of the threads is applied. In
case of the 118 bus system with the serial solution of 5.28
ms has been boosted to a faster solution of 1.29 ms when
a total of two threads handled the process concurrently.
Further acceleration obtained by using three and four
threads, which respectively reduced the execution time of
the process to 0.954 ms and 0.795 ms. The same story
goes for the other case studies which all then came up
with better performance once the number of used threads
increased. In order to examine how fast each additional
thread can speed up the loss-coefficient process.
Therefore, Table 4 has also provided the amount of
speed up received by multiple use of threads. For
instance, in the case of 54 units the speed up for using
two threads rather than one thread or serial version
marked by 4.09, and even it becomes faster by using
three and four threads at where the speed up climbed to
5.54 and 6.65, respectively. Identical improvements and
speed up can be achieved for other case studies over
their serial values, which have been given in Table 4.

Having said that the initial intent of multi-threading or in
general sense the parallel computing is to solve the
massively complex problems with a heavy computational
burden. Therefore, it likely has been designed to gain the
speed up in the process that employs a large and
complex system. Results emphasize that better speed up
are achieved with extra thread used.

�

Figure 2. Flow chart for multi-thread security constrained
economic dispatch.

Multi-thread barrier optimization

Solving the economic dispatch problem with a set of
linear and quadratic constraints required appropriate opti-
mization alternatives. Among the interior point optimization

Zadeh et al. 4279

Table 4. Comparative performance of multi-thread and serial loss calculation.

Gen
Execution time (ms) Speed-Up

1 TD 2 TD 3 TD 4 TD
Tread
Serial

2

Tread
Serial
3

Tread
Serial

4

54 1.43 0.31 0.31 0.30 4.58 4.60 4.73
69 5.3 1.29 0.95 0.80 4.10 5.54 6.65

144 42.2 9.59 6.33 5.22 4.40 6.66 8.08
483 168 37.9 25.9 19.3 4.46 6.49 8.72

Table 5. Comparative performance of multi-thread and serial barrier optimization.

Unit
Execution time (ms) Speed-Up

1 TD 2 TD 3 TD 4 TD
Tread
Serial

2

Tread
Serial
3

Tread
Serial

4

54 76 220 249 335 0.35 0.31 0.23
69 225 376 443 665 0.60 0.51 0.34

144 327 479 549 521 0.68 0.60 0.63
483 7622 5556 4776 4299 1.37 1.60 1.77

optimization methods, the barrier optimization technique
has been used to solve the economic dispatch problem.
Interior point barrier algorithm, an efficient quadratic
programming algorithm, is used to solve economic
dispatch problem. The barrier algorithm also caters for
any combination of polynomial functions such as
polynomial cost functions. Nonlinear characteristics of an
electrical power system such as generators limitations,
transmission losses and nonlinear cost functions are
considered in the economic dispatch formulation. More-
over, this process in economic dispatch has previously
qualified as an alternative process for multi-threading
technique to fork in.

As a result, Table 5 shows how multi-thread computing
technique is working on the process where a particular
number of concurrent threads utilized. Unlike the 4995
bus case with total 483 units, in all the test cases the
degrees of speed up are declining by the rising number of
threads used.

An ILOG CPLEX Barrier Optimizer used, which is
available as a callable C/C++ library, IBM ILOG CPLEX. It
tends to provide a solution for quadratic constrained
programs and second-order cone programming (SOCP)
problems. ILOG CPLEX barrier optimizer which is based
on a primal-dual, predictor-corrector method, is able to
deal with large-scale linear programs. In this work, a
multi-thread CPLEX used to achieve the promising
performance.

DISCUSSION

The multi-thread parallel computing is developed in

security constrained economic dispatch process. There
have been three sub-processes required the multi-thread
computation, which are the load-flow, loss-coefficient and
barrier-optimization.

The load-flow process has been dismissed for multi-
threading computations as of its quick solution and the
highly sparse Jacobian matrix that appears in the load
flow equations.

The loss-coefficient process has been multi-threaded
and an improved speed up attained by multi-thread
computing of the loss-coefficient process which is
promising for all the case studies. Table 6 demonstrates
the speed-up obtained in multi-thread economic dispatch
where only a loss-coefficient process has been multi-
threaded. The speed-up amounts can be yielded by
comparison of multi-threaded economic dispatch values,
using four threads, over its serial values. Therefore, it is
clearly showing that the performance of multi-thread
economic dispatch enhanced in all the test systems with a
rising degree of speed-up in all cases. Moreover, the
number of buses is a key word in the calculations of the
loss-coefficients because the volume of the computations
is tied with the number of buses, in other words, having a
huge number of repetitive loops in the formulation of
Equation 5 of the loss-coefficient which makes the
calculation for loss-coefficients quite hefty. Hence, the
results shown in Table 6 acknowledge that the higher
speed-up attained for the larger system with a bigger
number of buses they have.

The barrier-optimization process has also been going
through the multi-threading effort and the performance
results for the multi-thread economic dispatch over its
serial version have been depicted in Table 7. However, it

4280 Int. J. Phys. Sci.

Table 6. Comparative performance of attending multi-thread loss coefficient in economic dispatch.

Unit Iter sED mtED Speed-up
54 4 101.40 96.91 1.05
69 5 315.72 278.75 1.13

144 4 568.59 419.26 1.36
483 6 19223.22 11135.47 1.73

Table 7. Comparative performance of attending multi-thread barrier optimization in economic
dispatch.

Unit Iter sED mtED Speed-up
54 4 101.40 360.31 0.28
69 5 315.72 755.02 0.42

144 4 568.59 762.10 0.75
483 6 19223.22 15899.88 1.21

is noted that the results are with the situation that only the
barrier-optimization process has been multi-threaded.
Furthermore, results show that the multi-threading can
sometimes even prolong a process. It is happening if the
number of the optimization variables was few, in the other
hand, the number of units in the system becomes
determinative in such a way to gain better improvement
on the execution time when the multi-threading is applied.
Thereby, the system with 483 units has been boosted its
speed up over the serial version. It can be seen that in
such a huge system with a larger number of variables the
speed up can be growing by the number of the threads
used. However, the speed up of 1.20 is achieved in the
case with 483 units and a number of four concurrent
threads applied.

As a result, enforcing the multi-thread loss-coefficient in
the all cases plus the multi-thread barrier-optimization
where it needed. It can increase the speed-up for the final
multi-thread economic dispatch as shown in Table 8 at
which demonstrated an efficient speed-up in all the cases
occurred. Speed-up for multi-thread economic dispatch
has been growing up where a 1.05 speed-up is achieved
in 54 unit system, and the speed-up rate has been
climbed up to the 2.47 for the 483 unit system.

Conclusions

The idea of multi-thread computing technique has been
implemented on the security constrained economic
dispatch in order to exploit the powerful processing
capacity of multi-thread parallel computing for ace-lerating
the execution time of the solution. In this sense, serial
economic dispatch can be decomposed into four sub-
processes at which one can deftly observe what process

needs to be multi-threaded. The most potential processes
found to be those of load-flow, loss-coefficient and
barrier-optimization processes. The detail results of the
multi-thread economic dispatch have then unveiled that
the most advantageous process for multi-thread
computation is the loss-coefficient process along with the
barrier-optimization process. The multi-threading of the
loss-coefficient process has always improved the speed-
up of the process itself as well as infused the speed-up
for the whole economic dispatch, whereas the multi-
threaded barrier-optimization process can be effective
when the number of system units is large and the
processing time taken for the calculations in a single
iteration can jump beyond one second.

As the future direction to this research, the algorithm
can be modified in such a way that it can encompass
more practical constraints in economic dispatch. The
security assessment of economic dispatch has highly
been an enticing issue recently in power market and
system restructuring, where the system operator should
be borne, excessive financial strain to draw enough
security in the system. Therefore, the mechanism of
practical economic dispatch may become more
complicated and the beauty of parallel computing outfit
can effectively make the problem working in the place.
The authors are undergoing a process to verify how
parallel computing may untie the computational burdens
in practical contingency-based economic dispatch and
unit commitment.

ACKNOWLEDGMENT

This work is partially sponsored by the Malaysian
Government under FRGS grant Vot No. 78460.

Zadeh et al. 4281

Table 8. Multi-thread economic dispatch.

Unit Iter sED mtED Speed-up
54 4 101.40 96.91 1.05
69 5 315.72 278.75 1.13

144 4 568.59 419.26 1.36
483 6 19223.22 7792.30 2.47

Nomenclature: i, j, Suffix or prefix of busbar indices;
sED, serial economic dispatch; sLoss, serial loss-
coefficient; sBO, serial barrier optimization; mtED, serial
economic dispatch; mtLoss, multi-threaded loss-
coefficient; mtBarr, multi-threaded barrier optimization;
Iter, number of iterations; NB, NG, number of buses and
generators; M, number of branches; NNZ, number of non-
zero elements; PTm, active line flow; ,gip maxmin , gigi pp ,

active generation, minimum and maximum generations in
bus i;),(),,(imGimG Qp , active and reactive line

distribution factor.

REFERENCES

Brar YS, Dhillon JS, Kothari DP (2004). Fuzzy Logic Approach for

Generation Dispatch of Electric Power System with Conflicting
Objectives”, IEEE proceeding: pp. 123-130.

Brown B, Ilya S (2007). High-Scalability Parallelization of a Molecular
Modeling Application: Performance and Productivity Comparison
Between OpenMP and MPI Implementations’, Int. J. Parallel
Programming, 35(5): 441–458.

Chen S (2004). A study based on the factorization-tree approach for
parallel solution of power network equations’, Elect. Power Syst.
Res., 72: 253–260.

Chen SD, Chen JF (2001). A novel node ordering approach for parallel
load flow analysis’, Eur. Trans. Elect. Power, 11(4): 56-64.

Chowdhury BH, Rahman S (1990). “A review of recent advances in
economic dispatch” IEEE Trans. Power Syst., 5(4): 1248-1259.

Deborah TM, Frank B, David LH, Glenn H, David AK, Alan MJ, Michael
U (2002). Hyper-Threading Technology Architecture and
Microarchitecture’ INTEL Technol. J. Q1, 6(1).

Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH (1999). “A
supernodal approach to sparse partial pivoting”, SIAM Journal on
Matrix Analysis and Applications. 20(3): 720 -755.

Güvenç U (2010). Combined economic emission dispatch solution
using genetic algorithm based on similarity crossover. Sci. Res.
Essays, 5(17): 2451-2456.

Happ HH (1974). Optimal Power Dispatch. IEEE Trans. PAS-93(3):
820-830.

IEEE Committee Report (1992). Parallel processing in power systems

computation. IEEE Trans. Power Syst., 7(2): 629–38.
INTEL (2009). ® C++ Compiler User and Reference Guides, Document

number: 320916-001US.

Khalid MN, Abdul HAR (1991). Efficient economic dispatch algorithm
for thermal unit commitment. IEEE Proc. C, Generation, Trans.
Distribution, 138(3): 213-217.

Lee KY, Park YM, Ortiz JL (1984). Fuel cost minimization for both real-
and reactive power dispatches, Proc. Inst. Elect. Eng., Gen., Trans.
Distribution, 131(3): 85–93.

Nimje AA, Panigrahi CKr, Mohanty AK (2011). Enhanced power
transfer capability by using SSSC. J. Mech. Eng. Res., 3(2): 48-56.

OpenMP Architecture Review Board (2008). OpenMP Application
Program Interface Version 3.0’.http://www.openmp.org/mp

Tu F, Flueck AJ (2001). A Message-Passing Distributed-Memory
Newton-GMRES Parallel Power Flow Algorithm. IEEE Power Eng.
Soc. Meeting, 3(1): 178-185.

Wang X, Ziavras SG, Nwankpa C, Johnson J, Nagvajara P (2007).
Parallel solution of Newton’s power flow equations on configurable
chip. Int. J. Elect. Power Energy Syst., 29(5): 422-431.

Wood AJ, Wollenberg BF (1984). Power Generation, Operation and
Control. New York: Wiley.

Wu JW, Anjan B (1995). Parallel solution of large sparse matrix
equations and parallel power flow. IEEE Trans. Power Syst., 10(3):
1343- 1349.

