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When researchers use bending modes for the purpose of damage detection, a number of available
modes are adopted, each of which return a value indicating the severity of damage. Normally, there is a
variance in the sensitivity of different modes and the global stiffness change is derived by taking the
algebraic average, which is equivalent to the mean in statistical analysis terms. This study proposes
weighting method for damage detection algorithms based on the bending mode shapes for beam
structures. The results of the proposed reliability weighting method for two damage severity algorithms
are presented, that is, one based on the natural frequencies and the other based on the mode shape

vectors.
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INTRODUCTION

Inspection of structural components for damage is
essential in decision making for the maintenance of
structures. Dynamic testing has become an increasingly
popular and important tool in structural health monitoring
for identifying damage. Damage inspection of structures
is important in order to come up with a planned strategy
for repair and maintenance works. Vibration test has
been used for damage detection since the 1970s and
early 1980s in the offshore oil industry (Vandiver, 1975;
Begg et al., 1976; Coppolino and Rubin, 1980). The basic
idea behind this approach is that modal parameters that
is, natural frequency, mode shape and modal damping,
are functions of physical properties of structures namely
mass, damping and stiffness. Therefore, any change in
the physical properties will cause detectable changes in
the modal parameters. Considerable research has been
done on using the change in the natural frequencies for
damage detection (Salawu, 1997). The alternative to
using natural frequency as damage identification is by
using mode shape, with modal assurance criteria (MAC)
in determining the level of correlation between modes
from the control beam and modes from the damaged
beam (Doebling et al., 1998). MAC was first used by West
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(1984) to locate the structural damage without the use of
prior finite element model. Modal parameters of lower
modes were found to have satisfactory precision in
detecting the crack position and depth (Ruotolo and
Surace, 1997). The dynamic bending stiffness based on
modal parameters was used to detect damage position
and severity in RC (reinforced concrete) beams. The
fundamental frequency had higher sensitivity and the
third mode had less. The natural frequencies used to
detect the crack location and depth was found to be able
to predict the crack size with an error of 25% and detect
the location with error of 12% (Lee and Chung, 2000).
Natural frequencies and mode shapes were found to be
useful in identifying the existence of damage (Alampalli,
2000). The trend in the natural frequencies was found to
be sensitive to the corrosion deterioration state of RC
beams (Abdul Razak and Choi, 2001). Frequencies were
found to be affected by whether the loading configuration
was symmetrical or asymmetrical, with odd modes
affected more by the symmetrical configuration and the
even modes affected more by the asymmetrical
configuration. The MAC factor was found to be less
sensitive than frequencies, but it can give an indication of
the symmetrical or asymmetrical nature of damage
(Ndambi et al., 2002). Modal parameters were found to
underestimate the damage severity than the actual
damage size (Kim and Stunns, 2002). Modal parameters
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Figure 1. Beam element subjected to normal stress.

turned out as good indicators to assess damage in RC
structures as compared to experimental natural
frequencies, mode shapes and its derivatives (Johan,
2003). The natural frequencies were found to decrease to
a larger extent as the crack size increased, with the
change varying based on the mode number (Choubey et
al., 2006). The change in the natural frequencies is a
function of the crack length and its location and also
depends on the mode shapes (Choubey et al., 2006).
Jassim et al. (2010) developed an analytical model for
detecting cracks in cantilever beam using the modal
parameters, natural frequencies and mode shapes, and
found that both modal parameters were affected by the
crack regardless of position or size. Measured natural
frequencies were used for damage detection and it was
found that the first and third nodes are sufficient to get
information regarding the damage extent and magnitude
(Sathishkumar and Murthy, 2010). Lower modes were
found to be more sensitive to the change in the support
conditions (Fayyadh and Abdul Razak, 2010; Fayyadh et
al., 2011). A new damage detection method based on the
natural frequencies and the mode shape was proposed
and proved to be a good indicator that needs only the
natural frequencies from the datum data (Radzienski et
al., 2011). The slope of the first mode shape was used for
damage detection and showed good results with the only
concern being that an error in identifying the mode shape
can cause an error in the damage detection results (Zhua
et al.,, 2011). A new damage detection index based on
the combination between the mode shape vectors and
their curvature was developed and verified to have higher
sensitivity than existing algorithms (Fayyadh and Abdul
Razak, 2011). Fundamental mode shape and static
deflection were used for damage detection and found to
have good sensitivity (Cao et al., 2011).

Previous studies have shown that both frequency and
mode shape were used for damage detection, which
means that any proposed weighting method has to be
validated for both parameters. It was also observed that
the change in the modal parameter affected by the
presence of the damage varied based on the mode

number. Moreover, the modal parameters were found to
be affected by either the loading configuration was
symmetrical or asymmetrical. Odd modes were more
affected by the symmetrical configuration while the even
modes were more affected by the asymmetrical
configuration. It is therefore important to develop reliable
weighting method which considers the different
sensitivities of various modes and which is able to return
one stiffness deterioration value.

WEIGHTING METHODS

The norm researchers have for deriving the global stiffness change
is by taking the algebraic averaging, which is in the form of the
mean, in terms of statistical analysis. This averaging method will
always result in a constant weight for all the modes, which is equal
to (1/n), where ‘n’ is the total adopted modes.

For a beam element subject to bending stresses, symmetrical in
x-section about the z-axis, consider an infinitesimal volume element
of length dx and area dA as shown in Figure 1.

This element is subjected to a normal stress oy, as follows:

0x=M.y/I (1)

where M is the bending moment and / is the second moment of
inertia of the cross section.
The strain energy on this element ‘U is as follows:

U= S @)

=

where & is the normal strain. For linear elastic material, we have:
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where E is the elasticity modulus. Substituting, ox = M.y/l and
multiplying by the volume of the element, we have:
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wu-dxdAd = —2 dxdA (4)
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Hence, the strain energy for a slice of the beam, of width dx, is as
follows:



4818 Int. J. Phys. Sci.

du = | - dx dA (5)
R -

dU_EEI:-.ML_}"iA (8)

andsince [,.,. = L VoaTA

a2

ZEI]

al = dx (7)

External work ‘W’ done by forces on structure equals the internal

strain energy ‘U’ which means:

W=U=— «x ®)
% EI

Based on Equation 8, it is apparent that there is a direct relationship
between the bending stiffness El and the work W, and this implies
that any change in the stiffness of the structure leads to change in
the work.

For linear-elastic system deflection, § is a linear function of the
force F, as shown in Figure 2, and this gives the work W as follows:

EA

W =

(9)
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This means that the work equals the area under the curve of the
load against deflection relationship. This concept applies to modal
analysis in which the work equals the area under the curve of the
mode shapes. The proposed reliability weighting method is based
on the mode shapes of the bending modes for beam structures.
The normal trend of the bending mode shapes will be a sine wave
with number of peaks “n” corresponding to the number of the
modes “n”, that is, mode ‘1’ with “one” peak and mode ‘n’ with “n”
peaks. In order to make the beam move in accordance to the shape
of any specific mode, an external work needs to be done. The work
needed to move the beam in forming different modes will vary as a
function of the mode shape number or the sine wave peak number,
with higher number of wave peaks needing more work and vice
versa.

Based on the relationship between the work and the bending
stiffness as in Equation 8, it is suggested that the area under the
mode shape curve of each specific mode can be used as a
reliability weighting for that specific mode to the change in the
bending stiffness El. It is expected that the more the work needed
for formation of the mode shape, the higher the reliability weighting
that mode shape would have.

The area under the curves of the mode shapes will be calculated
for each mode as (A) where i is the mode number and the total
area (A is the summation of the areas of the adopted modes. The
Proposed Weighting (PW;) of each specific mode is given in
Equation 10, and the average index value of any adopted set of
modes is given in Equation 11. Figure 3 shows the area under the
curve for the first four bending modes for a case when four modes
are adopted.
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Figure 2. Work for linear elastic system.

where i is the mode number and DSA; is the damage severity
algorithm at mode 1.

Damage severity algorithms

The proposed reliability weighting method will be examined with two
damage severity algorithms in order to verify its viability. One of the
algorithms is based on the natural frequencies and the other on the
mode shapes.

Algorithm based on natural frequency

The natural frequency, f, for transverse free vibration of a simply
supported beam as suggested by Demeter (1973) and used by
Abdul Razak and Choi (2001) is given by:

where n is mode number, m is mass per unit length and L is span
length, is proportional to the square root of its flexural rigidity, El,
given as:

t" o[Fl (13)

Equation 13 can be rewritten as:

-

B
I £ Ay (14)

By introducing a constant, we have:

ty * =AM (15)
where

B £,
A=2f ol D (16)

Equation 16 can be rearranged as:

Z JtI6t = aNiE) (17)
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Figure 3. Area under the curve for each specific mode shape.

By substituting Equation 15 into Equation 17, the following
relationship is found:

2 G)ﬁi = (%) d(E) (18)

which implies that a change in flexural rigidity (El) doubles the
change in natural frequency. The stiffness change based on
frequency is defined as:

‘;L—ﬂ) 1009

Stiffness change based on frequency = 2. (1 —i=
LC
(19)

where fi; and fiq are the natural frequency at i" mode for control
and damaged beam, respectively.

Algorithm based on mode shape

The method used to ascertain configuration errors between
experimental mode shapes and eigenvectors predicted from the
finite element model is called modal assurance criterion (MAC)
(Ewins, 2000). It is a correlation between experimental mode
shapes and curve-fitted mode shapes with the correlation for the ith
element given by the following formula:

CRECE
(@i w1 T el)

where [§7] = [@2] 3] = (94151 [0*]. Marix [¢7*]
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contains the analytical model mode shapes, L:T.f(;'ﬂ‘r is the pseudo-

1

i is the curve-fitting matrix. The values

. r
inverse of the matrix and |

of the diagonal elements of the MAC matrix give the curve-fitting
results.

Utilizing the concept in the previous paragraph, the stiffness
deterioration indicator can be considered as the reduction in MAC
values for the damage cases based on the datum cases as in
Equation 21. The stiffness change based on MAC is defined as:

llL_ B
—-p-::-_q’l,n'q’i_d(
Tl -9 10 @aa)
21)

Stiffness change based en MAC= 1 —

and ¢ic and ¢jq are the mode shapes at i th mode for control and
damaged beam, respectively.

CASE STUDY

To demonstrate the significance and capability of the proposed
weighting method, a finite-element beamlike structure model was
generated to represent control and damaged cases. The span
length of the beam was 3250 mm with a cross-sectional area of 150
mm by 250 mm. The reliability level of the new method attempted to
detect different damage levels and locations. Since the dynamic
parameters are related to the stiffness of the structural element, the
damage is presented by reducing the modules of elasticity E
values. The stiffness reduction ratio (SRR) was adopted as notation
for the damage level and can be calculated as:

SRR = (1 - Ed/Ec ).100% (22)
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where Ed is the modulus of elasticity value for the damage cases
and Ec is the modulus of elasticity for the control case.

Four levels of stiffness were adopted that is, the control where E
is 200 GPa, and the SRR was 0%. The first damage level is the
smallest level where the SRR was 1% (E is 198 GPa), the second
damage level is the medium level where the SRR was 5% (E is 190
GPa) and the third damage level is the highest level where the SRR
was 12.5% (E is 175 GPa). The same damage levels were
examined for different damage locations; the first damage was
located at the mid-span and the second damage was located at the
quarter-span. A total of six cases for different SRR levels and
different damage locations were adopted. Table 1 shows the SRR
adopted in the present study. Figure 4 shows the beamlike
structure model for the control beam, mid-span damage and
quarter-span damage.

Utilizing a general-purpose finite-element package that is based
on the displacement method, a two-dimensional finite-element
model was constructed to represent the beamlike structure model.
The beam model was built by using a 4-node plane stress element.
Figure 5 shows a typical model for the beam constructed using FE
software. The physical and material properties of the beam were
Poisson’s ratio of 0.2, mass density of 7850 kg/m® and Young's
modulus of 200 GPa for the control case. These vary from one
damage case to another. The self-weight was computed by taking
gravitational acceleration as 9.81 m/s? in the —y direction.

Initially, eigen analyses were performed so that modal
parameters for the control beam model could be approximated.
Next, the damage was created on the beam model by changing the
values of the modules of elasticity first at the mid-span (Figure 4b)
and secondly at the quarter-span (Figure 4c). At each damaged
case, eigenvalue analysis was again performed to obtain the modal
parameters relevant to the damage case induced. Finally, the PW;
for each mode was calculated based on the area under the curve of
the mode shapes, and then the average value was calculated for
each algorithm. The PW; for each mode are as shown in Table 2.

RESULTS AND DISCUSSION

This part present the results from the analytical modelling
of the beamlike structure used in the present study. The
stiffness change indices based on frequency and MAC
were calculated for the first four modes of the control-
beam model and three different damaged levels as 1, 5
and 12.5% reduction in E value at the mid-span and
quarter-span of the beam model (Figure 4b and c).
Figures 6 and 7 show the comparison of the stiffness
change based on frequency values at different damage
levels for damage located at mid-span and quarter-span,
respectively.

The results show that the first and the third modes are
the most sensitive to detect damage severity when the
damage is located at mid-span, while modes two and
three are the most sensitive when the damage is located
at quarter-span. The higher values for all the modes were
at the highest damage level at SRR 12.5% for both
damage locations. The first mode shows the highest
value for damage located at mid-span, while mode two
has the highest value when the damage is located at the
quarter-span. Figures 8 and 9 show graphically the
comparison of stiffness change based on MAC at

different damage levels for damage located at mid-span
and quarter-span, respectively.

Stiffness change based on MAC values had lower
sensitivity than stiffness change based on frequency, with
the higher value being 0.05% for the third mode when the
SRR was 12.5% for damage located at quarter-span.
However, Modes 3 and 4 had higher sensitivity than the
first two modes.

The results prove that for the stiffness change based
on frequency, the first mode was the most sensitive when
the damage was located at mid-span and the second
mode was the most sensitive when it was located at
quarter-span. For the stiffness change based on MAC,
the third mode was the most sensitive regardless of the
damage location. It is difficult to judge the stiffness
deterioration quantitatively based on both modal
parameters algorithms, since there is a variance between
different modes. In order to come out with one stiffness
deterioration amount at each damage level and location
for both algorithms, the proposed weighting method
(PWM) is used and compared to the normal averaging
method (NAM) and the results are shown in Figures 10
and 11 for stiffness change based on frequency and
damage located at mid-span and quarter-span,
respectively.

The proposed weighting method (PWM) as compared
to the normal averaging method (NAM) for the stiffness
change based on MAC and the results are shown in
Figures 12 and 13 for damage located at mid-span and
quarter-span, respectively.

The results showed that the proposed weighting
method is more reliable than the normal averaging
method for both algorithms and at both damage
locations. The PWM return higher deterioration value
than the NAM, where for frequency algorithm the PWM
return values higher than the NAM by 4.9% for both
damage locations. For algorithm based on MAC the
PWM return values higher than the NAM by 4 and 6.6%
for damage located at mid-span and quarter-span,
respectively. This proves the assumption that PWM is
more reliable and closer to the actual deterioration
amount than the NAM.

The results show that the PWM returns one value at
each damage level for both algorithms and at both
damage locations, which makes it easier to decide the
stiffness deterioration amount. The proposed method
does not affect the sensitivity of the algorithms, but only
helps to average its values for the set of the adopted
modes in a more reliable and easily calculable method.
The results show that when the damage is located at
quarter-span, more stiffness deterioration occurs based
on both algorithms. The sensitivity of frequency is more
than MAC and increases corresponding to the increase in
the induced damage ratio. For 12.5% reduction in the E
value, there is a change of only about 0.5% in the natural
frequencies and 0.017% in the mode shapes, which
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Table 1. Damage cases adopted in present study.

Stiffness damage cases SRR (%) Damage location
Control C 0 N/A
SD1 1 Mid-Span
SD2 5 Mid-Span
SD3 12.5 Mid-Span
SD4 1 Quarter-Span
SD5 5 Quarter-Span
SDé 12.5 Quarter-Span

(a) Control beam model

b) Mid-span damage model

c¢) Quarter-span damage model

Figure 4. Beam-like structure model used in present study.
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Figure 5. Finite element modelling for the beam-like structure model.

Table 2. Area under the curve and reliability weighting for each mode.

Mode no. Area under the curve of the mode shape PWi

Mode 1 9.69 0.217
Mode 2 10.56 0.237
Mode 3 11.23 0.252
Mode 4 13.10 0.294

Total 44.58 square unit 1.000
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Figure 6. Stiffness change based on frequency for damage located at mid-span.
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Figure 7. Stiffness change based on frequency for damage located at quarter-span.
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Figure 8. Stiffness change based on MAC for damage located at mid-span.
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highlights  that the  existing  algorithms are

underestimating.

Conclusions

Based on the results obtained using the finite element
modelling of a beam like structure suffering deterioration
in stiffness by means of reducing the elasticity modulus
value, the following main conclusions are drawn:

1. Different modes have different sensitivity to the

deterioration level based on the damage location and the
modal parameter used.

2. Proposed weighting method proved to be more reliable
and closer to actual deterioration severity than the normal
averaging method.

3. Using the simple calculation of the proposed method
helped to return one value regarding the stiffness
deterioration amount based on the adopted set of modes.
4. The proposed method does not affect the sensitivity of
the damage algorithms based on the natural frequencies
or mode shapes, and only helps to apply simple reliability
calculations for each specific mode.



5. Damage at quarter-span was found to have higher
influence on the overall stiffness than damage at mid-
span.

6. The algorithm based on natural frequencies was found
to have higher sensitivity to the damage, regardless of its
amount and location, than the algorithm based on the
mode shapes.

7. Existing algorithms based on the modal parameters
are underestimating.
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