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In this paper, a numerical investigation of heat conduction problem for an irregular geometry using 
mesh-free local radial basis function-based differential quadrature (RBF-DQ) method has been 
performed. This method is the combination of differential quadrature approximation of derivatives and 
function approximation of radial basis function. The method can be used to directly approximate the 
derivatives of dependent variables on a scattered set of knots. In this study, knots were distributed 
irregularly in the solution domain using the Halton sequences. The method is applied to a two-
dimensional geometry consisting of two eccentric cylinders. The inner and outer walls are maintained 

at different temperatures 
h

T and 
c

T . The obtained results from numerical simulations are compared with 

those gained by finite volume (FV) method. Outcomes prove that current technique is in very good 
agreement with finite volume method and this is due to the fact that RBF-DQ method is an accurate and 
flexible method in solution of heat conduction problems. 
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INTRODUCTION  
        
Traditional numerical techniques such as finite difference, 
finite volume and finite element methods (FDM, FVM and 
FEM) are routinely used to solve complex problems. It is 
well-known that these methods are strongly dependent 
on mesh properties. However, in solution of partial 
differential equations (PDEs) by these methods for 
complex geometries, mesh generation takes up very 
much time and sometimes is the most expensive part of 
the simulation. For instance, grid generation procedure 
will be difficult while an irregular domain is placed inside 
of another irregular geometry.  Mesh-free methods (also 
called meshless methods) have generated considerable 
interest recently due to the need to overcome the high  
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cost of mesh generation associated with human labor 
(Nayroles et al., 1992; Belytschko et al., 1994; Liu et al., 
1995; Atluri and Zhu, 1998). 

The smoothed particle hydrodynamics (SPH) method 
(Liu and Liu 2003; Lucy, 1997), diffuse approximation 
method (DAM) (Nayroles et al., 1991), element free 
galerkin (EFG) method (Belytschko et al., 1994) and finite 
point method (FPM) (Onate et al., 1995) are all messless 
techniques which are widely used in different engineering 
problems. In the field of heat transfer, less works were 
focused on heat conductions. Liu (2005) simulated the 
radiation transfer problem by Meshless Local Petrov-
Galerkin (MLPG)  Wang et al. (2006) used a developed 
meshless numerical model to study the transient heat 
conduction in non-homogeneous functionally graded 
materials (FGM). Sladek et al. (2005, 2007) used MLPG 
to analyse transient heat conduction with continuously 
inhomogeneous and anisotropic FGM, too. Also  Wu  and 
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Figure 1. Supporting knots around a centered knot. 

 
 
 
Tao (2008) applied MLPG to compute steady state heat 
conduction problems of irregular complex domain in 2D 
domain.  

Recently, a new mesh-free method was proposed 
based on the so-called radial basis functions (RBF). 
Kansa (1990, 1980) introduced the direct collocation 
method using RBFs. It was found that RBFs were able to 
construct an interpolation scheme with favorable 
properties such as high efficiency, good quality and 
capability of dealing with scattered data, especially for 
higher dimension problems. The “truly” mesh-free nature 
of RBFs motivated researchers to use them to deal with 
partial differential equations. It should be noted that the 
Kansa’s RBF method is actually based on the function 
approximation. To approximate derivatives by using 
RBFs, Shu and his co-workers (Shu et al.,  2003; Ding et 
al., 2005; Shu et al., 2005) proposed the RBF-DQ 
method, which combines the differential quadrature (DQ) 
approximation (Bellman et al., 1972; Shu and Richards, 
1992, Shu and Wee, 2002; Tezer-Sezgin, 2004) of 
derivatives and function approximation of RBF. Previous 
applications showed that RBF-DQ is an efficient method 
to solve linear and nonlinear PDEs (Soleimani et al., 
2010; Bararnia et al., 2010). Many other analytical and 
numerical methods can be found in open literatures 
(Bayat et al., 2010, 2011a, b, c, d, e, Bayat and 
Abdollahzadeh 2011f; Ganji, 2006; Shahidi et al., 2011). 

Generally, the local RBF-DQ method is very flexible, 
simple in code writing and it can be easily applied to 
linear and nonlinear problems. In this method, the 
problem of ill-conditioned global matrix has been 

removed by replacement of global solvers by block 
partitioning schemes for large simulation problems as 
shown in Figure 1. 
 
 
RADIAL BASIS FUNCTIONS 
 

A radial basis function, denoted by ( )
2jx xϕ − , is a 

continuous spline which depends on the separation distances of a 

subset of scattered points
dx ∈ℜ , while d denotes the spatial 

dimension. The most commonly used RBFs are 
 
Multiquadrics (MQ): 
 

 ( ) 2 2
, 0,r r c cϕ = + >                                                       (1) 

 
Thin-plate splines (TPS):  
 

( ) ( )2 log ,r r rϕ =                                                                  (2) 

 
Gaussians:    
 

( )
2

, 0,
c r

r e cϕ −= >                                                           (3) 

 
Inverse multiquadrics:    
 

( )
2 2

1
, 0,r c

r c
ϕ = >

+
                                                   (4) 
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where 
2j

r x x= − . Among the aforementioned four RBFs, 

MQ is used extensively. For scattered points, the approximation of 

a function ( )f x can be written as a linear combination of N RBFs  

 

( ) ( ) ( )
2

1

,
N

j j

j

f x x x xλ ϕ ψ
=

≅ − +∑                                (5) 

 

where N  is the number of centers or knots 

1 2, ( , ,..., ),
d

x x x x x= d is the dimension of the problem, λ ’s 

are coefficients to be determined and ϕ  is the RBF. Equation (5) 

can be written without the additional polynomialψ . If 
d

q
Ψ denotes 

the space of d-variate polynomials of order not exceeding q , and 

letting the polynomials l 1,..., m
P P be the basis of  

d

q
Ψ in 

dℜ , 

then the polynomial ( )xψ , in Equation (5), is usually written in 

the following form 
 

( ) ( )
1

,
m

i ix P xψ ζ=∑                                                             (6) 

 

where ( ) ( )( )1 ! ! 1 !m q d d q= − + − . To determine the 

coefficients ( )1,..., N
λ λ  and ( )1,..., m

ζ ζ , extra m equations 

are required in addition to the N equations resulting from the 

collocating Equation (5) at the N knots. This is insured by the 

m conditions for Equation (5), that is 
 

( )
1

0 1,..., .
N

j i j

j

P x i mλ
=

= =∑                                               (7) 

 
 
Differential quadrature method (DQ) 

        
The DQ method is a numerical discretization technique for 
approximation of derivatives which was initiated from the idea of 
conventional integral quadrature. The essence of the DQ method is 
that the partial derivative of an unknown function with respect to an 
independent variable can be approximated by a linear weighted 
sum of functional values at all mesh points in that direction. 

Suppose that a function ( )f x  is sufficiently smooth. Then its mth 

order derivative with respect to x  at a point 
i

x  can be 

approximated by DQ as 
 

( ) ( ) ( )
1

, 1, 2,..., ,
N

m m

x i ij j

j

f x w f x i N
=

= =∑                      (8) 

 

where 
j

x  are  the  discrete  points  in  the  domain,  ( )j
f x  and 

 
 
 
 

( )m

ij
w are the function values at these points and the related 

weighting coefficients, respectively.  
 
 
Local MQ-DQ (LMQDQ method) method formulation  

       
Following the work of Shu et al. (2003) in the LMQDQ method, The 
MQ RBFs used as basis functions to determine the weighting 
coefficients in the DQ approximation of derivatives for a two-
dimensional problem. However, the method can be easily extended 
to three-dimensional problems. Suppose that the solution of a 
partial differential equation is continuous, which can be 
approximated by MQ RBFs, and only a constant is included in the 

polynomial term ( )xψ . Then, the function in the domain can be 

approximated by MQ RBFs as 
 

( ) ( ) ( )
2 2

2

1

1

, .
N

j j j j N

j

f x y x x y y cλ λ +

=

= − + − + +∑                 (9) 

 
To make the problem be well-posed, one more equation is required. 
From Equation (7), we have 
 

1 1,

0 .
N N

j i j

j j j i

λ λ λ
= = ≠

= ⇒ = −∑ ∑                                            (10) 

 
Substituting Equation (10) into Equation (9) gives 

 

( ) ( ) 1

1,

, , .
N

j j N

j j i

f x y g x yλ λ +
= ≠

= +∑                             (11) 

 
where 

 

( ) ( ) ( ) ( ) ( )
2 2 2 22 2

, .
j j j j i i i

g x y x x y y c x x y y c= − + − + − − + − +        (12) 

 

1N
λ + can be replaced by

i
λ  and Equation (11) can be written as 

 

( ) ( )
1,

, , .
N

j j i

j j i

f x y g x yλ λ
= ≠

= +∑                                 (13) 

 

( ),f x y in Equation (13) constitutes N-dimensional linear vector 

space 
NV with respect to the operation of addition and 

multiplication. From the concept of linear independence, the bases 
of a vector space can be considered as linearly independent subset 

that extends across the entire space. In the space 
NV one set of 

base vectors is ( ), 1,
i

g x y =  and 

( ), , 1,...,
j

g x y j N= but j i≠ given by Equation (12). 

From the property of a linear vector space, if all the base functions 
satisfy the linear Equation (8), so does any function in the space 

NV represented by Equation (13).  From  Equation  (13),  while  all 



 

 

 

 
 
 
 
the base functions are given, the function f (x, y) is still unknown 

since the coefficients
i

λ are unknown. However, when all the base 

functions satisfy Equation (8), we can guarantee that f (x, y) also 
satisfies Equation (8). In other words, we can guarantee that the 
solution of a partial differential equation approximated by the radial 
basis function satisfies Equation (8). Thus, when the weighting 
coefficients of DQ approximation are determined by all the base 
functions, they can be used to discretize the derivatives in a partial 
differential equation. That is the essence of the RBF-DQ method. 
Substituting all the base functions into Equation (8), we have 
 

( )

1

0 ,
N

m

ik

k

w
=

=∑                                                                             (14) 

 

( ) ( ) ( )
1

,
, , 1,2,..., ,  but ,

m N
j i i m

ik j k km
k

g x y
w g x y j N j i

x =

∂
= = ≠

∂
∑             (15) 

 
 
 

For the given i , equation system (14 to 15) has N unknowns with 

N equations. So, solving this equation system can obtain the 

weighting coefficients
( )m

ik
w . From Equation (12), one can easily 

obtain the first order derivative of ( ),
j

g x y as  

 

( )

( ) ( ) ( ) ( )
2 2 2 2 22

,
,

j i i j i

m

i i ij j j

g x y x x x x

x x x y y cx x y y c

∂ − −
= −

∂ − + − +− + − +

    (16) 

 
In the matrix form, the weighting coefficient matrix of the x-
derivative can then be determined by 
 

{ }[ ][ ] ,n T

x
G W G=                                                                 (17) 

 

where [ ]n TW is the transpose of the weighting coefficient 

matrix[ ]nW , and 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
[ ]

...

n n n

N

n n n

n N

n n n

N N N N

w w w

w w w
W

w w w

 
 
 

=  
 
 
 

M M O M
 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 2 2 1

1 1 2 2

1 1 1

, , ,
[ ] ,

, , ,

N N

N N N N N

g x y g x y g x y
G

g x y g x y g x y

 
 
 =
 
 
  

K

K

M M O

K

       (18) 
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( ) ( ) ( )

( ) ( ) ( )

0 0 0

1,1 1, 2 1,
[ ] .

,1 , 2 ,

x x x

x x x

n n n

x

n n n

g g g N
G

g N g N g N N

 
 
 

=  
 
  

K

K

M M O

K

 

 

With the known matrices [ ]G and[ ]
x

G , the weighting coefficient 

matrix of x-derivative [ ]nW  can be obtained by using a direct or 

iterative method such as LU decomposition or SOR. The weighting 
coefficient matrix of the y-derivative can be obtained in a similar 
manner. Using these weighting coefficients, we can discretize the 
spatial derivatives and transform the governing equations into a 
system of algebraic equations, which can be solved by iterative or 
direct method. 
 
 

SHAPE PARAMETER ( )c  IN LOCAL MQ-DQ METHOD 

        
As mentioned before, the MQ approximation of the function 
contains a shape parameter c that could be knot-dependent and 

must be determined by the user. Some related point of the shape 
parameter is described subsequently. 
 
 
Normalization of supporting region 
 
In the local MQ-DQ method, the shape parameter c has a strong 
influence on the accuracy of numerical results. The optimal value of 
c is affected mainly by the number of supporting knots and the size 
of the supporting region. In this method, the number of supporting 
knots is usually fixed for an application. When the knots are 
randomly generated, the scale of supporting region for each 
reference knot could be different, and the optimal shape parameter 
c for accurate numerical results may also be different. The difficulty 
of assigning different values of c at different knots can be removed 
by normalization of scale in the supporting region. The essence of 
this idea is to transform the local support to a unit square for the 
two dimensional case or a unit box for the three dimensional case. 
The coordinate transformation has the form 
 

, .
i i

x y
x y

D D
= =                                                             (19) 

 

where ( ),x y  represents the coordinates of supporting region in 

the physical space, ( ),x y denotes the coordinates in the unit 

square, 
i

D is the diameter of the minimal circle enclosing all knots 

in the supporting region for the knot i . The corresponding MQ test 
functions in the local support now become 
 

2 2

2
, 1,..., ,i i

i i

x y
x y i N

D D
cϕ

   
= − + − + =   

   
         (20) 
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Figure 2. Geometries and boundary conditions. 

 
 
 

where N  is the total number of the knots in the support. It can 

found that the shape parameter c is equivalent to
i

cD . The 

coordinate transformation also changes the formulation of the 
weighting coefficients in the local MQ-DQ approximation. For 
instance, using the differential chain rule, the first order partial 

derivative with respect to x can be written as 
 

( )
( )1

1

1 1

d d d 1 d 1
,

d d d d

xN N
x j

j j j

j ji i i

wf f x f
w f f

x x x D x D D= =

= = = =∑ ∑   (21) 

 

where 
( )1x

jw are the weighting coefficients computed in the unit 

square, 
( )1x

j iw D are the actual weighting coefficients in the 

physical domain. c is chosen as a constant. Its optimal value 

depends on the number of supporting knots. In our application, c is 

chosen as a constant, and is taken as 0.12, and the number of 
supporting knots is taken as 16 based on the previous work of Ding 
et al. (2005).   
   
 
MATHEMATICAL MODELING AND NUMERICAL PROCEDURE 
 
Considered geometry of the problem with related boundary 
condition is depicted in Figure 2. 

Dotted lines in Figure 2 were used to calculate the temperature 
distribution for comparison with FV solution. The dimensionless 
form of the governing equation can be written as  

2 2

2 2
,

T T T

t X Y
α
 ∂ ∂ ∂

= + 
∂ ∂ ∂ 

                                                   (22) 

 
The steady-state results are obtained from unsteady conduction 

equation, Equation (22). Where T  denotes the dimensionless 

temperature, X and Y  are the dimensionless lengths and 

p
C kα ρ=  is the thermal diffusivity of the material.  

Discritizing of space derivation for Equation (22) using RBF-DQ is 
gained as follow: 

 

1
2 2

, ,

1 1

i in nn n
x k y ki i

i k i i k i

k k

T T
w T w T

t
α

+

= =

 −
= − 

∆  
∑ ∑                      (23) 

 

where
i

T represents the function value at knot i, 
k

i
T  represents the 

function value at the kth supporting knot for knot i. 
2

,

x

i k
w  and 

2

,

y

i k
w   

represent the computed weighting coefficients in the DQ 
approximation for the second order derivatives in the x and y 
direction, respectively.  

 
 
RESULTS AND DISCUSSION  
     
Unlike mesh generation in conventional FD, FE or FV 
methods, there is no pre-requirement  for  the  distribution
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                           (a)                                                                      (b) 
 

 
 
Figure 3. (a) Finite volume grids and (b) Irregular nodes for RBF-DQ method solution. 

 
 
 
of points in the present method. Point generation in the 
present method is consequently easier in complex 
domains as compared with mesh-based methods. There 
are many ways to generate the points for practical 
problems. For example, for applications in the regular 
domain, where the solution is sufficiently smooth, the 
points in the domain can be generated in the same 
manner as the regular grid in conventional finite-
difference schemes. The boundary points can simply be 
the intersections of the grid with boundary, irrespective of 
its shape. For problems with irregular domain, we can get 
adequate nodes in the domain either by random point 
generation or by using algebraic function. The main 
difficulty for point generation algorithms lies in deciding 
whether a generated point is within the domain or outside 
it. Furthermore, for many boundary-value applications, 
the solution may need different resolutions for different 
regions; high resolution being typically required for 
regions near boundaries. Thus, when we use either 
mesh-based or point-based methods, the density of mesh 
or point distribution should reflect that need. In such 
circumstances, the distribution of the nodes or points in 
computational domain must be generated either 
adaptively or by using known information about the 
specific physical problem. Both of them can be 
implemented easily in the present method as we can 
freely add or delete nodes instead of re-meshing. Another 
advantage of this method is that user can explicitly 
determine the grid spacing in the normal direction of the 
boundary. In general, there are three grid generation 
algorithms that can be selected according to the practical  

applications (Ding et al., 2004) which are: 
 
1. The grid generation algorithm of conventional finite-
difference schemes if the geometry of the domain is very 
simple, such as rectangles or circles. 
2. Using the random point generation algorithm, if the 
geometry of the domain is complex and only concerned 
with Dirichlet boundary condition. 
3. Using a fast hyperbolic grid or algebraic formulation to 
produce several layers of locally orthogonal grids near 
the boundary, and using the random point generation 
algorithm to generate other nodes in the rest of the 
computational domain if the geometry of the domain is 
complex and Neumann boundary conditions are involved. 
 

In the present study, the second algorithm is applied for 
the problem. All numerical results are obtained for 

2
8 .4 5( / )e m sα = − and compared with the FV solution. 

Finite volume grids and RBF-DQ nodes used for current 
problems are illustrated in Figure 3.  

Structured grids and irregular nodes were used for FV 
and RBF-DQ, respectively. In the current investigation, 
knots were distributed in the domain using the Halton 
sequences (Fasshauer, 2007). In the present code, we 
have used the all-pair search approach (Liu and Lui, 
2003) for identifying the nearest supporting knots.  

The increase of knots’ number has been stopped since 
an appropriate accuracy obtained. We selected 841 knots 
totally, with 51 and 107 knots on the internal and external 
boundaries, respectively. The temperature distribution by 
RBF-DQ and FV is obtained and illustrated for steady
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                                     (a)                                                                  (b) 

 
 

 
Figure 4. Temperature distribution for Case (a): FV solution (b): RBF-DQ method solution. 

 
 
 

 
 
Figure 5. Temperature variations for Case (a) along the dashed line. 

 
 
 
state in Figure 4. 

In order to compare the results in details, temperature 
variation was calculated along the dashed line and is 
shown in Figure 5. Outomes gained by RBF-DQ is in 
excellent agreement with FVsolution. 

Conclusions 
       
Two dimensional heat conduction equations for regular 
and irregular geometries applicable in engineering is 
analyzed numerically by mesh-free Local RBF-DQ method. 



 

 

 

 
 
 
 
Results are compared with solutions achieved by a FE 
code. Comparison of the present outcomes with FEM 
demonstrates that the Local RBF-DQ method is an 
attractive approach in terms of accuracy, capability and 
flexibility in programming for heat transfer problems, even 
for complex irregular boundaries.  
 
 
Nomenclature 
  
Shape parameter c 

Specific Heat p
C

 
Thermal conductivity k 
Dimensionless time t                 
Dimensionless temperature, (K) T 

Weighting Coefficient Matrix  
nW  

Normalized coordiantes x ,
y

 
Dimensionless Cartesian coordinates X,Y  
  
Greek symbols  

Thermal diffusivity, (
2 1.m s−

) α  

Density of material ρ  

Time step t∆  
  
Subscripts  
Cold c  
Hot                                          h 
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