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The ground loss problem occurs when a cylindrical tunnel is constructed in a soil with the radius of the 
tunnel being somewhat smaller than the radius of the cavity. The method used in this paper is 
Muskhelishvilli’s complex variable method considering conformal mapping of the elastic region onto a 
circular ring. The problem of an elastic half plane with a circular cavity was investigated, regarding the 
case that along the boundary of the cavity, the surface tractions were prescribed. The computer 
program (ground loss) was used. The program worked interactively, on the basis of values of Poisson's 
ratio and the ratio of the radius of the cavity to its depth (r/h). It was investigated whether certain 
problems of stresses and deformations caused by deformation of a tunnel in an elastic half plane could 
be solved by the complex variable method. For this purpose, two elementary boundary value problems 
were considered in detail. These include the problem of a half plane with a circular cavity loaded by a 
uniform radial stress, and the problem in which a uniform radial displacement is imposed on the cavity 
boundary (this is usually called the ground loss problem). It was concluded that the displacement of the 
bottom of the tunnel was always smaller than the value, uo (the displacement of the cavity). For large 
values of r/h, the displacement may even be negative, that is, downward. The displacement of the 
bottom was always equal to the average displacement of the tunnel plus a constant value Mo which is 
the imposed radial displacement. 
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INTRODUCTION  
 
Certain problems of stresses and deformations caused 
by deformation of a tunnel in an elastic half plane can be 
solved by the complex variable method, as described by 
Muskhelishvili (1953) and developed by Verruijt (2003). 
The geometry of the problem is that of a half plane with a 
circular cavity as shown in Figure 1. The boundary 
conditions are, that the upper boundary of the half plane 
is free of stress, and that the boundary of the cavity 
undergoes a certain prescribed displacement, for 
instance a uniform radial displacement (the ground loss 
problem) or an ovalisation. 

It should be noted that in the classical treatises of 
Muskhelishvili (1953) and Sokolnikoff (1956) on the 
complex variable method in elasticity, the problems 
studied here are briefly mentioned, but it is stated that 
"difficulties" arise  in  the  solution  of these problems, and  
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Verruijt (2003) suggested using another method of 
solution, such as the method using bipolar coordinates.  

In this paper, an elementary problem will be considered 
in detail. This is  the problem of a half plane with a 
circular cavity loaded by a uniform radial stress, and the 
problem in which a uniform radial displacement is 
imposed on the cavity boundary (this is usually called the 
ground loss problem). It is also planned to consider 
Mindlin's problem of a circular cavity in an elastic half 
plane loaded by gravity. 
 
 
Basic equations 
 
In this section the basic equations of a plane strain elasticity theory 
were presented, using the complex variable approach 
(Muskhelishvili, 1953). (Figure 1) 
 
 
Plane strain elasticity  
 

Consider  a  homogeneous  linear elastic material, deforming under  
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Cavity 

 
 
Figure 1. Half plane with circular cavity. 

 
 
 
plane strain conditions. In the absence of body forces, the stresses 
can be expressed in terms of the displacements ux and uy by 
Hook's law 
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Airy's function 
 

There must exist a single-valued function B(x, y) such that: 
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Similarly, it follows from Equation 2 that there must exist a single-
valued function A(x, y) such that: 
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Because σxy = σyx, it follows that: 
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This means that there must exist a single-valued function U such 
that: 
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The stresses can be expressed in the function U, Airy's stress 
function, by the relations: 
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In the next section, a general form of the solution will be derived in 
terms of complex functions. 
 
 
The Goursat solution 
 
In order to solve Equation 7, we will write: 
 

∇ 
2
U = P                                                                                        (8) 

 
Because U is biharmonic, the function P must be harmonic; 
 

∇ 2
 P = 0                                                                                        (9) 

 
The general solution of Equation 9 in terms of an analytic function 
is: 
 
P = Re {f (z)}                                                                                 (10) 
 
where f  is an analytic function of the complex variable z = x + iy. 
We will write: 
 
Q = Im {f (z)},                                                                                (11) 
 
so that: 
 
f (z) = P + iQ                                                                                 (12) 



 
 
 
 
because f (z) is analytic, it follows that the functions P and Q satisfy 
the Cauchy-Riemann conditions:  
 

.,
x

Q

y

P

y

Q

x

P

∂
∂

=
∂
∂

∂
∂

=
∂
∂

                                                 (13) (13) 

 

A function φ(z) is introduced as the integral of f (z), apart from a 
factor 4, so that: 
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The function φ(z) is also an analytic function of z. If we write: 
 

φ(z) = p + iq                                                                                  (15) (15) 
 
it follows that: 
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Thus, using the Cauchy-Riemann conditions for p and q. 
 

Q
y

q

y

p
P

y

q

x

p
4

1

4

1 , −=
∂
∂

−=
∂
∂

=
∂
∂

=
∂
∂

                  (17)  (17) 

 
We now consider the function: 
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taking the Laplacian of this expression gives: 
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Because p and q are the real and imaginary parts of an analytic 
function, their Laplacian is zero. Thus, using Equation 17 becomes: 
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Finally using Equation 8, it follows that the Laplacion F is zero 
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This means that we may write: 
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where x(z) is another analytic function of z. The imaginary part of 
x(z) will be denoted by G, so that: 
 
x(z) = F + iG.                                                                                (23) (23) 
 
From Equations 18 and 22, it follows that: 
 

,)()()()(2 zxzxzzzzU +++= φφ                                    (24) 

 (24) 
or 

Fattah et al.        2001 
 
 
 

)}.()(Re{ zxzzU += φ                                                         (25) 

 
This is the general solution of the biharmonic equation, first given 
by Goursat. In the next section, the stresses and the displacements 

will be expressed into the two functions φ(z) and x(z). 
 
 
Stresses 
 

The stresses are expressed in the second derivatives of Airy's 
function U. It follows that by using the expressions for the stresses 
in terms of Airy's function, the following equations can be derived 
(Verruijt, 2003): 
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These are the equations of Kolosov-Muskhelishvili (Verruijt, 2003). 
 
 
Displacements 
 
In order to express the displacement components into the complex 

functions φ  andψ, we will start with the basic equations expressing 
the stresses into the displacements. 

Whenever necessary rigid body displacements are added to the 
displacement field, we may write: 
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In order to determine the solution of these equations, boundary 
conditions have to be applied. 
 
 
Solution of boundary value problems 
  
In this section, the general technique for the solution of boundary 
value problems for simply connected regions, in particular regions 
that can be mapped conformally onto a circle (such as a half plane) 
are discussed. In later section the theory will be applied to multiple 
connected regions, with circular boundaries (a ring) and to 
problems for the half plane with a circular hole. Many of the 
solutions have been presented also by Muskhelishvili (1953) and 
Sokolnikoff (1956). 
 
 
Conformal mapping onto the unit circle 
 

Suppose that we wish to solve a problem for an elastic body inside 
the region R in the complex z-plane. Let there be a conformal 

transformation of R onto the unit circle γ in the ζ-plane, denoted by: 
 

z = ω(ζ).                                                                                        (30) 
 
we now write: 
 

φ(z) = φ(ω(ζ)) = φ* (ζ)                                                                    (31) 
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Figure 2. Conformal transformation. 
 
 
 
ψ(z) = ψ(ω(ζ)) = ψ* (ζ)                                                                  (32) (32) 
 

where the symbol *, indicates that the form of the function φ* is 

different from that of the function φ. The derivative of φ is : 
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The application of surface traction and displacement boundary 
conditions is found in Verruijt (2003). 
 
 
Elastic half plane with circular cavity 
 

In this section we will study the problem of an elastic half plane with 
a circular cavity as shown in Figure 2. The upper boundary of the 
half plane is assumed to be free of stress, and loading takes place 
along the boundary of the circular cavity, in the form of a given stress 
distribution or a given displacement distribution. 
It is assumed that the region in the z-plane can be mapped 

conformally onto a ring in the ζ-plane, bounded by the circles |ζ|=1 

and |ζ| =α, where α <1.  
 
 
The Inner Boundary 

 
The conformal transformation is 
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where a is a certain length. The origin in the z-plane is mapped 

onto ζ= –1, and the point at infinity in the z-plane is mapped onto ζ 
= 1, as shown in Figure 2. Differentiation of equation 34 with 

respect to ζ gives: 
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It will be shown that concentric circles in the ζ-plane are mapped on 
circles in the z-plane, and the relation between the depth of the 
circle and its radius with the parameter a, which is the radius of the 

circle in the ζ-plane, will be derived. 

For a circle with radius α in the ζ-plane we have: 
 

ζ = α exp(iθ)                                                                                (36) 
 

where α is a constant, and θ is a variable. From Equation 34, this 
will give us: 
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It is now postulated that these formulas represent a circle, at depth 
h, having a radius r.  This means that it is assumed that there exist 
constants h and r such that: 
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this means that: 
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It follows from Equation 37 that: 
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and from Equation 38, it follows that: 
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Substitution of these two, results into Equation 41 which gives 
some algebraic manipulations:  
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which is indeed a constant, and which also proves that r is a 
constant. With equation 39, the corresponding value of r is found to 
be: 
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If the covering depth of the circular cavity in the z-plane is denoted 
by d, (see Figure 2), it follows that: 
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The ratio of depth and cover is: 
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If α → 0, the radius of the circular cavity will be practically zero, this 

indicates a very deep tunnel, or a very large covering depth. If α → 
1, the covering depth will be very small. For every value of h/d the 
corresponding value of a can be determined from Equation 47. 
 
 
A displacement boundary condition 

 
A simple boundary condition along the inner boundary in the z-
plane is that the normal stress, or the radial displacement, is 
constant along this boundary. In terms of the displacement this 
means: 
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It may be noted that for α → 1, this reduces to ux + iuy = iu0 exp (iθ). 
In the complex variable method, the boundary values have to be 
expanded into Fourier series. This is given by Verruijt (2003) and 
Raheem (2006). 
 
 
A stress boundary condition 

 
A simple boundary condition along the cavity boundary in which the  
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stresses are prescribed, is the case of a uniform radial stress t. 
Then: 
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Along the boundary of the cavity, we may write z + ih = r exp(iβ), 

where r is the constant radius of the circle and β is a variable angle. 

Along that path, ds = rdβ, so that: 
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where it has been assumed that the initial point sq corresponds to β 
= 0. 
 

Expressed into the value of ζ = ασ along the boundary in the ζ-
plane, Equation 52  becomes: 
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This is the form of the boundary stress function that will be 
considered later. 
 
 
A boundary value problem 
 
In this section, the problem of an elastic half plane with a circular 
cavity was investigated, regarding the case that along the boundary 
of the cavity, the surface tractions were prescribed. 

The complex stress functions φ(ζ) and ψ(ζ) were analyzed 

throughout the ring-shaped region in the ζ-plane. It was assumed 
that they were also single-valued, so that logarithmic singularities 
could be ignored. This means that they can be represented by the 
Laurent series expansions: 
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These series expansions will converge up to the boundaries |ζ| = 1 

and |ζ| = α. The coefficients ak, bk, ck and dk must be determined 
from the boundary conditions. 
 
 
Validation of the solution 

 
In order to validate the solution, it has to be implemented in a 
computer program (Ground Loss) developed by (Verruijt, 2002). 

The program works interactively, on the basis of values of 
Poisson's ratio v and the ratio of the radius of the cavity to its depth 
(r/h), which must be entered by the user. 

The program first calculates the coefficients of the series 
expansions  (taking  a  maximum  of  m  terms), and then calculates  
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stresses and displacements along the boundaries. This enables 
one to verify whether the boundary conditions are indeed satisfied. 
In the program, the value of m was taken as 10000. This is usually 
too large for sufficient convergence. 

A special problem is the determination of the constant a0, which 
is not explicitly determined by the two boundary conditions. It was 
found that when an arbitrary value of a0 was used as a starting 
value, all the coefficients pk and qk became equal (and unequal to 
zero) for large values of k. This suggestion is to determine the 
precise value of a0 such that these coefficients tend towards zero 

for k →∞. This appears to work well. The actual procedure used is 
to first assume a0 = 0, calculate the last coefficient qnn, repeat the 
calculations with a0 = 1, again calculate the last coefficient qnn, and 
then determine the value of a0 by linear interpolation, such that qnn= 
0. Because of the linearity of the system, it should work well as 
indeed it appears to do. 

 
 
NUMERICAL RESULTS 
 
Numerical results of all the displacements and stresses 
were presented for values of x and y to be entered. The 
value of y must be negative because the half plane 
considered is   y < 0.  
 
 
Validations 
 
The first validation of the program was the boundary 
condition at the cavity boundary. The displacements 
there were calculated, and it was found that the radial 
displacement was indeed -1, and that the tangential 
displacement was indeed 0 (both up to six significant 
numbers). The same was true for the surface tractions 
along the horizontal upper boundary. It was found that 

along this boundary σyy = σyx = 0, the lateral stress σxx 
was not found to be zero, but of course this was not 
necessary. 

By considering points in the complex ζ-plane very close 

to ζ=1, it is possible to calculate the stresses near infinity. 
These appear to be zero, as they should be. 

In the same way, by taking ζ = 1 + ε, with \ε\ <<  1, it is 
possible to calculate the displacements near infinity. It 
was found that the horizontal displacement was zero, but 
that the vertical displacement unequal to zero. Although 
this may be somewhat unexpected, it seems to be very 
well possible because of the conditions that the 
displacements at the cavity boundary are rigidly imposed 
and the stresses at infinity have been assumed to vanish. 
It has been verified that this displacement at infinity is 
uniform, by checking the displacements at a great 

number of points, for various complex values of ε. It 
appears that a contraction of the cavity (a positive ground 
loss in tunnel engineering) leads to an upward 
displacement at infinity. Of course a rigid body 
displacement of the entire half plane, including the cavity, 
can take place without inducing any stresses. Thus the 
displacement at infinity can be made equal to zero by 
subtracting a constant from all displacements. This 
means that the  cavity  itself  will  also  undergo  this  rigid 

 
 
 
 
body displacement. It can be concluded that a contracting 
cavity will undergo a downward displacement, with 
respect to the points at infinity. 

The program Ground Loss also calculates the stresses 
along the cavity boundary. It appears that the radial 
stresses are not uniformly distributed, as they are in an 
infinite medium, or if r/h → 0, but that the radial stress is 
larger than average near the bottom, and smaller than 
average near the top of the tunnel. This does not mean 
that there is a resulting force, however, this is also 
determined by the shear stresses. Actually, the validating 
part of the program Ground Loss also calculates the 
resulting force of the surface tractions along the cavity 
boundary, by numerical integration. This resulting force is 
indeed found to be zero. 

An interesting quantity is the total volume of the 
settlement trough. This can be calculated by integrating 
the vertical displacements along the surface: 
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where the displacements should be determined along the 
upper boundary y = 0.  

This integral can be transformed into an integral in the 

ζ-plane, along the unit circle, taking into account the 

scale factor |ω'(ζ)|. In this case, this factor appears to be: 
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thus the integral can be evaluated as: 
 

∫+
−

=∆
π

θυ
α
α 2

02

2

1

1
dhV                                            (58) 

 
The result may be compared with the total ground loss at 
the circumference of the cavity,  
 

200
1

42
α

αππ
+

==∆ hruV                                        (59) 

 
For smaller values of Poisson's ratio, it appears that the 
total volume below the settlement trough is larger than 
the total ground loss. This property is also predicted by 
the approximate method of Sagaseta (1987), which was 
generalized by Verruijt and Booker (1996). This 
approximate method gives: 
 

∆V = 2(1-v) ∆V0                                                        (60) 
 
The calculations using the program Ground Loss does 

not confirm this result. Actually the ratio ∆V/∆V0 appears 
to be smaller than 2(1 – υ) in the exact solution. It is only 
for  very  small tunnels that the results of the approximate  
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Figure 3. Uniform radial displacement of cavity, in elastic half plane, complex variable 

solution, multiplication factor = 0.1, ν = 0.5. 

 
 
 

 
 
Figure 4. Uniform radial displacement of cavity boundary in elastic half plane, complex 

variable solution, multiplication factor = 0.1, ν = 0.0. 

 
 
 
solution and the exact solution are practically identical, 
for all values of Poisson's ratio. 
 
 
Applications 
 
The deformations of the mesh are shown in Figures 3 
and 4. These two figures show the vertical displacement 
of the tunnel as a whole. They also show that the 
displacement of the surface increases when ν  

decreases from 0.5 to 0.0. 
Figure 5 shows the average vertical displacement of 

the tunnel as a whole vc, as a function of v and r/h (r is 
the radius of the cavity, h is a depth of cavity  center line). 

The displacements are normalized by dividing each 
displacement by the displacement of cavity, uo. It appears 
that for small values of r/h, the displacement of the tunnel 
is practically zero. This case corresponds to the case of a 
tunnel in an infinite medium, in which there is indeed no 
average displacement. For larger values of r/h (or in other 
words, tunnels closer to the soil surface), there is a 
marked vertical displacement of the tunnel. Its value is 
negative, indicating a downward displacement. For 
certain combinations of v and r/h, the displacement may 
even be larger than twice the imposed radial 
displacement (Figure 3) 

Figure 6 shows the vertical displacement of the bottom 
of  the tunnel vb. This displacement is usually upward, but  
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Figure 5. Vertical displacement of tunnel as predicted by the complex variable solution. 

 
 
 

 
 
Figure 6. Vertical displacement of bottom of the tunnel as predicted by the 
complex variable solution. 
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Figure 7. Vertical displacement of top of the tunnel as predicted by the complex 
variable solution. 

 
 
 

 
 
Figure 8. Surface settlement as predicted by the complex variable solution. 

 
 
 
because of the average downward displacement of the 
tunnel, the displacement of the bottom is always smaller 
than the value u0 (the displacement of the cavity). For 
large values of r/h, the displacement may even be 
negative, that is, downward. It may be noted that the 
displacement of the bottom is equal to the average 
displacement of the tunnel plus the constant value M0; the 
imposed radial displacement. 

Figure 7 shows the vertical displacement of the top of 
the tunnel vt. This displacement is equal to the average 
displacement of the tunnel, shown in Figure 5 minus the 
constant value u0. This is indicated by the fact that 
Figures 5 and 7 differ only in the vertical scale. 

Figure 8 shows the actual settlement trough, for r/h = 
0.5 and v = 0. The dotted line shows the shape of the 
settlement  trough  obtained  from  Sagaseta's   simplified  
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Figure 9. Vertical displacement of cavity boundary uy/w. 

 
 
 

 
 
Figure 10. Upper boundary vertical settlement uy/w. 

 
 
 
method (Sagaseta, 1987; Verruijt and Booker, 1996), 
using a scale factor to let the maximum displacements 
coincide. (Figures 4 and 5) 

Another application is analyzed using the following 
parameters: 

 
u→0.3 
r/h→0.5 
 
where:  r/h = radius of circle over depth of center of circle  
w = radial displacement of cavity, G = shear modulus of 
material. 

The results are shown in Figures 9 to 13. 
In Figure 9, the normalized vertical displacement uy/w 

was plotted along the cavity boundary. It could be noticed 
that the vertical displacement vectors of the tunnel's 
crown was several times larger than those at its bottom. 
There were points at tunnels bottom at which no 
displacement took place (Figures 6 and 7).  

In Figure 10, the vertical settlement uy/w along the 
upper boundary at the problem is drawn. It can be seen 
that the settlement trough extends to a distance about 
twice the diameter (4r). 

In Figure 11, the horizontal displacement ux/w along the 
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Figure 11. Cavity boundary horizontal displacement  ux/w.  

 
 
 

 
 
Figure 12. Upper boundary horizontal displacement ux/w. 

 
 
 
cavity boundary is drawn. It can be seen that the 
horizontal displacement is large along the side walls 
while a small displacement takes place at the tunnel's 
crown and invert. 

Figure 12 shows the variation of horizontal 
displacement   ux/w   along   the  upper  boundary  of  the 

problem. It can be noticed that above the center of the 
tunnel, no horizontal movement occurs, while at left and 
right sides, opposed horizontal displacements can be 
observed. A uniform distribution of displacement takes 
place and symmetry about the center line of the tunnel is 
noticed. 
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Figure 13. Cavity boundary radial normal stress σr.h/w.G. 

 
 
 
In Figure 13, the normalized radial normal stress 

Gwhr ./σ  is drawn along the cavity boundary. It can be 

seen that the distribution of radial normal stress vectors 
are distributed uniformly along the boundary and 
approximately the same values of the radial normal 
stress are obtained at all points at the boundary(Figures 
8 to 14). 
 
 
Comparison with the boundary element method 
 
The boundary element method has been applied to a 
wide variety of problems in stress analysis, including 
plasticity fracture mechanics, viscoelasticity and many 
others. Stress analysis problems in geomechanics are 
ideally suited to boundary elements, as this technique 
usually requires a very small number of nodes by 
comparison to finite elements. As  only the surface  of the 
continuum needs  to be discretized, problems extending 
to infinity can be described by a very small number  of  
elements  on  the  soil surface  or  around  the tunnel or 
excavation .In addition, the boundary conditions of the 
infinite domain are properly defined using boundary 
elements, as the technique is based on fundamental 
solutions valid for unbounded domains.    
 
 
Influence of depth below the ground surface - case of 
a single cavity 
 
Al-Adthami (2003) used the boundary element method 
(BEM) to study the effect of many factors that  are  mainly 

affecting the stresses and deformations around tunnels 
and cavities. The soil was assumed to be homogeneous, 
isotropic and linear elastic medium containing one cavity. 
Figure 14 shows a schematic representation of the 
problem studied for 6 values of depth/diameter ratios 

(Zo/D = 1, 1.5, 2, 2.5, 3 and ∞). 
Figures 15 and 16 shows the vertical and horizontal 

displacements along the ground surface calculated by the 
boundary element method, while Figures 17 and 18 
present the surface vertical and horizontal displacements 
as calculated by the complex variable method. 

It can be noticed that the vertical displacements 
predicted by the complex variable method are smaller 
than those predicted by the BEM. The difference 
increases as the depth of the cavity (Zo/D) increases. A 
better convergence was found between the surface 
horizontal displacements calculated by the two methods. 

It can be noticed from these figures that as (Zo/D > 3), 
the disturbing influence on the ground surface does not 
exceed 5% from the case of no-cavity condition. 
 
 
Conclusion 
 
It was investigated whether certain problems of stresses 
and deformations caused by deformation of a tunnel in an 
elastic half plane could be solved by the complex variable 
method. For this purpose, two elementary problems were 
considered in detail. These include the problem of a half 
plane with a circular cavity loaded by a uniform radial 
stress and the problem in which a uniform radial 
displacement was imposed on the cavity boundary (this is  
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Figure 14. Schematic views of surface load-soil-cavities system (after Al-Adthami, 2003). 
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Figure 15. Vertical displacements on the surface predicted by the BEM (after Al-Adthami, 2003). 
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Figure 16. Horizontal displacements on the surface predicted by the BEM (after Al-Adthami, 2003). 
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Figure 17. Vertical surface settlements calculated by the complex variable method. 
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Figure 18. Horizontal surface settlements calculated by the complex variable method. 



 
 
 
 
usually called the ground loss problem). From the 
analysis of the boundary value problems carried out by 
the computer program (Ground Loss), the following 
conclusions are obtained: 
 
(1) The vertical displacement of the surface above the 
circular tunnel increased when Poisson's ratio ν  

decreased from 0.5 to 0.0. For small values of r/h (r is the 
radius of the cavity and h is the depth of tunnel's 
centerline), the displacement of the tunnel was practically 
zero. This case corresponds to the case of a tunnel in an 
infinite medium in which there is indeed no average 
displacement. For larger values of r/h (or in other words, 
closer to the soil surface), there was a marked vertical 
displacement of the tunnel. Its value was negative 
indicating a downward displacement. For certain 
combinations of ν  and r/h, the displacement might even 

be larger than twice the imposed radial displacement. 
(2) The displacement of the bottom of the tunnel was 
always smaller than the value Uo (the displacement of the 
cavity). For large values of r/h, the displacement might 
even be negative, that is, downward. The displacement of 
the bottom was always equal to the average 
displacement of the tunnel plus a constant value Mo 
which was the imposed radial displacement. 
(3) Above the center of the tunnel, a very small horizontal 
movement occured while at the left and right sides, 
opposite horizontal displacements could be observed. A 
uniform distribution of displacement and symmetry about 
the center line of the tunnel could be obtained.  
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(4) The vertical displacement vectors of the tunnel’s 
crown were several times larger than those at its bottom. 
There were points at the tunnel's bottom at which no 
displacement took place. 
(5) The vertical displacements predicted by the complex 
variable method were smaller than those predicted by the 
boundary element method. The difference increases as 
the depth of the cavity (Zo/D) increased. A better 
convergence was found between the surface horizontal 
displacements calculated by the two methods. 
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