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In this article, differential transform method was employed to solve Volterra integral equations of the 
second kind. The procedure of the method is illustrated systematically. In this paper some results 
useful have been proved for the first time, and they have been used in the solution of these systems. To 
show the power of this method, some examples have been created (Examples 2 and 3) and solved. The 
results of them are compared with the results of homotopy perturbation method which has been used 
to solve the same systems (Biazar and Ghazvini, 2009) by plots. Results of the comparison reveal that, 
this method is more effective and promising than homotopy perturbation method for Volterra integral 
equations of the second kind. 
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INTRODUCTION 
 
The concept of the differential transform method was first 
proposed by Zhou (1986) and has been used to solve 
both linear and nonlinear initial value problems, in electric 
circuit analysis. It is different from the high-order Taylor 
series method, which requires symbolic computation of 
the necessary derivatives of the data functions. Taylor 
series method is computationally tedious for high orders. 
Differential transform method leads to an iterative 
procedure for obtaining an analytic series solutions of 
functional equations. In recent years, applications of 
differential transform theory have appeared in many 
researches (Arikhoglu and Ozkol, 2007, 2006, 2005; 
Ayaz, 2003; Chen and Ho, 1996, 1999; Hassan and 
Abdel-Halim, 2008). A system of Volterra integral 
equations of the second kind can be presented as the 
following:  
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BASIC IDEAS OF DIFFERENTIAL TRANSFORM 
METHOD  
 
The basic definitions and fundamental operations of the 
differential transform are defined as follows (Chen and 
Ho, 1996, 1999). The differential transform of the function  
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( )u x is defined as,  
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Where ( )u x is the original function and ( )U k is the 

transformed function. Differential inverse transform of 

( ) ,U k  is defined as 
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When 
0

x is taken as 0,  the function ( )u x defined as (3), is 

expressed as the following 
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In real applications when the general term of the series 
cannot be recognized, a truncated series can be 
considered. Equation (4) implies that, the concept of one-
dimensional differential transform is almost the same as 
one-dimensional Taylor series expansion. In this study 
use lower case letters to present the original functions 
and upper case letters stand for the transformed 
functions (T-functions). From definition (2 to 4), one can 
easily prove that the transformed functions comply with 
the following basic mathematical operations. The 
following theorems can be easily proved: 
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λ is a constant.  
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Where 1k ≥  
and (0) 0.U =  
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Where 1k ≥  
and (0) 0.U =  

 
 
NUMERICAL EXAMPLE 
 
To illustrate the ability and reliability of the method four 
examples were presented, here examples 2 and 3 were 
created by authors. 

 
Example 1. Consider the following linear system of 
Volterra integral equations of the second kind  
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with the exact solutions 

1 ( ) ,
t

f t e
−

= 2
( ) 2sin ,f t t= (Biazar 

and Ghazvini, 2009). One can readily find the differential 
transform of (5), as follows: 
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Consequently, 
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Closed form of the solution in this example are as the 
following: 
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this example, we have derived an exact solution. 
  
Example 2. Consider the following non-linear system of 
Volterra integral equations of the second kind.  
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According to these equations, a few first coefficients are 
as follows: 
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From (4), the solutions of the system of integral 
Equations (6), can be stated as follows 
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which is an exact solution. 
 
Example 3. Consider the following non-linear system of 
Volterra integral equations of the second kind 
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Figure 1. DTM, HPM, and exact solutions of Example 1. 
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The following results can be extracted from these 
equations 
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Considering (4), the solutions of the system of integral 
Equations (8), can be presented as follows: 
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Figure 2. DTM, HPM, and exact solutions of Example 2. 

 
 
 

       
 
Figure 3. DTM, HPM, and exact solutions of Example 3. 

 
 
 
In this example, an exact solution has been resulted. 
 
 
CONCLUSION 
 
In this paper, differential transform method has been 
used successfully for finding the solutions of linear and 
non-linear systems of Volterra integral equations of the 
second kind. To illustrate the method four examples,  one  

linear and three others, non-linear have been presented. 
In these examples, DTM leads to exact solutions. But for 
more reasonable comparison DTM and HPM, five term 
approximations of both methods have been considered. 
These results are plotted in Figures 1 to 3, as well as the 
exact solutions. It can be concluded that, differential 
transform method is a very powerful and efficient 
technique, for finding exact solutions for a wide class of 
problems.   The    computations    associated    with    the  
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examples in this paper were performed using Maple 13. 
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