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Risk analyses made in an area of seismic activity are of great importance in determining earthquake 
occurrence intervals and recurrence periods. Several methods, some of which include statistical 
methods, have been developed for this purpose. Gamma, Weibull distributions and Markov, Poisson, 
Gumbel are the most frequently used methods in this regard. In this study, instrumental records of 73 

earthquakes of Ms  4 which occurred in Denizli (Southwest Turkey) Region were investigated. These 
earthquake records were obtained from the Turkish Earthquake Research Department (ERD). To explain 
the seismic activity of the area, the relationship between magnitude and frequency was explained by 
using earthquake distribution in time. The magnitude-frequency relationship of the study area was 
calculated by means of the “Log N = 5.91 – 0.97 M” equation. Occurrence probability and recurrence 
periods of the earthquakes were computed by utilizing Poisson, Gumbell and Exponential Distribution 
Models and the results were correlated. The recurrence period of a 5.2 magnitude earthquake was 
determined as 10.4 years with the exponential distribution models. Poisson and Gumbel models, on the 
other hand, indicated 29.0 and 9.64, respectively. 
 
Keywords: Denizli Earthquake return period, Exponential distribution function model, Gumbel model, Poisson 
model, Seismic risk. 

 
 
INTRODUCTION 
  
The seismic risk analysis based on the historical 
earthquake data is one of the methods utilized in order to 
determine the seismicity of an area. Elastic rebound 
theory shows that earthquakes occurring on any fault or 
fault section are related to historical earthquakes. 

The number of recurrence as well as occurence time of 
possible earthquakes in the future can be identified using 
the seismic data, which were recorded during the 
earthquakes. For this purpose, different distribution 
models such as Poisson, Gumbell and Markov are 
commonly utilized. From historical periods to recent, 
Denizli and its surrounding have been exposed to large 
earthquakes. Şimşek and Ceylan (2003) reported that the 
strongest earthquakes in the Pamukkale, ancient city, 
occurred in Denizli (Southwest Turkey) in 60 and 494 
A.D.  
 
 
 
*Corresponding author. E-mail: icobanoglu@pau.edu.tr Tel: +90 
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Van Gelder (1997) he investigated the records of 
earthquakes  which   occurred   in   the  last  century  and 
suggested a new statistical model in order to explain 
Gutenberg and Richter magnitude relations for the 
earthquakes resulting from the Vrancea fault in Romania. 

Bağcı (2000) brought up a magnitude-frequency 
equation for the province of Izmir and its surroundings by 
investigating the 4.0 or larger magnitude earthquakes 
which took place in the area during 1900 to 1999. The 
researcher attempted to determine the recurrence 
probability of earthquakes in the future by utilizing 
Poisson and Gumbell distributions models. 

In order to describe the seismicity of the Çukurova 
region, Çobanoğlu et al. (2006) brought up magnitude-
frequency relations by means of “Log N = 6.29  to 0.96 
M” formula. Their seismic risk analysis made use of the 
Poisson, Gumbell and Exponential distribution function 
models for the study area and determined the recurrence 
periods accordingly. 

Campbell et al. (2002) formed a seismic risk  model  for 
Taiwan,  depending upon  tectonic  and  seismic  data.  In    



 
 
 
 

 
 
Figure 1. Location and active fault map of study area. 

 
 
 
their study, the relationship between ML local magnitude 
L must be lower (interior) indice and Mw moment 
magnitude scale used in Taiwan were investigated and 
some  equations  were  proposed.  Maximum  earthquake 
magnitude was defined by investigating the historical 
earthquakes in the area and recurrence periods of 
earthquakes with a magnitude of 4.0 to 8.0 Mw moment 
magnitude were calculated. 
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According to this study, the recurrence period of 
earthquakes with a magnitude of 6.5 to 7.0 was 
determined as 100 years for that area. 
 
 
STUDY AREA AND RESEARCH METHODOLOGY 

 
This paper analyzes the earthquakes of 4 or larger magnitude 
values  which  occurred  in  the  area  situated between 35 S 
646570 E / 4226319 N to 698035 E /  4226319 N to  701025 E / 
4176783 N and 647354 E / 4178959 N coordinates between the 
years of 1900 and 2011 (Figure 1). The study area is located in the 
Aegean region of southern Turkey. 

The seismicity of the research area was investigated by 
determining the earthquake occurrence number and recurrence 
periods. The exponential distribution function model was used 
together with Poisson and Gumbel models and the validity of this 
model for this kind of a seismicity research was investigated. No 
seismic risk evaluation studies using exponential distribution model 
has been found in literature in terms of seismicity. In this respect, 
this study also presents the application phases of the model in 

detail. 

 
 
Evaluation of the magnitude-frequency relations 

 
The basic magnitude-frequency relationship suggested by 
Gutenberg and Richter (1954) is of great importance, since it is 
directly related to an earthquake occurrence. In order to uncover 
this relationship, 73 earthquakes which have Ms >4 magnitude 

were investigated in the study area. The number of earthquake 
occurrence was calculated by using 0.1 magnitude interval and 
normal frequency values are given in Table 1. 

 
Log N = a – bM                                             (1) 

 
In this equation; 

 
N: Cumulative earthquake number, M: Magnitude, a and b are the 
coefficients. 

The magnitude-frequency relation for Denizli region is identified 
by “Log N = 5.91 to 0.97 M” formula by using the values presented 
in Table 1 (Figure 2). According to this relation, a value has been 
calculated as 5.91 and b as 0.97. In Gutenberg-Richter function, a 
big value of a coefficient points to numerous small earthquakes, 
whereas a small value of b coefficient indicates the predominance 
of big earthquakes. According to this relationship, it can be 

concluded that small magnitude earthquakes are widespread in the 
Denizli region. 

 
 
Identification of seismic risk using exponential distribution 
model 

 
X is assumed to be a random variable having the magnitude value 

of M. In this study, exponential distribution model of  and  
parameters were suggested for the X random variable or for 
magnitude 4.0 and bigger earthquake which occurred in Denizli 
region during 1900 to 2011. The probability density function of X 
random variable in the form of exponential function is as follows 
(Ramachandran, 1980): 

 
)()(   x

M exf
 

0      x                                             (2) 



2664          Int. J. Phys. Sci. 
 
 
 

Table 1. Magnitude – Earthquake frequency (Log N) relationship. 
 

M N Total N Log N M N Total N Log N 

4.0 9 73 1.863 5.1 0 10 1.000 

4.1 6 64 1.806 5.2 2 10 1.000 

4.2 5 58 1.763 5.3 2 8 0.903 

4.3 6 53 1.724 5.4 1 6 0.778 

4.4 4 47 1.672 5.5 1 5 0.699 

4.5 11 43 1.633 5.6 1 4 0.602 

4.6 2 32 1.505 5.7 3 3 0.477 

4.7 7 30 1.477 5.8 0 0 --- 

4.8 6 23 1.362 5.9 0 0 --- 

4.9 3 17 1.230 6.0 0 0 --- 

5.0 4 14 1.146     

 
 
 

 
 
Figure 2. Magnitude – Frequency (Log N) relationship. 

 
 
 
The value of  parameters in exponential probability density 
function is calculated by the following equation: 
 

1)(   x                                              (3) 

 

where,x is the mean magnitude value obtained from many 

earthquake data and  stands for the smallest magnitude value. 
The distribution function of x random variable is found as: 
 

)()( 1)( 


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x

x

U
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  0      x                                                            (4) 

 
by utilizing exponential probability density function (Hahn and 
Shapiro, 1994). 
 
 
The Chi-Squared goodness of fit test 

The Chi-Squared (

2
) test, found by Karl (1989), depends on the 

correlation between  observing  value  and  expected  value  of  test 

groups. By means of this test, the distribution of values of two or 
more groups can be correlated at the same time. In this study, the 
“Chi-Squared goodness test” was applied for 73 earthquakes 
observed with a view to controlling the suitability of experimental 
distribution to theoretical exponential distribution. In the application 
of the Chi-Squared goodness test, the experimental (empirical) 
distribution function value for each class is compared to theoretical 
distribution function value obtained from distribution function. If the 

calculated 

2
value (

2

h ) is smaller than 

2
value (

2

t ) in 

table, the hypothesis is considered to be true. Otherwise, the 
hypothesis is rejected (Hahn and Shapiro, 1994). 

The goodness of fit test investigates the validity of the difference 
between the experimental (empirical) distribution function values 
and the value of theoretical distribution function obtained from the 
distribution function. For a similar purpose, the data gathered from 
the examples related to earthquake numbers were checked to see 
if they are in accordance with the theoretical exponential distribution 

or not. For this aim, the following test equation was utilized; 
 







k

i iM

iMiM

OF

OFOF

b

bg

1

2

2

)(

))()((
                                 (5) 

 

where k is the class number for data, iO , is the class mid-point 

value for ith class, )( iM OF
g

 is value or cumulative percentage of 

empirical distribution function observed in class mid-point value for 

ith class, and )( iM OF
b

 is the value of theoretical distribution 

function expected in class mid-point value for ith class. 
A significance level is chosen for the test applied. The validity or 

rejection of
2

 
goodness of fit test and of hypothesis are 

confirmed according to this significance level. The Chi-Squared test 

significance level is taken as 05.0  in this study. 

 
 
RESULTS 
 
Data analysis 
 
This   study   analyzed   the   four  and  bigger  magnitude
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Table 2. Earthquake number and magnitude values (fi) of study area 
earthquakes. 
 

Magnitude M (X) Value (fi) 

4.0 – 4.4 30 

4.5 – 4.9 29 

5.0 – 5.4 9 

5.5 – 5.9 5 

6.0 – 6.4 0 
 
 

 
Table 3. Frequency distribution table for constructed classes. 

 

Class 

number i  

Class low-point 

boundary 

Class mid-point 

value (Oi) 

Class high-point 

value 

Earthquake 

Number (fi) 
% 

1 4.0 4.2 4.4 30 0.4110 

2 4.5 4.7 4.9 29 0.3973 

3 5.0 5.2 5.4 9 0.1233 

4 5.5 5.7 5.9 5 0.0685 

5 6.0 6.2 6.4 0 0.0000 

Total 73 1.0000 
 
 
 

Table 4. Experimental and theoretical distribution functions values for the constructed model. 
 

Class number 

i  

Class mid-point 

value, (Oi) 

Frequency 

number (fi) 
% 

Empirical 

)(xF
gM

 

Theoretical 

)(xF
bM  

Difference 

of values 

1 4.2 30 0.4110 0.4110 0.3756 0.0354 

2 4.7 29 0.3973 0.8082 0.8076 0.0006 

3 5.2 9 0.1233 0.9315 0.9407 -0.0092 

4 5.7 5 0.0685 1.0000 0.9817 0.0183 

5 6.2 0 0.0000 1.0000 0.9944 0.0056 
 
 
 

earthquakes that occurred in the area of Denizli. The total 
number of earthquakes and their magnitude are 
presented in Table 2. 

x = 4.6 was found by using the following formula; 
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and   = 2.5 was found by using the following formula, 
utilizing the data in Table 2; 
 

1)(   x  

5.2
4.0

1

2.46.4

1
)( 1 


  x

 
 

The class mid-point value of first class ( 2.41  O )  is 

taken as the smallest value for . In this case, the 
exponential probability density function turns into the 
following formula;  
 

)2.4(5.25.2)(  x

M exf      x  
 

X random variable distribution function according to the 
exponential distribution function used is as follows; 
 

)2.4(5.2)2.4(5.2 15.2)(   
x

x

U

M edUexF


    

 x2.4  

 
Table 3, shows earthquake magnitude intervals, 
recurrence periods and percentages corresponding to 
those recurrence periods. Table 4 illustrates the empirical 
distribution function values for each class formed 
according to the 73 earthquake data, and the theoretical 
distribution function values determined by the  distribution  
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Table 5. Return periods for different classes. 
 

Class mid-point 
value, (Oi) 

Theoretical 

)(xF
bM  

)(xfM  iF
 

Average recurrence 
periods (year) 

4.2 0.3756 0.3756 0.2742 3.6 

4.7 0.8076 0.4320 0.3154 3.2 

5.2 0.9407 0.1331 0.0972 10.39 

5.7 0.9817 0.0410 0.0299 33.4 

6.0 0.9944 0.0126 0.0092 108.4 

 
 
 

Table 6. Earthquake parameters for the study area. 

 

a b a’ a1 a1’ 

5.099 0.966 5.563 3.910 3.563 

 
 
 
function equation. The empirical distribution function 
values in the table have been calculated by adding the 
percentages as cumulative. The theoretical cumulative 
distribution function values presented in Table 4 were 
calculated by adding the theoretical distribution function 
values for each class cumulatively. 

The appropriacy of the data obtained from 73 
earthquakes analyzed in order to develop the model 
suitability was investigated by means of the Goodness of 

fit test. The Chi-Squared degree was calculated as 
2 = 

0.0196. The Chi-Squared table value was determined as 
2

h = 7.8147 according to unconstrained degree 3 and 

0.05 significance level (Hahn and Shapiro, 1994). When 
the calculated and the table values are compared, it is 
accepted that the empirical distribution conforms to 
exponential distribution and thus the hypothesis is 
statistically validated. Table 5, which used the values of 
expected cumulative probability, shows the occurrence 
probability of earthquakes with different magnitudes 

( )(xFM ), annual expected frequency values (Fi) and 

average recurrence periods per year.In order to calculate 
the FM(x) in the table, the annual number of earthquake > 
4 magnitude observed annually is required. For this 
purpose, the ratio sum of earthquake > 4 magnitude 
number to examined time periods (100 years) was 
utilized (0.73). Annual expected recurrence number (Fi 

values) in Table 5 was determined by multiplying )(xfM

values by annual average observed earthquake numbers 
observed annually. The average recurrence periods are 

calculated by means of 

iF

1
equation (Hahn and Shapiro, 

1994). Table 5 shows that the recurrence period of a 4.2 
magnitude earthquake as 3.6 years, whereas that of a 

5.7 magnitude earthquake is estimated as 33.4 years. 
 
 
Determination of seismic risk by poisson model 
 
Another frequently used model in estimating earthquake 
occurrence is the Poisson model. According to this 
model, the distribution of waiting time for another 
earthquake is not affected by the time after the 
occurrence of the previous earthquake (Öztemir et al., 
2000). Statistical data shows that the Poisson model is 
valid especially for big earthquakes. In a study carried out 
by Kiremidjian et al. (1992), which compared the Poisson 
and Markov models, it was pointed out that the Poisson 
model is adequate to estimate earthquake hazard in a 
region where frequent middle magnitude earthquakes 
occur.  

The earthquake parameters for the investigated area 
for Poisson models have been computed by using the 
following equations and the results are listed in Table 6.  
 
a’= a – log (b*ln10)                                                    (6) 
 
a1 = a – log T                                              (7) 
 
a1’= a’ – log T                                   (8) 
 
In these equations, T stands for the investigated time 
periods and was taken as 100 years. The normal 
frequency value used to determine seismic risk is found 
by this equation.  
 

ibOa

iON



'
110)(                                                  (9) 

 

)( iON
  

 value   expresses   annual  average  earthquake 
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Table 7. Obtained seismic risk and return periods according to poisson model. 
 

x  
(Oi) 

N(Oi) 

Years 

)( iO

Q

 
10 20 30 40 50 75 100 

Seismic risk (%) 

4.0 0.4982 99 100 100 100 100 100 100 2.01 

4.2 0.3192 96 100 100 100 100 100 100 3.13 

4.5 0.1638 81 96 99 100 100 100 100 6.11 

4.7 0.1049 65 88 96 98 99 100 100 9.53 

5.0 0.0538 42 66 80 88 93 98 100 18.57 

5.2 0.0345 29 50 64 75 82 92 97 28.99 

5.5 0.0177 16 30 41 51 59 73 83 56.50 

5.7 0.0113 11 20 29 36 43 57 68 88.17 

6.0 0.0058 6 11 16 21 25 35 44 171.88 
 
 
 

 
 
Figure 3. Seismic risk values using Poisson model. 

 
 
 

occurrence number which is calculated according to 
earthquake magnitude and seismic parameters. Seismic 

risk values ( )( iOR ) can be determined by the following 

equation: 
 

*)(
1)(

TON

i
ieOR


                                                (10) 

 
Different from the other models, T* value in this model 
shows the future time portion to be used in calculating 
earthquake occurrence risk.  

According to Poisson model, recurrence period is 
determined as years using the equation of  
 

)(

1
)(

i

i
ON

OQ                                                (11) 

 
Calculated seismic risk values and recurrence periods for 
the study area are shown in Table 7. 

According to this model, recurrence period for 4.2 and 
5.5 magnitude earthquake was found to be 3.13 and 
56.50 years, respectively. Occurrence probability of 5.5 
magnitude earthquake in 30 years was determined as 
41%. Occurrence probability of earthquake in 100 years 
time period was calculated by using Poisson model and 
the results are shown in Figure 3. 
 
 

Determination of seismic risk using Gumbel model 
 

The Gumbel model defined by Gumbel (1958) depends  
on the biggest magnitude earthquake in one year. For 
this reason, the Gumbel model is referred to as “the 
biggest annuals” method. Distribution function of the 
method is expressed in the following equation: 
 

MeeMG
..)(

                                     (12) 

 

where M shows earthquake magnitude,    and    shows
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Table 8. Seismic risk values using Gumbel model. 
 

M R(M) N(M) Q(M)-Recurrence period 

4.0 0.907 2.380 0.420 

4.2 0.756 1.412 0.708 

4.4 0.567 0.837 1.194 

4.6 0.391 0.497 2.013 

4.8 0.255 0.295 3.394 

5.0 0.160 0.175 5.721 

5.2 0.098 0.104 9.644 

5.4 0.060 0.062 16.258 

5.6 0.036 0.036 27.406 

5.8 0.021 0.022 46.200 

6.0 0.013 0.013 77.882 
 

N(M), Annual average earthquake occurrence number, Q(M), recurrence periods, R(M), seismic risk value.  
 
 
 

 
 
Figure 4. Return period values obtained from using Gumbel model. 

 
 
 

regression coefficient depending on seismicity.  and   
are calculated by using the following equations: 
 

a10                                                (13)  

 

)10ln(*b                                                (14)  

 
a and b values were calculated as 4.912 and 1.134 
respectively for the study area. Table 8 and Figure 4 
illustrate the results regarding earthquake recurrence at 
0.2 unit (earthquake magnitude) interval. 
 
 
DISCUSSION 

 
It is seen that the exponential distribution function model 
and Gumbel models give consistent values for this 
region. As for the annual occurrence number, the 
exponential distribution function model gives similar 
values to those of the other models especially for 5.2 and 

bigger magnitude earthquakes (Figure 5).When 
recurrence periods are investigated according to 
earthquake magnitude, exponential distribution function 
and Gumbel models give close values. These models 
produce smaller values of recurrence periods compared 
to the Poisson model (Figure 6). 
 
 
CONCLUSIONS 
 
It is known that statistical methods give almost correct 
results for the evaluation of seismic risk analysis when 
suitable data is used. For this reason, the Poisson and 
Gumbel models are the methods frequently used in the 
world. 

In this study, magnitude-frequency relation was 
determined with Log N = 5.91 to 0.97 M formula using 
earthquake data from the investigated area. In addition, 
the validity of exponential distribution function model was 
examined and the consistency of results with other 
methods was investigated.  
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Figure 5.  Earthquake occurrence numbers per year according to the models for the different 

magnitude values. 
 

 
 

 
 

Figure 6. Recurrence periods graphic for different earthquake magnitudes for investigated 

models. 

 
 
 
The recurrence period of 5.2 magnitude earthquake has 

been calculated as 10.39 years with the exponential 
distribution function model, and 28.99 years according to 
the Poisson models. On the contrary, the Gumbel model 
gave 9.64 years for the same magnitude. The exponential 
distribution model led to values similar to those computed 
by using Gumbel model. It was found out that the 
Poisson model resulted in the biggest values than others 
related to recurrence periods. 

It should not be overlooked that the results obtained 
from this kind of study are directly connected to the 
distribution amount and total number of the data used. 
For this reason, active tectonic data of the region should 
be evaluated very carefully to identify regional limits.  
The exponential distribution function model, as well as 
Poisson and Gumbel models, can be utilized for seismic 
risk analyses. However, instead of using only one 
method, the use of different distribution models in 
combination will be very important to evaluate and 
interpret the results accurately. 
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