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Some characteristic parameters of the Bessel- Gaussian beam were determined theoretically by direct 

analytical calculations. Variation of the final beam radius ( ) with the starting beam radius ( ) was 

studied. The Rayleigh range of a Bessel-Gauss beam was calculated for each value of the minimum 
starting beam radius. The beam wavefront radius of curvature (R) was calculated as a function of  
starting beam radius at different distances from the source. A modified Bessel-Gauss beam was also 
considered. The beam intensity was calculated in the waist plane. The variation of the intensity near the 

center depends on whether the radius (a) equal, less than or greater than the starting beam radius ( ). 
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INTRODUCTION 
 
Bessel beam optics have attracted many researchers in 
the past few decades because of its interesting 
characteristics and applications. Bessel beams represent 
a class of diffraction free solutions to the Helmholtz 
equation, and have been studied extensively since the 
work of Durnin  (1987) and Durnin et al. (1987) and 
recently by Lukin (2012, 2014); McGloin and Dholakia 
(2005); Mikutis et al. (2013); Turunen and Friberg (2010) 
and Trappe et al. (2005). 

Durnin et al. (1987) have used an annular aperture in 
the focal plane of a lens to produce an approximate 
Bessel beam. Although successful in generating a Bessel 
beams, this method is highly inefficient since the aperture 
absorbs most of the incident radiation. This reduction in 
the available energy is unsuitable for applications where 

high intensities are needed. An axicon, or conical lens 
element is perhaps the most convenient and cost-
effective way to generate Bessel beam (Indebetouw,  
1989) (Figure 1). 

When a Gaussian beam with a flat phase front is 
incident on the axicon, the focusing property of the axicon 
produces strong interference effects in the region where 
the deflected beam overlaps with itself (Laycock and 
Webster, 1990). The profile of the generated interference 
pattern remains invariant over the overlap region. The 
axial symmetry of the system results in the beam pattern 
having an amplitude profile that is approximated by a 
Bessel function of order zero (Bagini et al., 1996). 
Beyond the overlap region the on-axis beam amplitude 
falls rapidly to zero.  
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Figure 1. Propagation of a Bessel beam generated by axicon. 

 
 
 

In this work, direct analytical calculations of some 
characteristic parameters of Bessel-Gauss beam are 
carried out. The calculations use the model proposed by 
Bagini et al. (1996). The intensity of the modified Bessel-
Gauss beam at waist plane is also considered. 
 
 
THEORETICAL BACKGROUND 
 
The model used in this work is based on the situation that 
a Bessel beam is created by illuminating a Gaussian 
beam onto an axicon, Figure 1. In the plane z = 0 of a 

cylindrical reference frame , Let us consider a 

field of the form (Bagini et al., 1996); 
 

               (1)                                                                               
 

where  is the starting beam radius and A is the 

amplitude. This equation represents a Gaussian beam 

whose mean wave vector has a projection  on the z = 0 

plane, forming an angle  with respect to the x-axis, 

Figure 2.  

The amplitude A is a function of . When  varies, the 

wave vector describes a cone of semiaperture  such 

that , where  is the wave number. The 

superposition of all Gaussian beams of Equation 1 form 
the Bessel-Gauss beams of order n. After propagating a 

distance z from the axicon, the radius of the beam  

and the wavefront radius of curvature  are given by 

Bagini et al. (1996): 
 

                                   (2) 

                                           (3) 
 
Where 
 

                                                                  (4) 
 

and   is the starting beam radius at plane of z = 0. Let 

us consider a superposition of Gaussian beams, having 
mean wave vectors parallel to the longitudinal z direction, 
but whose centers are placed on a circumference of 
radius a around the z axis. In this case we obtain a 
superposition of beams that we call modified Bessel-
Gauss beams of order n.   

The modified Bessel-Gauss beam of zero order may 
show a central region of uniform intensity in the waist 
plane. The intensity distribution of the modified Bessel-
Gauss beam can be obtained by Bagini et al. (1996) 
 

                                                 
                                                                                   (5) 
 
If we consider the zero order term, the intensity as a 
function of r and z can be formulated as; 
 

                    
                                                                                   (6) 
where  
 

                  (7) 
                           
It is  seen from  these  equations  that  the  intensity  may
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Figure 2. Illustration of the Bessel-Gauss beams. 

 
 
 

of minimum beam diameter and minimum beam spread over a distance 50 m, see 

inset of Fig. 3.  
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Figure 3.  Beam radius as a function of starting beam radius at distances 5, 10 
and 50 m from the axicon calculated from Equations 2 and 4. 

 
 
 
show a maximum, a plateau or a minimum near r = 0 

depending on whether  is negative, null or positive. 

 
 
RESULTS AND DISCUSSION 

 
Direct calculations were  carried  out  to  determine  some  

characteristic parameters of the Bessel-Gaussian beam. 

The final beam radius ( ) was calculated as a function of 

the starting beam radius ( ) at a fixed distance (z) using 

Equations 2 and 4. Figure 3 shows the variation of the 
final beam radius with the starting beam radius at 
distances 5, 10 and 50 m from the axicon. From the 
figure one can notice that the beam radius reaches a
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Table 1. The optimum values of the starting beam radius and the Rayleigh range 
at different distances. 
 

z (m) 5 10 50 

 (mm) 0.56 0.7 1.3 

 (mm) 10.98 13.73 25.49 
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Figure 4. Wavefront radius of curvature versus starting beam radius 
calculated using equations 3 and 4 at distances 5, 7, 10 and 15 m.  

 
 
 
minimum value at a certain starting beam radius. The 
initial beam radius corresponding to minimum beam 
radius over the distance (z) is known as optimum starting 

beam radius . For example at Z = 50 m, the 

optimum starting beam radius  mm and 

this may represent the best combination of minimum 
beam diameter and minimum beam spread over a 
distance 50 m, see inset of Figure 3.  

The Rayleigh range of a Bessel-Gauss beam can then 

be calculated for each value of the optimum  from the 

relation (Duocastella, and Arnold, 2012): 
 

                                                          (8) 
           

where n is the refractive index of the axicon and  is the 

opening angle of the axicon. The Rayleigh range 
represents the largest distance after the axicon in which 

Bessel-Gauss beam will propagate where the central 
maximum will not exhibit diffractive spreading. The 

optimum  values as well as the Rayleigh range at 

different distances z are listed in Table 1 (taking  = 0.1 

rad and  = 1.51). Figure 4 represents a plot of the 

wavefront radius of curvature (R) versus starting beam 
radius at different distances using equations 3 and 4. It is 

noticed that R increases with the increase of .  

The change of the wavefront radius of curvature with 
the distance z is somehow irregular. Before 

approximately , R increases as the 

distance is increased while after  the 

radius of curvature decreases with the increase of z. 

Therefore  may represent a suitable value 

of the starting beam radius at which the beam radius of 
curvature is being a constant regardless of the distance 
apart the beam source. 

Figure 5 demonstrates the variation of the beam radius
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Figure 5. Variation of the beam radius with the distance at fixed 
value of the starting beam radius.  
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Figure 6. Intensity distribution of the modified beam of zero order on the 

waist plane as a function of r, for  = 1.3 mm and different values of a. 

The calculations were carried out using Equations 6 and 7. 

 
 
 

with the distance until 60 m from the axicon at fixed value 
of the starting beam radius. The relationship between the 
two parameters is linear indicating that as the beam 
travels apart from the source, it will spread out.  

The intensity of the modified Bessel-Gauss beam of 
zero order is considered. Calculation of the beam 
intensity in the waist plane using Equations 6 and 7 was 

carried out. Figure 6 represents the beam intensity as a 
function of (r) at different values of (a). The starting beam 

radius ( ) was kept at 1.3 mm. From the figure one can 

deduce that if the radius a equals , the intensity near 

the axis is constant. If  is greater than a, the intensity 

will   decrease   by   raising   of r   while  the  intensity  will  



 
 
 
 

increase when  is less than a. This can be explained 

by considering that when the radius  a is increased, the 
maxima of the constituent Gaussian beams recede from 
one another so that a central dip appears. 
 
 
Conclusion 
 
The parameters characterizing the Bessel-Gaussian 
beam were determined. It was found that the beam 
radius reaches a minimum value at a certain starting 
beam radius at any distance. The change of the 
wavefront radius of curvature with the distance z is 
somehow irregular. It was concluded that starting beam 
radius equals 1.3 mm represents the suitable value of the 
starting beam radius at which the beam radius of 
curvature is being a constant regardless of the distance 
from the beam source. Calculation of the beam intensity 
of the modified Bessel-Gauss beam in the waist plane 
was proceeded. The results are dependent on weither a 

is smaller, equal or greater than . 
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