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This work proposes an Adaptive Randomized Descent Algorithm (ARDA) for solving university course 
timetabling problems. The work aims is to produce an adaptive algorithm that can produce good quality 
timetable by assigning a set of courses (events) and students to a fixed number of timeslots and rooms 
subject to a set of constraints. ARDA delays the comparison between the quality of the candidate 
solution and the current solution. ARDA use a threshold value (that is calculated based on the average 
quality of some recently accepted solution) as an acceptance criterion. ARDA can adaptively manage to 
escape from local optima by intelligently changing the threshold value when the search is trap in local 
optima. This is done by estimating an appropriate threshold value based on the history of the search. 
Results tested on the Socha’s benchmark datasets showed that, ARDA produces significantly good 
quality solutions when compared with late acceptance strategy in hill climbing, average late 
randomized descent within a reasonable time and comparable to other approaches tested on Socha’s 
dataset. 
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INTRODUCTION  
 
Generally, university course timetabling problems involves 
assigning a set of courses (events), teachers and students 
to a fixed number of timeslots and rooms (Petrovic and 
Burke, 2004) subject to variety of constrains. Constraints 
in a timetabling problem can be classified as hard and 
soft constraints (Petrovic and Burke, 2004). The goal of 
timetabling is to satisfy all hard constraints and attempt to 
accommodate the soft constraints as much as possible 
(for producing a high-quality timetable). A feasible 
timetable must satisfy all hard constraints, whilst soft 
constraints can be violated if necessary, but each violation 
of the soft constraints will be penalized. A smaller penalty 
value indicates a good quality timetable. University course  
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timetabling problem has been classified as an NP-hard 
problem, to which it is difficult to find an optimal solution 
within a reasonable time (Schaerf, 1995). Finding good-
quality solutions to these problems depends on the 
technique itself and the structure employed during the 
search (Schaerf, 1995). 

In the last few years, a lot of approaches had been 
applied to solve university course timetabling problems. 
Some of these approaches are great deluge (Burke et al., 
2003), simulated annealing (Elmohamed et al., 1998) 
tabu search (Costa, 1994) and randomized descent 
method (Schaerf, 1999). For further information on 
previous works, please refer to the following 
survey/overview papers (Schaerf, 1995; De Werra, 1985). 
Recently, a new approach on timetabling problems based 
on basic local search had been proposed by Burke and 
Bykov (2008). In our previous work (Abuhamdah and 
Ayob,  2010)  we  extended  the  work in Burke and Bykov  
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Table 1. Eleven datasets (Socha et al., 2002; Chiarandini et al., 2006). 
 

Dataset No. of students No. of events No. of rooms No. of features ApproxF/R F usage (%) CD 
S1 80 100 5 5 3 0.7 10.96 
S2 80 100 5 5 3 0.7 13.92 
S3 80 100 5 5 3 0.7 9.71 
S4 80 100 5 5 3 0.7 7.16 
S5 80 100 5 5 3 0.7 15.10 
M1 200 400 10 5 3 0.8 37.38 
M2 200 400 10 5 3 0.8 37.66 
M3 200 400 10 5 3 0.8 40.44 
M4 200 400 10 5 3 0.8 37.50 
M5 200 400 10 5 3 0.8 28.27 
L 400 400 10 10 5 0.9 45.57 

 
 
 
(2008), by introducing average late acceptance 
randomized descent(ALARD), to solve university course 
timetabling problem. However, both LAHC and ALARD 
are descent heuristic. The disadvantage of the descent 
heuristic techniques is that, they are incapable of 
escaping local optima (minima) (Schaerf, 1999). 

Therefore in this work, we propose an adaptive average 
late acceptance randomized descent (ARDA), a new local 
search heuristic (which is not descent heuristic) based on 
randomized descent method (Schaerf, 1999) that extends 
our previous work (Abuhamdah and Ayob, 2010). The aim 
of this study is to investigate the performance of applying 
the adaptive randomized descent algorithm for solving 
university course timetabling problems. In order to 
evaluate the effectiveness of the ARDA, we made a 
comparison between the performance of ARDA, LAHC 
(Burke and Bykov, 2008), ALARD (Abuhamdah and Ayob, 
2010) and other approaches which were tested over 
Socha’s university course timetabling datasets (Socha et 
al., 2002). 
 
 
Problem description 
 
In this work, eleven datasets instances introduced by 
Socha et al. (2002) were used, which only tackle the 
students’ satisfaction for the university course timetabling 
problem. The problem consists of: A set of rooms (R) in 
which events can take place; a set of events (courses) (E) 
to be scheduled in 45 timeslots (5 days of 9 h each with 
one hour for each timeslot); a set of features (F) 
characterizing the rooms and required by events; a set of 
students (S) who attend the events. These datasets are 
categorized into three groups, small (S1, S2, S3, S4 and 
S5), medium (M1, M2, M3, M4 and M5) and large (L) as 
shown in Table 1 (Socha et al., 2002). Table 1 also shows, 
the conflict density  (CD)  for  each  dataset  (representing 

the complexity which is calculated as in Chiarandini et al. 
(2006). 

These datasets were collected from various real-world 
university course timetabling problems (Socha et al., 
2002). The problem consists of three hard constraints 
(Hc1, Hc2 and Hc3) and three soft constraints (Sc1, Sc2, 
and Sc3) as follows: Hc1, No student can be assigned to 
more than one event at the same time; Hc2, the room 
capacity must be greater than or equal to all the attending 
students and satisfy all the features required by the event 
that assigned to it; Hc3, no more than one event can take 
place in each room at same timeslot; Sc1, a student 
should not have an event in the last time slot of the day; 
Sc2, a student should not have more than two events 
consecutively. Sc3, a student should not have a single 
event on a day. 

As in Socha et al. (2002), we measure the quality of 
timetable by penalizing each violation of the soft or hard 
constraints by ‘1’ for each student who is involved in this 
situation. The quality of the candidate solution S*, f (S*), is 
simply calculated as the summation between the hard 
constraints violations hvc (total penalty of hvc) of S* for all 
students and soft constraints violations svc (total penalty 
of svc) of S* for all students (S equal total number of 
students), as shown in Equation (1) by Rossi-Doria et al. 
(2003). 
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Neighborhood structures 
 
In this work, we use composite (Grabowski and Pempera, 
2000)    neighborhood     structures    with    different   five  
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neighborhood structures (NS1, NS2, NS3, NS4, and 
NS5) for solving the university course timetabling problem 
as in Abuhamdah and Ayob (2010). These are: NS1, 
Randomly select two courses and swap their timeslots if 
feasible (and swap their rooms if necessary); NS2, 
Randomly select two timeslots and simply swap all the 
courses in one timeslot with all the courses in the other 
timeslot; NS3, Randomly select four courses and swap 
their timeslots if feasible (and rooms if necessary); NS4, 
Randomly select a course, feasible timeslot and feasible 
room and move the course to the new timeslot (and move 
the course to the new room if necessary); NS5, Choose 
the highest penalty courses from a random 15% selection 
of the courses and assign to random feasible timeslots. 
 
 
The Adaptive Randomized Descent Algorithm (ARDA) 
 
The adaptive average late acceptance randomized 
descent is an improvement heuristic based on late 
acceptance strategy in hill climbing (LAHC) which was 
proposed by Burke and Bykov (2008). The idea of LAHC 
is to delay the comparison between the qualities of the 
candidate solution with a solution quality, which was 
“current” several steps before the current solution. This is 
done by maintaining a list of accepted solution’s quality 
(value of the penalty cost).  

LAHC allows some worsening moves and it have a 
single parameter (the list length) (Burke and Bykov, 
2008), whilst other algorithm such as simulated annealing 
and great deluge have a function (Burke and Bykov, 
2008).The list in LAHC, is used as the acceptance 
criterion (Burke and Bykov, 2008). LAHC is free from 
drawback except need to investigate the suitable length of 
the list. Whilst, other algorithm such as tabu search (when 
we increase of the length of the tabu list) always causes 
higher computational expense (Burke and Bykov, 2008). 
In LAHC, the search can maintain a list of any length 
without extra expense (Burke and Bykov, 2008). On the 
other hand, the limitation of LAHC is to decide a suitable 
length of list L for each different benchmark problem 
(Burke and Bykov, 2008).  

Therefore, in our previous work, we proposed the 
average late acceptance randomized descent (ALARD) 
(Abuhamdah and Ayob, 2010), which is based on LAHC 
idea, but use an average value of the values in a list of 
accepted solution as the acceptance criterion 
(Abuhamdah and Ayob, 2010). However, both LAHC and 
ALARD are descent heuristics (where they only accept 
solutions that are better than or equal quality of the 
selected solution or average quality, respectively). Thus, 
they can easily be trapped in local optima. In respect to 
this, we propose (a non descent heuristic) the adaptive 
average late acceptance randomized descent (ARDA, 
which enhance  the  ALARD  approach)  to  overcome  the  

 
 
 
 
weakness in LAHC and ALARD. 

As in ALARD, ARDA also use a threshold value as an 
acceptance criterion. Apart from that, ARDA can 
adaptively manage to escape from local optima by adding 
the estimated value to the values in list L, which increases 
the threshold value. That is, we allow some slightly worse 
solution to be accepted which might help the algorithm to 
escape from a local optima. The following shows the 
pseudo code for ARDA to solve university course 
timetabling problems. 

In this work, we used a constructive heuristic that was 
originally proposed by Landa-Silva and Obit (2008) to 
produce an initial solution and we implemented five 
different neighborhood structures (NS1, NS2, NS3, NS 
and NS5) as in Abuhamdah and Ayob (2010), which are 
simultaneous with Grabowski and Pempera (2000). 
 
 
ARDA pseudo code  
 
Given an initial solution, So and its quality, as f(So); Let 
Sbest , be the best obtained solution, f(Sbest), be the quality 
of Sbest ; S*, be the candidate solution, f(S*) be the quality 
of S*; L, be the list of accepted solutions quality of the 
length ARD; Avg, be the average of the values in L; N, be 
the maximum number of iterations; n be the number of 
iterations; IT, be the maximum number of idle IT; EV, be 
the estimated value; Idle be the idle Iterations; arrayc, be 
the counter for the length of the array that stored EV. The 
pseudo code for ARDA to solve university course 
timetabling problems can be seen in Figure 1. 

Figure 1 shows that, our approach starts with a given 
initial solution So and quality of So, as f(So). Let Sbest be the 
best obtained solution, f(Sbest), be the quality of Sbest ; S,* 
be the candidate solution, f(S*), be the quality of S*; 
LLength, be the length of the list L; Avg, be the average of 
the values in L; EV, be the estimated value stored in the 
list A; Idle, be the ARDA idle Iterations. ARDA-RR starts 
by initializing the required parameters (Step 1, Figure 1) 
by assigning all elements in L equal to the quality of the 
initial solution f(So) and set the average value, Avg equal 
to f(So). In this work, we use a fix size of L (L size = 20). In 
the improvement phase (Step2), we iteratively improve the 
initial solution So until the stopping criteria is met. At this 
phase, we generate some neighbour solutions (in our 
case, randomly generate some “5” feasible neighbours 
from each neighborhood of the five neighbourhoods (NS1-
NS5)) and the best feasible neighbour (S*) will be selected 
to be the candidate solution (Step 2.1).  

At each iteration, if the candidate solution S* better is 
better than the best solution Sbest, then we will accept the 
solution S* (Step 2.2, that is So = S*), update the 
frequency of EV in the list A, update f(Sbest) = f(S*) and 
sort the element in descending order based on their 
frequency  or  if  f(S*)  is  just  better than Avg, we will only  
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   Step 1: Initialization phase 
           Determine initial candidate solution So and f(So)
           Set idle = 0;   Sbest=So;    f(Sbest)= f(So); 
           Set L Values = f(So);  Avg=average of L values; 
   Step 2: Improvement (Iterative) Phase 

           while termination condition is not satisfied :                                  
        Step 2.1: Generate some neighbor solutions  
                 and choose the best Neighbor S*; 
        Step 2.2: Accepting Solution 
            if f(S*) < f(Sbest) 
            Idle =0;   EV= f(So) - f(S*);        
            Sbest:=S*;   f(Sbest)=f(So);   So=S*;           
             Update the frequency of EV in the A (or  
               add EV in A if it is not exist). 
      Sort the EV elements in A in descending  

                order based on their frequency.  
             elseif f(S*) < Avg  // good solution 

    Replace the element value that was the  
                 longest time in L with f(S*); 
             Idle =0;   So= S*;   Recalculate Avg;          
    else  // bad solution 
           So= Sbest;      Idle = Idle + 1;   

             end if       
        Step 2.3: Idle Iteration  
             if Idle >= Maximum number of Idle iterations  
             EV = A [0]; // get the first element in A 
            Add all values in L with EV;  
       Rotate left all elements in A;                    

             Recalculate Avg;                      
             end if   
             end while 
   Step 3: Termination phase 

           Return the best found solution  Sbest  
 
Figure 1. ARDA pseudo code. 

 
 
 
accept f(S*) and replace the element value that was the 
longest time in L with the quality of the new accepted 
solution. We then recalculate Avg, otherwise, the S* will 
be rejected. We will then, increase the idle iteration by 
one, updating So= Sbest and proceed with the next 
iteration. In Step 2.3, we set the estimated value, EV 
equals to the first value in A (the one with the highest 
marked of repetition), when number of idle iterations 
equals to the maximum number of idle, then, we update 
all values in L (by adding EV to the values), update all 
values in A (by rotate left all elements in A) and 
recalculate Avg. 

In the termination phase Step3, we return the best 
solution found Sbest , after we iteratively improving the 
initial solution So until the stopping condition is met (Step 
2).   The   main   differences  between  ARDA,  LAHC  and 

ALARD are as follows: (1) ARDA and ALARD use an 
average value of the values in a list of accepted solution 
as the acceptance criterion, whilst in LAHC; the 
acceptance criterion is based on the one of the selected 
accepted solution cost values; (2) ARDA and ALARD 
differs from the basic LAHC as it uses randomized 
descent method (which evaluate more possible 
neighbors) that, may lead to better improvement instead 
of using simple hill climbing; ARDA can adaptively 
attempts’ to escape from local optima by intelligently 
changing the threshold value when the search trap in local 
optima (when the quality of the generated solutions from 
some neighborhoods are not better than the best obtained 
solution quality). This is done by estimating an appropriate 
threshold value based on history of search (by counting 
the  number  of  idle  iteration  and  using  the  counter  for  
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Table 2. Comparison between our methodology and other local hybrid meta-heuristic search results on course timetabling problem. 
 

ARDA 
Dataset 

Min Avg 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

S1 0 0.73 0 0 0 0 0 0 0 3 0 0 0 0 
S2 0 0.82 0 0 0 0 0 0 0 4 0 0 0 0 
S3 0 1.55 0 0 0 0 0 0 0 6 0 0 0 0 
S4 0 1.45 0 0 0 0 0 0 0 6 0 0 0 0 
S5 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0 
M1 82 96.73 77 80 93 143 153 338 242 140 168 221 55 71 
M2 78 93.45 73 105 98 130 137 326 161 130 160 147 70 82 
M3 136 151.45 133 139 149 183 207 384 265 189 176 246 102 137 
M4 73 93.36 69 88 103 133 142 299 181 112 144 165 32 55 
M5 103 120.73 101 88 98 169 186 307 151 141 71 130 61 106 
L 680 700.72 627 730 680 825 863 - - 876 417 529 653 777 

 

R1, HPCA (Abuhamdah and Ayob, 2009); R2, EGD (McMullan, 2008); R3, DSSA (Abdullah et al., 2010); R4, ALARD (Abuhamdah and Ayob, 
2010); R5, LAHC (Abuhamdah and Ayob, 2010); R6, VNS-TS (Abdullah et al., 2005); R7, RII-CN (Abdullah et al., 2007); R8, NLGD (Obit et 
al., 2009); R9, MHSA (Al-Betar et al., 2010); R10, HEA (Abdullah et al., 2007); R11, TB-MA (Turabieh and Abdullah, 2009); R12, NLGDHH-SM 
(Obit et al., 2009). 

 
 
 
improvement rate, EV). Whereas, the accepting criterion 
for LAHC and ALARD are static, which may easily be 
trapped in local optima. 
 
 
RESULTS  
 
In this work, the results of our algorithm were obtained out 
of 11 runs and 200,000 iterations and tested on a PC with 
an Intel dual core 1800 MHz, 1GB RAM. Table 2 shows 
the comparison between our ARDA approaches LAHC, 
ALARD and other local hybrid meta-heuristic searches 
that were tested on Socha benchmark datasets. The best 
results are presented in bold. Results in Table 2 show that, 
ARDA outperformed LAHC (R5) and ALARD (R4) in all 
datasets and are comparable to other results. For small 
datasets, we obtain our results within 3 to 10 min, whilst, 
for medium and large datasets, we took between 4 to 9 h 
to achieve the results. Results in Table 2 also show that, 
among these approaches, Turabieh and Abdullah (2009) 
in R11, which applied incorporating Tabu search into 
memetic approach for enrolment-based university course 
timetabling problems; have outperformed many other 
approaches in the literature (with regards to Socha 
benchmark datasets). 

Whereas Al-Betar et al. (2010) in R9, applied a harmony 
search with multi-pitch adjusting rate for the university 
course timetabling. They also obtained optimal solution for 
all small datasets and the result for all medium datasets 
obtained within the range of published results. Meanwhile, 
they obtained the best result for medium 5 dataset. 
Meanwhile,   the   observation   of   the   results   obtained 

indicates that, ARDA performed well and obtained a good 
quality solution for all small, medium and large datasets. 
The results of all small datasets scored zero, the same as 
some of the published results; medium and large 
datasets were within the range of the published results. 
The results in Table 2 also shows that, ARDA obtained 
better solutions than single based local search results 
and obtained a very good-quality solution.  

Figure 2 shows the box and whisker plot details of the 
ARDA results for 11 runs (Figure 2) shows, the box and 
whisker plot that summarize the results of 11 runs for each 
dataset by ARDA algorithm on Socha benchmark 
datasets. For all small (except small 4) and medium 2 
datasets, we can see that, most of the runs produced high 
quality solution that are close to the best. This indicates 
that, the algorithm is stable and consistent and most of the 
time can produce very good quality solution. The result 
also shows that, ARDA is capable of producing high 
quality solutions for all datasets and are comparable with 
the best-known results obtained in literature. Table 3 
present details analysis of the ARDA algorithms on the 
Socha benchmark datasets. Results in Table 3 show that, 
ARDA performance is consistent in producing good quality 
results indicated by smaller values in the standard 
deviation. As our algorithm can produce good quality 
solution in the same range of time when compared with 
the result obtained by other approaches in Table 2. 
 
 
DISCUSSION  
 
This  work  had proposed a new heuristic search called an  
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Figure 2. Box and whisker plot of ARDA for all datasets.�

 
 
 

Table 3. Statistical analysis of our algorithm (ARDA) applied to Socha benchmark datasets. 
 

Dataset fmin favg Std. dev.(�) Iter Time/s 
s1 0 0.73 1.01 8600 166 
s2 0 0.82 1.08 9537 189 
s3 0 1.55 1.29 13655 267 
s4 0 1.45 1.04 11694 228 
s5 0 0.55 0.69 8694 159 
m1 82 96.73 8.34 120350 21514 
m2 78 93.45 10.03 107638 19568 
m3 136 151.45 7.80 149365 23569 
m4 73 93.36 10.59 165486 27522 
m5 103 120.73 12.80 154620 25656 

l 680 700.72 14.49 117620 28501 
 

fmin, is the best score out of 11 runs; favg, the average score for all the 11 runs; �, the standard deviation for all the 
11 runs; Iter, total number of iteration proceeding to find that best score solution; Time/s, total CPU time on our 
computer needed to find the best score solution.  
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adaptive randomized descent algorithm (ARDA) to solve 
university course timetabling problems. Our works is an 
extension to average late acceptance randomized 
descent (ALARD), which is based on late acceptance 
strategy hill climbing (LAHC) that was proposed by Burke 
and Bykov (2008). The idea of ARDA, ALARD and LAHC 
are to delay the comparison between the quality of the 
candidate solution and the current solution. ARDA and 
ALARD use a threshold value as an acceptance criterion, 
whilst, LAHC use a selected solution’s quality from a list of 
recently accepted solution’s quality as acceptance 
criterion. ARDA can adaptively manage to escape from 
local optima by intelligently increasing the threshold when 
the search is trapped in local optima, which is done by 
estimating appropriate threshold values based on history 
of search. Whilst, LAHC and ALARD do not have this 
capability.  

In order to evaluate the effectiveness of ARDA for 
solving the university course timetabling problem, we test 
ARDA on Socha benchmark dataset (Socha et al., 2002). 
Results indicated that, the performance of ARDA 
approach is comparable to the other approaches in the 
literature and capable of producing good-quality solutions 
in reasonable time. Our future work will investigate on how 
to intelligently manage neighborhood structures in order to 
enhance the performance of ARDA. 
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