
�

�

� �

International Journal of the Physical Sciences Vol. 5(16), pp. 2516-2522, 4 December, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 ©2010 Academic Journals

Full Length Research Paper

Adaptive randomized descent algorithm for solving
course timetabling problems

Anmar Abuhamdah* and Masri Ayob

Data Mining and Optimization Group (DMO), Centre of Artificial Intelligence Technology (CAIT) Faculty of Computer

Science, Universiti Kebangsaan Malaysia, Selangor, 43600, UKM, Selangor, Malaysia.

Accepted 1 December, 2010

This work proposes an Adaptive Randomized Descent Algorithm (ARDA) for solving university course
timetabling problems. The work aims is to produce an adaptive algorithm that can produce good quality
timetable by assigning a set of courses (events) and students to a fixed number of timeslots and rooms
subject to a set of constraints. ARDA delays the comparison between the quality of the candidate
solution and the current solution. ARDA use a threshold value (that is calculated based on the average
quality of some recently accepted solution) as an acceptance criterion. ARDA can adaptively manage to
escape from local optima by intelligently changing the threshold value when the search is trap in local
optima. This is done by estimating an appropriate threshold value based on the history of the search.
Results tested on the Socha’s benchmark datasets showed that, ARDA produces significantly good
quality solutions when compared with late acceptance strategy in hill climbing, average late
randomized descent within a reasonable time and comparable to other approaches tested on Socha’s
dataset.

Key words: Course timetabling problems, late acceptance strategy hill climbing.

�

�

INTRODUCTION

Generally, university course timetabling problems involves
assigning a set of courses (events), teachers and students
to a fixed number of timeslots and rooms (Petrovic and
Burke, 2004) subject to variety of constrains. Constraints
in a timetabling problem can be classified as hard and
soft constraints (Petrovic and Burke, 2004). The goal of
timetabling is to satisfy all hard constraints and attempt to
accommodate the soft constraints as much as possible
(for producing a high-quality timetable). A feasible
timetable must satisfy all hard constraints, whilst soft
constraints can be violated if necessary, but each violation
of the soft constraints will be penalized. A smaller penalty
value indicates a good quality timetable. University course

*Corresponding author. E-mail: anmar@ftsm.ukm.my. Tel:
0060173668114.

timetabling problem has been classified as an NP-hard
problem, to which it is difficult to find an optimal solution
within a reasonable time (Schaerf, 1995). Finding good-
quality solutions to these problems depends on the
technique itself and the structure employed during the
search (Schaerf, 1995).

In the last few years, a lot of approaches had been
applied to solve university course timetabling problems.
Some of these approaches are great deluge (Burke et al.,
2003), simulated annealing (Elmohamed et al., 1998)
tabu search (Costa, 1994) and randomized descent
method (Schaerf, 1999). For further information on
previous works, please refer to the following
survey/overview papers (Schaerf, 1995; De Werra, 1985).
Recently, a new approach on timetabling problems based
on basic local search had been proposed by Burke and
Bykov (2008). In our previous work (Abuhamdah and
Ayob, 2010) we extended the work in Burke and Bykov

�

�

� �

Abuhamdah and Ayob 2517

Table 1. Eleven datasets (Socha et al., 2002; Chiarandini et al., 2006).

Dataset No. of students No. of events No. of rooms No. of features ApproxF/R F usage (%) CD
S1 80 100 5 5 3 0.7 10.96
S2 80 100 5 5 3 0.7 13.92
S3 80 100 5 5 3 0.7 9.71
S4 80 100 5 5 3 0.7 7.16
S5 80 100 5 5 3 0.7 15.10
M1 200 400 10 5 3 0.8 37.38
M2 200 400 10 5 3 0.8 37.66
M3 200 400 10 5 3 0.8 40.44
M4 200 400 10 5 3 0.8 37.50
M5 200 400 10 5 3 0.8 28.27
L 400 400 10 10 5 0.9 45.57

(2008), by introducing average late acceptance
randomized descent(ALARD), to solve university course
timetabling problem. However, both LAHC and ALARD
are descent heuristic. The disadvantage of the descent
heuristic techniques is that, they are incapable of
escaping local optima (minima) (Schaerf, 1999).

Therefore in this work, we propose an adaptive average
late acceptance randomized descent (ARDA), a new local
search heuristic (which is not descent heuristic) based on
randomized descent method (Schaerf, 1999) that extends
our previous work (Abuhamdah and Ayob, 2010). The aim
of this study is to investigate the performance of applying
the adaptive randomized descent algorithm for solving
university course timetabling problems. In order to
evaluate the effectiveness of the ARDA, we made a
comparison between the performance of ARDA, LAHC
(Burke and Bykov, 2008), ALARD (Abuhamdah and Ayob,
2010) and other approaches which were tested over
Socha’s university course timetabling datasets (Socha et
al., 2002).

Problem description

In this work, eleven datasets instances introduced by
Socha et al. (2002) were used, which only tackle the
students’ satisfaction for the university course timetabling
problem. The problem consists of: A set of rooms (R) in
which events can take place; a set of events (courses) (E)
to be scheduled in 45 timeslots (5 days of 9 h each with
one hour for each timeslot); a set of features (F)
characterizing the rooms and required by events; a set of
students (S) who attend the events. These datasets are
categorized into three groups, small (S1, S2, S3, S4 and
S5), medium (M1, M2, M3, M4 and M5) and large (L) as
shown in Table 1 (Socha et al., 2002). Table 1 also shows,
the conflict density (CD) for each dataset (representing

the complexity which is calculated as in Chiarandini et al.
(2006).

These datasets were collected from various real-world
university course timetabling problems (Socha et al.,
2002). The problem consists of three hard constraints
(Hc1, Hc2 and Hc3) and three soft constraints (Sc1, Sc2,
and Sc3) as follows: Hc1, No student can be assigned to
more than one event at the same time; Hc2, the room
capacity must be greater than or equal to all the attending
students and satisfy all the features required by the event
that assigned to it; Hc3, no more than one event can take
place in each room at same timeslot; Sc1, a student
should not have an event in the last time slot of the day;
Sc2, a student should not have more than two events
consecutively. Sc3, a student should not have a single
event on a day.

As in Socha et al. (2002), we measure the quality of
timetable by penalizing each violation of the soft or hard
constraints by ‘1’ for each student who is involved in this
situation. The quality of the candidate solution S*, f (S*), is
simply calculated as the summation between the hard
constraints violations hvc (total penalty of hvc) of S* for all
students and soft constraints violations svc (total penalty
of svc) of S* for all students (S equal total number of
students), as shown in Equation (1) by Rossi-Doria et al.
(2003).

��
==

+=
S

i

S

i

SsvcShvcSf
1

*

1

**)()()(
 (1)

Neighborhood structures

In this work, we use composite (Grabowski and Pempera,
2000) neighborhood structures with different five

�

�

� �

2518 Int. J. Phys. Sci.

neighborhood structures (NS1, NS2, NS3, NS4, and
NS5) for solving the university course timetabling problem
as in Abuhamdah and Ayob (2010). These are: NS1,
Randomly select two courses and swap their timeslots if
feasible (and swap their rooms if necessary); NS2,
Randomly select two timeslots and simply swap all the
courses in one timeslot with all the courses in the other
timeslot; NS3, Randomly select four courses and swap
their timeslots if feasible (and rooms if necessary); NS4,
Randomly select a course, feasible timeslot and feasible
room and move the course to the new timeslot (and move
the course to the new room if necessary); NS5, Choose
the highest penalty courses from a random 15% selection
of the courses and assign to random feasible timeslots.

The Adaptive Randomized Descent Algorithm (ARDA)

The adaptive average late acceptance randomized
descent is an improvement heuristic based on late
acceptance strategy in hill climbing (LAHC) which was
proposed by Burke and Bykov (2008). The idea of LAHC
is to delay the comparison between the qualities of the
candidate solution with a solution quality, which was
“current” several steps before the current solution. This is
done by maintaining a list of accepted solution’s quality
(value of the penalty cost).

LAHC allows some worsening moves and it have a
single parameter (the list length) (Burke and Bykov,
2008), whilst other algorithm such as simulated annealing
and great deluge have a function (Burke and Bykov,
2008).The list in LAHC, is used as the acceptance
criterion (Burke and Bykov, 2008). LAHC is free from
drawback except need to investigate the suitable length of
the list. Whilst, other algorithm such as tabu search (when
we increase of the length of the tabu list) always causes
higher computational expense (Burke and Bykov, 2008).
In LAHC, the search can maintain a list of any length
without extra expense (Burke and Bykov, 2008). On the
other hand, the limitation of LAHC is to decide a suitable
length of list L for each different benchmark problem
(Burke and Bykov, 2008).

Therefore, in our previous work, we proposed the
average late acceptance randomized descent (ALARD)
(Abuhamdah and Ayob, 2010), which is based on LAHC
idea, but use an average value of the values in a list of
accepted solution as the acceptance criterion
(Abuhamdah and Ayob, 2010). However, both LAHC and
ALARD are descent heuristics (where they only accept
solutions that are better than or equal quality of the
selected solution or average quality, respectively). Thus,
they can easily be trapped in local optima. In respect to
this, we propose (a non descent heuristic) the adaptive
average late acceptance randomized descent (ARDA,
which enhance the ALARD approach) to overcome the

weakness in LAHC and ALARD.

As in ALARD, ARDA also use a threshold value as an
acceptance criterion. Apart from that, ARDA can
adaptively manage to escape from local optima by adding
the estimated value to the values in list L, which increases
the threshold value. That is, we allow some slightly worse
solution to be accepted which might help the algorithm to
escape from a local optima. The following shows the
pseudo code for ARDA to solve university course
timetabling problems.

In this work, we used a constructive heuristic that was
originally proposed by Landa-Silva and Obit (2008) to
produce an initial solution and we implemented five
different neighborhood structures (NS1, NS2, NS3, NS
and NS5) as in Abuhamdah and Ayob (2010), which are
simultaneous with Grabowski and Pempera (2000).

ARDA pseudo code

Given an initial solution, So and its quality, as f(So); Let
Sbest , be the best obtained solution, f(Sbest), be the quality
of Sbest ; S*, be the candidate solution, f(S*) be the quality
of S*; L, be the list of accepted solutions quality of the
length ARD; Avg, be the average of the values in L; N, be
the maximum number of iterations; n be the number of
iterations; IT, be the maximum number of idle IT; EV, be
the estimated value; Idle be the idle Iterations; arrayc, be
the counter for the length of the array that stored EV. The
pseudo code for ARDA to solve university course
timetabling problems can be seen in Figure 1.

Figure 1 shows that, our approach starts with a given
initial solution So and quality of So, as f(So). Let Sbest be the
best obtained solution, f(Sbest), be the quality of Sbest ; S,*
be the candidate solution, f(S*), be the quality of S*;
LLength, be the length of the list L; Avg, be the average of
the values in L; EV, be the estimated value stored in the
list A; Idle, be the ARDA idle Iterations. ARDA-RR starts
by initializing the required parameters (Step 1, Figure 1)
by assigning all elements in L equal to the quality of the
initial solution f(So) and set the average value, Avg equal
to f(So). In this work, we use a fix size of L (L size = 20). In
the improvement phase (Step2), we iteratively improve the
initial solution So until the stopping criteria is met. At this
phase, we generate some neighbour solutions (in our
case, randomly generate some “5” feasible neighbours
from each neighborhood of the five neighbourhoods (NS1-
NS5)) and the best feasible neighbour (S*) will be selected
to be the candidate solution (Step 2.1).

At each iteration, if the candidate solution S* better is
better than the best solution Sbest, then we will accept the
solution S* (Step 2.2, that is So = S*), update the
frequency of EV in the list A, update f(Sbest) = f(S*) and
sort the element in descending order based on their
frequency or if f(S*) is just better than Avg, we will only

�

�

� �

Abuhamdah and Ayob 2519

 Step 1: Initialization phase
 Determine initial candidate solution So and f(So)
 Set idle = 0; Sbest=So; f(Sbest)= f(So);
 Set L Values = f(So); Avg=average of L values;
 Step 2: Improvement (Iterative) Phase

 while termination condition is not satisfied :
 Step 2.1: Generate some neighbor solutions
 and choose the best Neighbor S*;
 Step 2.2: Accepting Solution
 if f(S*) < f(Sbest)
 Idle =0; EV= f(So) - f(S*);
 Sbest:=S*; f(Sbest)=f(So); So=S*;
 Update the frequency of EV in the A (or
 add EV in A if it is not exist).
 Sort the EV elements in A in descending

 order based on their frequency.
 elseif f(S*) < Avg // good solution

 Replace the element value that was the
 longest time in L with f(S*);
 Idle =0; So= S*; Recalculate Avg;
 else // bad solution
 So= Sbest; Idle = Idle + 1;

 end if
 Step 2.3: Idle Iteration
 if Idle >= Maximum number of Idle iterations
 EV = A [0]; // get the first element in A
 Add all values in L with EV;
 Rotate left all elements in A;

 Recalculate Avg;
 end if
 end while
 Step 3: Termination phase

 Return the best found solution Sbest

Figure 1. ARDA pseudo code.

accept f(S*) and replace the element value that was the
longest time in L with the quality of the new accepted
solution. We then recalculate Avg, otherwise, the S* will
be rejected. We will then, increase the idle iteration by
one, updating So= Sbest and proceed with the next
iteration. In Step 2.3, we set the estimated value, EV
equals to the first value in A (the one with the highest
marked of repetition), when number of idle iterations
equals to the maximum number of idle, then, we update
all values in L (by adding EV to the values), update all
values in A (by rotate left all elements in A) and
recalculate Avg.

In the termination phase Step3, we return the best
solution found Sbest , after we iteratively improving the
initial solution So until the stopping condition is met (Step
2). The main differences between ARDA, LAHC and

ALARD are as follows: (1) ARDA and ALARD use an
average value of the values in a list of accepted solution
as the acceptance criterion, whilst in LAHC; the
acceptance criterion is based on the one of the selected
accepted solution cost values; (2) ARDA and ALARD
differs from the basic LAHC as it uses randomized
descent method (which evaluate more possible
neighbors) that, may lead to better improvement instead
of using simple hill climbing; ARDA can adaptively
attempts’ to escape from local optima by intelligently
changing the threshold value when the search trap in local
optima (when the quality of the generated solutions from
some neighborhoods are not better than the best obtained
solution quality). This is done by estimating an appropriate
threshold value based on history of search (by counting
the number of idle iteration and using the counter for

�

�

� �

2520 Int. J. Phys. Sci.

Table 2. Comparison between our methodology and other local hybrid meta-heuristic search results on course timetabling problem.

ARDA
Dataset

Min Avg
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

S1 0 0.73 0 0 0 0 0 0 0 3 0 0 0 0
S2 0 0.82 0 0 0 0 0 0 0 4 0 0 0 0
S3 0 1.55 0 0 0 0 0 0 0 6 0 0 0 0
S4 0 1.45 0 0 0 0 0 0 0 6 0 0 0 0
S5 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0
M1 82 96.73 77 80 93 143 153 338 242 140 168 221 55 71
M2 78 93.45 73 105 98 130 137 326 161 130 160 147 70 82
M3 136 151.45 133 139 149 183 207 384 265 189 176 246 102 137
M4 73 93.36 69 88 103 133 142 299 181 112 144 165 32 55
M5 103 120.73 101 88 98 169 186 307 151 141 71 130 61 106
L 680 700.72 627 730 680 825 863 - - 876 417 529 653 777

R1, HPCA (Abuhamdah and Ayob, 2009); R2, EGD (McMullan, 2008); R3, DSSA (Abdullah et al., 2010); R4, ALARD (Abuhamdah and Ayob,
2010); R5, LAHC (Abuhamdah and Ayob, 2010); R6, VNS-TS (Abdullah et al., 2005); R7, RII-CN (Abdullah et al., 2007); R8, NLGD (Obit et
al., 2009); R9, MHSA (Al-Betar et al., 2010); R10, HEA (Abdullah et al., 2007); R11, TB-MA (Turabieh and Abdullah, 2009); R12, NLGDHH-SM
(Obit et al., 2009).

improvement rate, EV). Whereas, the accepting criterion
for LAHC and ALARD are static, which may easily be
trapped in local optima.

RESULTS

In this work, the results of our algorithm were obtained out
of 11 runs and 200,000 iterations and tested on a PC with
an Intel dual core 1800 MHz, 1GB RAM. Table 2 shows
the comparison between our ARDA approaches LAHC,
ALARD and other local hybrid meta-heuristic searches
that were tested on Socha benchmark datasets. The best
results are presented in bold. Results in Table 2 show that,
ARDA outperformed LAHC (R5) and ALARD (R4) in all
datasets and are comparable to other results. For small
datasets, we obtain our results within 3 to 10 min, whilst,
for medium and large datasets, we took between 4 to 9 h
to achieve the results. Results in Table 2 also show that,
among these approaches, Turabieh and Abdullah (2009)
in R11, which applied incorporating Tabu search into
memetic approach for enrolment-based university course
timetabling problems; have outperformed many other
approaches in the literature (with regards to Socha
benchmark datasets).

Whereas Al-Betar et al. (2010) in R9, applied a harmony
search with multi-pitch adjusting rate for the university
course timetabling. They also obtained optimal solution for
all small datasets and the result for all medium datasets
obtained within the range of published results. Meanwhile,
they obtained the best result for medium 5 dataset.
Meanwhile, the observation of the results obtained

indicates that, ARDA performed well and obtained a good
quality solution for all small, medium and large datasets.
The results of all small datasets scored zero, the same as
some of the published results; medium and large
datasets were within the range of the published results.
The results in Table 2 also shows that, ARDA obtained
better solutions than single based local search results
and obtained a very good-quality solution.

Figure 2 shows the box and whisker plot details of the
ARDA results for 11 runs (Figure 2) shows, the box and
whisker plot that summarize the results of 11 runs for each
dataset by ARDA algorithm on Socha benchmark
datasets. For all small (except small 4) and medium 2
datasets, we can see that, most of the runs produced high
quality solution that are close to the best. This indicates
that, the algorithm is stable and consistent and most of the
time can produce very good quality solution. The result
also shows that, ARDA is capable of producing high
quality solutions for all datasets and are comparable with
the best-known results obtained in literature. Table 3
present details analysis of the ARDA algorithms on the
Socha benchmark datasets. Results in Table 3 show that,
ARDA performance is consistent in producing good quality
results indicated by smaller values in the standard
deviation. As our algorithm can produce good quality
solution in the same range of time when compared with
the result obtained by other approaches in Table 2.

DISCUSSION

This work had proposed a new heuristic search called an

�

�

� �

Abuhamdah and Ayob 2521

P
en

al
ty

 c
os

t

P
en

al
ty

 c
os

t

P
en

al
ty

 c
os

t

Figure 2. Box and whisker plot of ARDA for all datasets.�

Table 3. Statistical analysis of our algorithm (ARDA) applied to Socha benchmark datasets.

Dataset fmin favg Std. dev.(�) Iter Time/s
s1 0 0.73 1.01 8600 166
s2 0 0.82 1.08 9537 189
s3 0 1.55 1.29 13655 267
s4 0 1.45 1.04 11694 228
s5 0 0.55 0.69 8694 159
m1 82 96.73 8.34 120350 21514
m2 78 93.45 10.03 107638 19568
m3 136 151.45 7.80 149365 23569
m4 73 93.36 10.59 165486 27522
m5 103 120.73 12.80 154620 25656

l 680 700.72 14.49 117620 28501

fmin, is the best score out of 11 runs; favg, the average score for all the 11 runs; �, the standard deviation for all the
11 runs; Iter, total number of iteration proceeding to find that best score solution; Time/s, total CPU time on our
computer needed to find the best score solution.

�

�

� �

2522 Int. J. Phys. Sci.

adaptive randomized descent algorithm (ARDA) to solve
university course timetabling problems. Our works is an
extension to average late acceptance randomized
descent (ALARD), which is based on late acceptance
strategy hill climbing (LAHC) that was proposed by Burke
and Bykov (2008). The idea of ARDA, ALARD and LAHC
are to delay the comparison between the quality of the
candidate solution and the current solution. ARDA and
ALARD use a threshold value as an acceptance criterion,
whilst, LAHC use a selected solution’s quality from a list of
recently accepted solution’s quality as acceptance
criterion. ARDA can adaptively manage to escape from
local optima by intelligently increasing the threshold when
the search is trapped in local optima, which is done by
estimating appropriate threshold values based on history
of search. Whilst, LAHC and ALARD do not have this
capability.

In order to evaluate the effectiveness of ARDA for
solving the university course timetabling problem, we test
ARDA on Socha benchmark dataset (Socha et al., 2002).
Results indicated that, the performance of ARDA
approach is comparable to the other approaches in the
literature and capable of producing good-quality solutions
in reasonable time. Our future work will investigate on how
to intelligently manage neighborhood structures in order to
enhance the performance of ARDA.

REFERENCES

Abdullah S, Burke EK, McCollum B (2005). An Investigation of Variable

Neighbourhood Search for Course Timetabling”. In: The Proceedings
of the 2nd nnnMultidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2005), New York, USA,
July 18th-21st, p. 413-427.

Abdullah S, Burke EK, Mccollum B (2007). A hybrid evolutionary
approach to the university course timetabling problem. IEEE Congres
on Evolutionary Computation, Singapore, p. 1764-1768.

Abdullah S, Burke EK, McCollum B (2007). Using a Randomised
Iterative Improvement Algorithm with Composite Neighbourhood
Structures for the University Course Timetabling Problem. In
Proceedings of MIC05: The 6th Metaheuristic International
Conference, Vienna, Austria, In Metaheuristics - Progress in Complex
Systems Optimization, Computer Science Interfaces Book Series,
Springer Operations Research, ISBN-13:978-0-387-71919-1, 39:
153-169.

Abdullah S, Shaker K, McCollum B, McMullan P (2010). Dual Sequence
Simulated Annealing with Round-Robin Approach for University
Course Timetabling. In: Evolutionary Computation in Combinatorial
Optimization, LNCS, Volume 6022, Springer Berlin, Heidelberg, 1-10.

Abuhamdah A, Ayob M (2009). Hybridization Multi-Neighbourhood
Particle Collision Algorithm and Great Deluge for Solving Course
Timetabling Problems. Proceeding in 2009 2nd Conference On Data
Mining and Optimization, 27-28 October 2009, Selangor, Malaysia,
IEEE, 108-114, October.

Abuhamdah A, Ayob M (2010). Average Late Acceptance Randomized
Descent Algorithm for Solving Course Timetabling Problems.
Proceeding in 4th International Symposium on Information
Technology, Selangor, Malaysia, IEEE, 2(15-17): 748-753.

Al-Betar M, Khader A, Yi Liao I (2010). A Harmony Search with Multi-

pitch Adjusting Rate for the University Course Timetabling. In: Recent
Advances In Harmony Search Algorithm, 270/2010, Springer Berlin /
Heidelberg, pp. 147-161.

Burke EK, Bykov Y (2008). A Late Acceptance Strategy in Hill-Climbing
for Exam Timetabling Problems. in the Proceeding PATAT '08,
Proceedings of the 7th International Conference on the Practice and
Theory of Automated Timetabling, Universit de Montral, Montreal,
Canada, August.

Burke EK, Bykov Y Newall J, Petrovic S (2003). A time-predefined
approach to course timetabling. Yugoslav J. Operations Res.,
(YUJOR), 13(2): 139-151.

Chiarandini M, Birattari M, Socha K, Rossi-Doria O (2006). An effective
hybrid algorithm for university course Timetabling. Proceeding in J.
Scheduling, 9(5): October, 2006, Springer Netherlands, 403-432.

Costa D (1994). A tabu search for computing an operational timetable.
Eur. J. Oper. Res., 76: 98-110.

De Werra D (1985). An Introduction to Timetabling. Eur. J. Oper. Res.,
19: 151-162.

Elmohamed MAS, Coddington P, Fox G (1998). A comparison of
annealing techniques for academic course scheduling. Selected
Papers from 2nd International Conference on the Practice and
Theory of Automated Timetabling (PATAT II), Toronto, Canada,
Lecture Notes in Computer Science 1408, Springer-Verlag., pp. 92-
112.

Grabowski J, Pempera J (2000). Sequencing of jobs in some production
system”. Theory and methodology. Eur. J. Oper. Res., 125: 535-550.

Landa-Silva D, Obit JH (2008).Great Deluge with Non-linear Decay
Rate for Course timetabling Problems, 2008 4th International IEEE
Conference Intelligent Systems, 978-1-4244-1739-1/08/.

McMullan P (2008). An Extended Implementation of the Great Deluge
Algorithm for Course Timetabling, ICCS International Conference of
Computational Science, Part I, LNCS Lecture Note in Computer
Science, vol. 4487: 538-545, Springer-Verlag Berlin Heidelberg,
Germany.

Obit JH, Landa-Silva D, Ouelhadj D, Sevaux M (2009). Non-Linear
Great Deluge with Learning Mechanism for Solving the Course
Timetabling Problem. MIC 2009: The VIII Metaheuristics International
Conference, Hamburg, Germany, pp.id1-id10.

Petrovic S, Burke EK (2004). University timetabling, Ch. 45 in the
Handbook of Scheduling: Algorithms, Models, and Performance
Analysis (eds. J. Leung), Chapman Hall/CRC Press.

Rossi-Doria O, Samples M, Birattari M, Chiarandini M, Dorigo M,
Gambardella M, Knowels J, Manfrin M, Mastrolilli M, Paechter B,
Paquete L, Stultzle T (2003). A Comparison of the Performance of
Different Metaheuristics on the Timetabling Problem. Burke, E.K., De
Causmaecker, P. (eds.) PATAT 2002. LNCS, Springer, Heidelberg,
2740: 329–354.

Schaerf A (1995). A Survey of Automated Timetabling, Technical Report
CS-R9567, CWI, Amsterdam, NL.

Schaerf A (1999). Local Search Techniques for Large High-School
Timetabling Problems. systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on Volume, 29(4): 368-
377.

Socha K, Knowles J, Samples M (2002). A max-min ant system for the
university course timetabling problem. Proceedings of the 3rd
International Workshop on Ant Algorithms, ANTS 2002, Springer
Lecture Notes in Computer Science, 2463(10): 1-13.

Turabieh H, Abdullah S (2009). Tabu based Memmetic approach,
Incorporating Tabu Search into Memetic approach for enrolment-
based course timetabling problems. (TS-MA), Proceeding in the 2nd
Conference On Data Mining and Optimization, Selangor, Malaysia,
IEEE, pp. 115-119.

