

International Journal of the Physical Sciences Vol. 7(25), pp. 4012-4025, 29 June, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS12.160
ISSN 1992-1950 © 2012 Academic Journals

Full Length Research Paper

Mapping extensible markup language document with
relational database management system

Mohammed Adam Ibrahim Fakharaldien, Khalid Edris, Jasni Mohamed Zain and
Norrozila Sulaiman

Faculty of Computer System and Software Engineering, University Malaysia Pahang, Malaysia.

Accepted 14 June, 2012

The extensible markup language (XML) is designed for data representation with conciseness,
generalization, and usability through the internet, however, this technology requires an appropriate
medium for the storage of data. The approach, named XRecursive, is proposed to store and retrieve
XML documents using relational database, which is applied to all internal nodes mapped by Schema-
oblivious, and all the leaf nodes mapped by Schema-conscious. The XRecursive storage model of XML
data querying can effectively reduce the search range and to improve the search speed. The
XRecursive storage model for querying data is more efficient than the Edge models, further, it is easy
to implement and simpler than the XRel model. XRecursive model is suitable for the storage of XML
documents, which is based on a relational database without document type definition (DTD) or XML
schema information.

Key words: Extensible markup language (XML), relational database, document type definition (DTD).

INTRODUCTION

XML is rapidly becoming the chief standard for data
conversion through the internet. At present, it plays an
essential role in data management, interchangeability,
and transformation. XML had accomplished the extensive
assistance and application in all the principal areas such
as software, tools, services, and database suppliers
(Grandi et al., 2003). Importantly, XML has become the
commonest language by the economic cost of searching,
processing, exchanging, and reusing information. XML
provides a self-describing and standardized method for
representing information in a way that is understandable
by humans and effortlessly confirmed, transformed, and
distributed. In order to elevate the efficiency of querying
and processing data, many researchers always seek the
optimal method for storing XML documents (Sainan et al.,
2009). On the other hand, to take advantage of the new
ubiquitousness of associated software applications,

*Corresponding author. E-mail: braziliy@yahoo.com.

the data can be used for transmission inorder to remote
services anywhere using XML-based Web services by
the internet.

The openness of XML (Augeriet et al., 2007) permits it
to be virtually exchanged between any operating system,
hardware, and software (Szlavik et al., 2006) from Queen
Mary University, London, whereby they studied the role of
automatic summarization on XML retrieval system, and
offered the following conclusions: the use of XML
summary is very active; searchers will spend more time
on reading the summary of the document, rather than
reading the full text directly. This means that by viewing
the summary, the users decide which part of the
document is worth reading (Szlavik et al., 2006).
Research on automatic summarization has also attracted
the majority of research institutions and enterprises.
Document Understanding Conference, which is held
annually since 2001, provides an international evaluation
platform for researchers. The history of evaluation tasks,
automatic abstracting, and information retrieval have
widened their perspectives.

With the tendency of expanding a number of XML
documents on the World Wide Web (WWW), it is neces-
sary to have a powerful and well-organized mechanism
for storing and querying XML documents to
utilize the technology efficiently. Nowadays XML appears
to be a standard for symbolizing data on the WWW when
the influential storage instrument for data structure is the
relational database (Zafari et al., 2010). The relational
databases have been a powerful implementation of
the storage, search, and data retrieval from various data
collection. The proficiency of mapping XML data in
relational database is an obstinate and challenging
operation for researchers in the world. Thus, there is an
urgent need to enhance an interface and an instrument
for efficiently mapping and storing XML data in relational
database. Relational databases are used especially for
relating separated data records and grouping by types.
Researchers can exploit these records as their
necessities using Structured Query Language (SQL), and
at the same time, introduce one or more records to
terminal users. The data storage was transfigured by the
relational database pattern for its efficiency, simplicity,
and economic costs.

Relational databases have been exploited extensively
in huge organizations since the 1980s, and it is probable
to preserve the prevailing storage mechanism for
business data in the foreseeable future. In spite of these
potentials, relational databases still require the flexibility
to perfectly integrate with other structures (Reed, 2008).
In addition, although relational databases possess many
similarities, there are major differences in the major
commercial implementations. Thus, it is difficult to
develop further applications and integrate with multiple
products. The obstacles are distinctive according to data
types, various levels of correspondence to the SQL
standard, proprietary extensions to SQL, and so on. For
storing of an XML document, the problem is to convert its
tree structure into tuples of relational tables (Yue et al.,
2008).

Nowadays, some data are represented in the form of
XML document, the requirement of persistently storing
these data has been enlarged promptly in database
application. In addition, the native–XML databases
normally have some limitations in supporting relational
databases. In recent years, with the universality of
relational databases (RDB) (Sybase Corporation: 1999;
Yoshikawa et al., 2001; Xparent: 2002; Jiang et al., 2002;
Kyung-Soo, 2001; Rys, 2000), these RDB-based
approaches have properly stored and manipulated XML
data as relational tables. There is a need to seamlessly
manage XML and relational data with equivalent storage
and retrieval capabilities.

Furthermore, Sandeep et al. (2006) proposed a
schema-oblivious strategy-- Sucxent++ (Schema
Unconscious XML Enabled System), which out-performs
existing schema-oblivious methods such as XParent by

Fakharaldien et al. 4013

up to 15 times and 8 times for recursive query execution.
Moreover, XML and Relational databases should not be
remained independently, since XML has been presented
as the general standard format of data for expressing and
interchanging information, whereas the majority of
existing data are stored in RDBMS and the capability
power of data does not allow downgrading. Therefore, in
relational databases, an efficient method for storing XML
documents is a prerequisite to solving this problem.

A novel efficient method for storing XML document in
the relational database is presented in this paper. The
objective is to resolve these problems by the combination
of Schema-conscious and Schema-oblivious approach.
The Storage of XML documents in a relational database
is an encouraging solution because relational databases
are very common in today’s computer world. The
advantage is that XML and structured data can survive
together in a relational database, which makes it possible
to constitute applications involving both data without extra
effort. The method does not need a DTD or XML schema.
Also, it can be applied as a general solution to any XML
data; to all internal nodes mapped by Schema-oblivious;
and to all the leaf nodes mapped by Schema-con-
scious. The steps and algorithms are shown in detail and
a description to use the storing structure for storing and
querying XML documents in relational database is given.
The experimental results are handled on a real database.
It shows that the performance of the proposed algorithm
obtains a better result in terms of storage size, insertion
time, retrieval time, and querying performances,
compared with SUCXENT and XParent. The rest of this
paper is organized as follows. Reviews of the XML
databases are presented. Also, description of the
proposed XRecursive algorithm is also discussed. The
experimental and comparison results were depicted and
finally, the conclusion of this work is given.

LITERATURE REVIEW

Many researchers have introduced a large amount of
different procedures for storing XML documents into the
database (RDB). These techniques can generally be
classified into three tracks: semi-structured database
(Goldman et al., 1999), object-oriented database
(Bancihon et al., 1988), and relational systems
(Shanmugasundaram et al., 1999; Yoshikawa et al.,
2001; Jiang et al., 2002; Florescu and Kossman, 1999;
Ramanath et al., 2003; Bohannon et al., 2002; Tatarinov
et al., 2001; and Zhang et al., 2002). In the above-
mentioned methods, the relational storage channel has
fascinated noticeable interests with an outlook for
leveraging their influential and credible data-management
services. The purpose of mapping XML documents into
relational database is to exploit relational database power
capabilities in indexes, triggers, data integrity and

4014 Int. J. Phys. Sci.

security and query optimization by SQL in order to store
an XML document in a relational database.

First of all, the tree structure of the XML document
should be mapped into the schema which is provided
with equivalent, flat, and relational characteristics.
Additionally, the XML document is represented by means
of mapped tables in a shredded and loaded way. Next,
the queries of XML are converted into SQL, and then
complied into the RDBMS. Finally, the results are re-
translated into XML. There are a lot of literatures
for proposing the issue of administering XML documents
in relational back-ends (Shanmugasundaram et al., 1999;
Yoshikawa et al., 2001; Jiang et al., 2002; Florescu and
Kossman, 1999; Zhang et al., 2002). These approaches
can be classified into two major categories as follows.

Schema-conscious approach

This approach initially produces a relational schema by
using the DTD/schema of the XML documents. Firstly,
it constituted the cardinality of the relationship with the
nodes in the XML document. According to the
established information, a relational schema is designed.
The structural information of XML data is modeled by
using the foreign-key and primary-key, which link to the
parent–child relationships of the XML tree in the relational
database's model. The approach is applied to Shared-
Inlining (Shanmugasundaram et al., 1999), LegoDB
(Bohannon et al., 2002; Ramanath et al., 2003). It is
clear that this method is a dependent of the existing
schema to illustrate the XML data. Additionally, owing to
the heterogeneity of XML data, an uncomplicated XML
schema/DTD often presents a relational schema with
many tables in this approach.

Schema-oblivious approach

This approach supplies a regular schema involving the
use of the storage of XML documents. The fundamental
concept is to capture the tree structure in an XML
document. The method does not involve the existence of
an XML schema/DTD and the number of tables settled in
the relational schema, also it does not rest on the
structural heterogeneity of XML documents. The
Schema-oblivious approaches are applied to the Edge
approach (Florescu and Kossman, 1999), XRel
(Yoshikawa et al., 2001), XParent (Jiang et al., 2002),
and SUCXENT (Prakash et al., 2004). In Schema-
oblivious approaches, it is obvious that the advantage
of this method is its ability to handle the changing XML
schema, the unnecessary alteration of the relational
schema, and a uniformed querying translation method.
On the other hand, Schema-conscious approach has
efficient performance of query processing (Tian et al.,
2002). Furthermore, for the schema-conscious approach,

there are no special needs for relational schema to be
designed as it can be generated based on the DTD of the
XML document(s).

Edge approach

The commencing point is one or a series of XML
documents (Florescu and Kossman, 1999). The
researchers suggested parsing and scanning these
documents one by one and store all information into
relational tables. For downrightness, an XML document
can be shown on a labeled and ordered directed graph.
In addition, every XML element can be designated by one
node in the graph; whereas in the XML object, the
node can be labeled with the OID. In the graph, the
relationships between element and sub-element are
designated by edges and are labeled by the name of the
sub-element. In an XML object, in order to design the
order of sub-elements, the outgoing edges of a node
are also shown in the graph.

The graph shows the leaves’ represented values (e.g.,
strings) of an XML document. In a relational database, six
ways are considered to store XML data (that is graphs):
three optional methods are designed for storing the
edges of a graph, and two alternative ways to store the
leaves (that is, values). Consequently, three trials are
applied to two varied schemes. Other approaches and
variations of these ideas are discussed and described in
(Florescu and Kossmann, 1999). Particularly, the
researchers proposed and described an approach, which
would take advantage of features in an object-relational
database system for storing multi-valued attributes
(Florescu and Kossmann, 1999).

Using a graph to describe the XML data is a
simplification, and some information can be vanished in
this process. The interpretation is that the graph model is
different between references (i.e., IDREFs) and sub-
elements, or between attributes sand XML sub-elements.
Thus, the original XML document cannot be restored
precisely from the relational data. However, in the
relational database, the processes of simplifications can
be readily alleviated with additional bookkeeping.

In the graph, the simplest approach to attain the
accumulation of all edges which designates an XML
document in the edge table is a single table. In the graph,
the OIDs of the source and objectives of each edge are
recorded by using the Edge table, as well as recorded
elements including the label, the edge, a flag that shows
whether the edges denote an inter-object reference (that
is, an internal node) or point to a value (that is, a leaf),
and an ordinal number because the edges are ordered.
The mapping methods the author investigated are
remarkably simple. Due to the simplified schemes, these
will not be the best options, but the experimental results
suggest that even with such straightforward mapping

methods, it is feasible to obtain extremely good
performance of querying. The only process which had
unpleasantly high cost was entirely restructuring an
exceptionally large XML document; the more complex the
mapping techniques, the weaker would be the
performance in this process.

This scheme was only the first stage towards deter-
mining the best way for storing XML data. The experi-
mental results can be applied as a source to develop and
construct more complex mapping techniques. Addi-
tionally, further experimental results with various types of
XML data, synthetic and real, are required. Further, other
characteristics such as locking activities, and authori-
zation, need to be considered. Furthermore, the
performance of experimental results with the storage of
OODBMSs and particular-target XML data should also be
controlled. From the authors' web pages, XML-QL and
SQL queries and the XML documents can be retrieved,
which can be applied in the experiments.

XRel

a)The XRel method is applied to store XML data graphs
in four tables: Path (PathID, Pathexp); b) Element (DocId,
PathID, Start, End, Ordinal); c) Text (DocId, PathID,
Start, End, Value); and d) Attribute (DocId, PathID, Start,
End, Value) (Yoshikawa, 2001).

The database attributes DocId, PathId, Start, End, and
Value denote the documental identifier, simple path
representation identifier, starting location of a section,
terminal location of a section, and string-value, respec-
tively. In an XML document, the section of a node is the
starting and terminal locations of this node. The section,
or the pair of starting and terminal locations, indicates a
containment connection. ‘…with sections, the order of
documents among attribute nodes with sharing the
identical parent element node is left implementation
determined in the description of the XPath data model’
(Yoshikawa, 2001).

The unique characteristic of XRel is that there is no
node identifier as a requirement for storing XML data
graphs. As a substitute, the starting and terminal
locations are applied. The structures of attribute and text
nodes are stored by XRel in the Text table. The method
suggested that the retrieval and storage of XML
documents are applied to relational databases XRel, on
the other hand, enables us to build an XPath interface
based on the relational databases.

In the method, the researchers controlled expansion to
functions and types, and did not require any particular
indexing arrangement for query processing. However,
some expansions may be required; for instance, the
types of abstract data for the synchronization of querying
results would be needed if these are required to
implement an XML-QL interface. Furthermore, since the

Fakharaldien et al. 4015

method does not need to apply a specific full-text search
pattern, it might not realize high performance on querying
retrieval. Therefore, it is essential to propose types of
abstract data to enhance performance. For document
content, full-text search is essential for data types and
XML schemas, and supports for document updates.

XParent

The features of XParent are as follows:

a) XParent is an edge-oriented method. The XParent
schema obviously supports data-paths and label-paths in
two different tables: datapath and labelpath. DataPath
provides the interior construction of XML data graphs
based on a relationship of parent and child. LabelPath
retains all distinctive label paths as tuples. For DataPath,
it can be further emerged into an Ancestor table to
establish the relationship between the descendant and
the ancestor. Data and elements (attributes or texts) are
appended to data-paths. A data-path is recognized by the
terminal node identifier (Did for data-path id).
b) In order to differentiate the edge scheme, XParent
maintains the distinguishing label-paths as data in a
table. By using the information, XParent can simply
process standard path queries, for instance, DBGroup.*.
Name. For the querying process, XParent can identify all
the paths that can match with DBGroup.*.Name in
LabelPath. Therefore, in the Data table, XParent can
recognize the values assigned to the end of those paths
by using the path identifiers.
c) To differentiate the Monet's scheme, XParent arranges
datapaths in a single table. To simplify the queries of a
single path, this technique is inferior to Monet. However,
XParent is predicted to surpass Monet in standard path
queries, which is the major influence of XML queries. For
instance, an XML query may include two *" paths. With
Monet, a *" path matches with a group of tables; the
other *" path matches with another group of tables. If
there is a junction necessity on the data bound to these
two *" paths, every table in a group of tables requires to
connect all tables in the other group, additionally, since
all label-paths are deliberated as relation names, an
additional software module is forced to evaluate the label-
paths and recognise relations to be applied.
d) XParent applies the equivalent schema, such as XRel
and The Did (data-path id) to replace the start and end
pairs used in XRel. XParent can be advanced by the
traditional indexing mechanisms like the B-tree. Equijoins
will be used for the replacement of µ-joins.

METHODOLOGY

XML document

The data of XML document is the hierarchical structure, including

4016 Int. J. Phys. Sci.

 <? Xml version="1.0" encoding="UTF-8"?>

<Personnel>

<Employee type="permanent">

<Name>Seagull</Name>

<Id>3674</Id>

<Age>34</Age>

</Employee>

<Employee type="contract">

<Name>Robin</Name>

<Id>3675</Id>

<Age>25</Age>

</Employee>

<Employee type="permanent">

<Name>Crow</Name>

<Id>3676</Id>

<Age>28</Age>

</Employee>

</Personnel>

Figure 1. XML document.

nested structures. The beginning and ending tags strictly mark the
elements, and empty-elements tags are used to represent empty
elements. The content of the elements is expressed by
the Character data between tags. It is a sample of XML document
that comprises information about an employee which is shown in
Figure 1.

The tree structure representation of XML document

In Figure 2, the structure of the independent mapping method is
interpreted with a sample XML document indicated in Figure 1.

XRecursive structure

An XML document is generally expressed as an XML tree. In the
XML tree, internal nodes are expressed as element attributes in the

XML document, while the leaf nodes are expressed as elements of
the property values. The technique of XRecursive is applied to all
internal nodes mapped by Schema-oblivious, and all the leaf nodes
mapped by Schema-conscious. Internal nodes are used to describe
the structure of an XML document in the XML tree, and are only
useful for document navigation. Schema-oblivious can provide the
completed structure information in an XML document, which can
effectively and easily support the document traversal. Since leaf
nodes are the values of the elements in an XML document, they are
useful in navigating the XML and these leaf nodes can only store
the data values of nodes in an XML document. The data type of
each leaf node can be effectively described by using the Schema-
conscious storing data. In this way, flexible methods are provided
for storage according to various requirements.

(a) Storage within the node: In order to speed up the traversal
processes in the XML tree, the efficient numbering way is adopted
as the nodes coding in the XML tree, and at the same time it is very

Fakharaldien et al. 4017

Figure 2. Tree structure of XML document with XRecursive labeling.

important that the parent-child relationship between the elements
are rapidly decided based on this encoding scheme. With
XRecursive-based XML storage model, it is necessary to capture
the coded information of each node mapped to the relevant data
model. Note: XRecursive only needs to code for the internal nodes,
unlike most Schema-oblivious schemes need to identify all the
nodes in the XML.

Tatarinov et al. (2002) proposed three order encoding mode to
describe the XML order in the relevant data model. In these
methods, the Dewey order method is efficient to query and update
performance. Each node is assigned by an ID value, and the value
arrays are separated by points which are acquired by the path array
from the root to each node. The root node is assigned by a positive
integer, the ID of children nodes is expressed as adding a point
after the ID of the parents nodes, and then following the serial
number of the local node.

The XRecursive method is expressed by ancestor - descendant
relationship in the tree structure of Dewey order method in Figure 1.
It can be easily identified by the ID values. ID length determines the
depth of the tree, but the comparison between the ID strings
reduces the query performance, as well as the error of the former
generation which is passed to the descendants. O'Neil et al. (2004)
proposed ORDPATH method with new level labels to avoid the
above defects. ORDPATH provides a notation method by
compressing the binary encoding Dewey order. In this strategy,
each node ID value is represented by a continuous and variable-
length Li/Oi bit stream. Each Li bit stream is the preamble coding
mode, which is used to designate the length of Oi binary string in
the entire string. Here is an example: Li is expressed as 01,
designated the length with 3. Li describes the binary digit of Oi with
three-digit, and the binary string (000, 001, 010… 111) can be
expressed as the value of Oi with 8 integers (0, 1, 2… 7), for
example, 01101 is expressed as ordinal 5 (O'Neil et al., 2004).

XRecursive is designed by using ORDPATH as an internal node
coding, and building the document structure information in relational
database. The following model is used to store internal nodes:

xpath (xpath id, length, xpathexp)
internalnode (uid, xpath id, nodename, ordpath, parent, grdesc, lid,
o id, tablename)
Interpretation of the meaning of the parameters is as follows:

(1) The xpath table is used to record the xpath information in the
XML tree. The xpath id and xpathexp are expressed in the xpath
identifier and path expressions respectively. The parameter length
is used to record number of the edge of xpath.
(2) The internal node table describes each internal node. The u id is
used to identify the internal nodes, and the ordpath records the
ORDERPATH of this internal node. The lid is a local identifier for
the internal nodes, which is used to identify the location of this node
in the brother nodes. The OID is used in the query with a predicate,
which is the index of nodes appeared multiple times in an XML
document. The tablename indicates the table of the leaf nodes’
children who stored this node. The parameters parent and grdesc
are used to determine the relationship between the ancestors and
generations in the two internal nodes.

b) Storage of leaf nodes: In order to identify the data type of each
leaf node and to map leaf node in the database by Schema-
conscious method, a new mapping mode is used in the proposed
method. This mapping model is defined by MPD (the explanation
file in mapping process), an XML format. The function of MPD file is
similar to an XML format DAD file in DB2, which is used to store the
mapping of any XML data in the database. In XRecursive, XML
document is considered as a target tree, and then the MPD
document is used to map these objects into a relational database.

4018 Int. J. Phys. Sci.

In this view, a node is generally considered as a class, and the
node is mapped to the table.

The proposal of the mapping mode of leaf nodes is much simpler
than the existing Schema-conscious. The mapping of an internal
node into tables is needed to map attribute information of this node
class. It is unnecessary to list the class of relevant internal nodes
for this node, such as its parent and child nodes. Note that the
relationship between the ancestor and descendant has been
mapped to the relevant model by the Schema-oblivious approach.

Every single XML can be described as a XML tree. In Figure 2,
the squares are expressed as the elements, and the ovals are
expressed as the attributes of the elements. An XML tree has been
generated in Figure 2. Every element or attribute is identified by a
signature (number).

Definition 1 (XRecursive structure)

XRecursive is a storage structure to store XML documents where
each path is identified by its parent from the root node in a
recursive manner.

Definition 2 (all nodes)

Let A = {n1, n2... nk} be the set of all nodes (id), B = {np1, np2...
npn} be the set of parent notes (pId) and D = {nl1, nl2... nlk} be the
set of leaf nodes (tagId) then:

1 - npi B: npi A

 2 - nli D: nli A

3 - npi B: npi ∉ D and npi A – D

4- nli D: nli ∉ B and nli A – B

Algorithm map-document

To store XML document into relational database, it is essential to
map the XML document into a corresponding table in the relational
database. The process that maps the XML document into relational
database is presented in Figure 3.

Algorithm retrieval-document

Based on the information of tuples, the retrieval document will
achieve accurate retrieval of the original document. For every
element node the algorithm stores the end tag of element nodes
and then output a beginning tag. The retrieval of the XML document
from the relational database is presented in Figure 4.

Definition 3 (Node Id)

Let { }
k

nnnN ,,,
21
L= be a set of all nodes in XML tree such

that preorder
i

n < preorder
1+i

n , for ki ≤≤1 , then node Id is

defined as follow:

()
()

≤<+

=
=

− kifornIdnode

ifor
nIdnode

i

i
1,1

1,1

1

Proposition 4 (Parent node Id)

Let { }
k

pppP ,,,
21
L=

be a set of parent node (pId) in XML

tree such that preorder
i

n < preorder
1+i

n , for ki ≤≤1 , then

parent node is defined as follows:

()
() ()

<<

=
=

jforIdparentIdparent

ifor
Idparent

ii

i
1,

1,1

Example 1

In this structure, even a type or an element associates with its
signature, it also represents its parent element. In order to add the
multiple XML file in the storage, the document name is associated
with its id. Figure 2 represents the storage of the XML file in
association with its signature. For every element, a signature
should be associated with it, as well as a parent's signature in
association with it. In Table 1, agName represents the name of the
node; id represents the id of the node which is the Primary Key, pId
represents the parent id of the node. The document name does not
have any parent id so the id parent and the id of the document
name are equivalent. It is shown in Figure 2.

Definition 4 (tagId)

Let { }
k

tttT ,,,
21
L= be the list of leaf nodes in the XML tree

such that preorder
i

n < preorder
1+i

n , for ki ≤≤1 , then node Id

is defined as follows:

() () kifornIdtagnIdtag
ii

≤<+=
−

1,1
1

In Table 2, the element or type is represented in association with
the value. In XRecursive structure, when the path structure or
pathvalue is determined recursively by its parent id, it is not
necessary to store it. In Table 1, the name of the tag is represented
by tagName, where the parent key is represented by Id. In Table 2,
tagId is represented by the id in Table 1, the foreign key is
represented by tagId. In this Table, the elements are merely
represented by tagId, which contain the value of representing the
value column and the 'E' denotes the element and 'A' represents
the attribute.

THE XRECURSIVE DOCUMENTS STORAGE
ANALYSIS OF MODEL MAPPING

The XRecursive storage model consists of one figure and
two tables: the tree structure of XRecursive labeling
shows the path information of an XML document in
Figure 2. In Table 1, the Tag structure is stored in an

Fakharaldien et al. 4019

00 Algorithm process XMLFile(XML as a document)

01 Begin

02 Let tag_structure represents the list of the nodes of the

XML file.

03 Let tag_value represents the list of the values of the

nodes.

04 Let filename=null as string and parentid=1 as integer.

05 Let nodecounter=1 as integer

06 filename=read xml document name

07 Add filename, nodecounter, parentid to tag_structure

08

 Recursivexmlnode(XmlDocRootNode,parentid,nodecount

er)

09 store tag_structure into database

10 store tag_value into database

11 End Algorithm

00 Procedure Recursivexmlnode(xmlnode, parentid,

nodecounter)

01 Begin

02 if xmlnode is not text node then

03 Begin

04 tagstructure(xmlnode, parentid, nodecounter)

05 if xmlnode has childnodes then

06 for each xmlattribute in xmlnode attributes

07 Begin

08 set parentid=nodecounter

09 while xmlnode has childnodes do

10 tagstructure(xmlnode, parentid, nodecounter)

11 End while

12 tagstructure(xmlnode, parentid, nodecounter)

13 tagvalue(nodecounter, value, type)

14 If xmlnode.next=true then go to 09 End

 if

15 End for

Figure 3. Mapping XML to RDB algorithm.

4020 Int. J. Phys. Sci.

retrieval xml from RDB Algorithm

01 input: tuples (tag_structure ts, tag_value tv) of table

document_name

02 output: XML document

03 Begin

04 for (ts.id=1; ts.id<=n; ts.id++)

05 begin

06 if (ts.id !=tv.tagid)

07 outputfile(“<ts.name>”)

08 else if (ts.id=tv.tagid and tv.type=’A’)

09 outputfile(“ts.tagname=tv.value”)

10 else if (ts.id=tv.tagid)

11 outputfile(“<ts.tagname>tv.value<tv.tagname>”)

12 end if

13 End for

14 End Algorithm

Figure 4. Algorithm of retrieving XML from RDB.

Table 1. Tag_structure.

tagName Id pId

Personal.xml 1 1

personal 2 1

Employee 3 2

type 4 3

name 5 3

id 6 3

age 7 3

Employee 8 2

type 9 8

name 10 8

id 11 8

age 12 8

Employee 13 2

type 14 13

name 15 13

id 16 13

age 17 13

XML document, which does not contain a leaf node.
Table 2 shows the Tag value which contains the edge of
the leaf nodes for the storage of a document. In the tree

Table 2. tag_value.

tagId Value Type

4 Permanent A

5 Seagua11 E

6 3674 E

7 34 E

9 Contract A

10 Robin E

11 3675 E

12 25 E

14 Permanent A

15 Crow E

16 3676 E

17 28 E

structure of XRecursive labeling, each path is
corresponded to only one path flag. There are four
different paths in Figure 2. In the tables, the Tag structure
and value reveals the Tag-name ID, pID, Tag-ID, as well
as the destination node's value and type. Using this
model, the XML document without schema information
can be relatively mapped to relational tables in order to
realize the querying of XML data for using the supplied

function in relational database.

The well-known mapping storage models are Edge and
XRel. Edge Model is applied to the Infoset data model,
and a table describing the XML document content,
where the table tuples are expressed as the Target,
Source, Lable, Value, Ordera1. This mapping method is
simple and easy to implement. XRel model uses XPath
the data model, and the XML documents are represented
in an ordered tree. XML content of the document
describes the model with four tables, namely the path
table (Path), the element table (Element), the attribute
table (Attribute), and the body of the table (the Text). The
path table stores path information. Element table tuples
are represented as Doc_ID, path ID, Source, Target, in-
dex, re-index, and the information is used to describe all
the elements in the document node. Among them, the
index and re-index are represented as a serial number
and a reverse chronological order serial number for
brothers' elements in the document respectively. The
attribute table is used to store the value of the node of the
document; the properties form the tuple which is Doc-ID,
the path-ID, Source, Target, Value. The body of the table
stored in the document node value, the tuple form
of expression is Doc-ID path_ ID of the Source, Target,
Value. In the operation of querying, the speed of querying
is improved by the path information and the order of the
elements (the index and re-index), which is suitable for
querying information of containing inequality (>, <).

The advantage of using the Edge model to describe the
contents of an XML document is to take up less storage
space. Since XML data query is based on the path, the
model does not directly provide the path information.
When the query is executed, the model only connects the
operating table of each edge linking in order to complete
the discrimination of the path information. The query
process requires a large number of join operations; so
the querying efficiency is not high. In addition, the Edge
model is a single XML document model and is not
suitable for the storage of multiplied XML documents.
XRel model with four tables maps the XML document to a
relational database, taking up the storage space.

Because each element in the XML document is marked
with a serial number of the elements order and reverse
chronological order in the document, the querying
process shows a good performance of the inequality
conditions. However, most relational databases do not
support the indexing based on the range (inequality), so
the improving model needs to add some special
operations, which does not include the relational
database, for instance to identify the elements of the re-
index value or to build up the range (inequality) for
indexing. This can be achieved specifically using the
cumbersome and complex process. In addition, the
model of range-based querying does not satisfy the W3C
Recommendation of XML data search criteria XQuery.

Therefore, the mapping method can effectively avoid

Fakharaldien et al. 4021

finding the path that is satisfied with the condition, and
effectively reduce the number of traverse nodes. In this
way, the proposed mapping method can reduce the
search range and improve the search speed. Compared
with the Edge models, the querying process of the joint
operation is significantly reduced. Through the
XRecursive value table, a relational database is used to
provide an indexing mechanism to further enhance the
data querying speed. Moreover, the storage space
occupied by the model is smaller than the XRel model.

THE ANALYSIS OF EXPERIMENT

This section presents the experimental results of the
proposed method. The evaluated performance includes
document's insertion times, storage space requirements,
and query performance. The experimental environment is
a PC with P4 2.4GHz machine with 1 GB of RAM, 240
GB of hard disk. Its operating system is Windows XP,
and the comparison database is SIGMOD, which
provides a comprehensive range of XML document
types. This section compares XRecursive with Edge
(Florescu and Kossman,. 1999), XRel (Yoshikawa et al.,
2001) and XParent (Jiang et al., 2002). The experiment is
set according to the following three factors:

Extraction time

The extraction time is the total number of time posses-
sed in retrieving the tuples from the database and
reconstructing XML document. The extraction time is
better than all other approaches because a smaller data
set (tag-structure, tag-value) and the optimal relational
schema of XRecursive are used, such as Id, tagId
columns, which store primary and foreign key information
(Figure 5).

Basically, the Edge method is used to handle informa-
tion of the tree edge, which is reserved in a single
relational schema for estimating XPath query. The single
table approach, which is adopted in Edge, is uncom-
plicated, since it only keeps the edge-label, rather than
the label Paths, and a vast amount of joints is required to
exanimate edge-connections. Therefore, in response to
the query with including the path expression, these edges
should be concatenated to each other. Additionally, the
relational schema of XRecursive method has the
similarity with XRel schema. In these processes, XRel
method stores path for any existing elements in a XML
tree. However, the difference is that the technique of
XRecursive is applied to all internal nodes mapped by
schema-oblivious and all the leaf nodes mapped by
Schema-conscious. Finally, in the XParent method, the
Path table has the similarity with XRel process that keeps
paths for all existing nodes with resulting in increasing

4022 Int. J. Phys. Sci.

0

2

4

6

8

10

12

Edge XRel Xparent XRecursive

Edge

XRel

Xparent

XRecursive

Query parameter

E
x
tr

a
c
ti

o
n

 t
im

e

Figure 5. Extraction time.

Table 3. Samples query feature.

Query number Query feature

Q1 Simple short path

Q2 Simple long path

Q3 Use one axis

Q4 Use two axis

storage space in a document. In XParent, the relational
schema does not hold ancestral information in the normal
case. However, by using DataPath table, ParentId of all
existing nodes within a document is observed. In this
way, the discovering process of an ancestor for a special
node is extremely costly because it requires to frequently
associate tables with themselves. DataPath table, rather
than Ancestor table, is used for high capacity of ancestor
table.

XRecursive method utilizes the idea of child- parent to
solve this problem. The technique of XRecursive is
applied to all internal nodes mapped by Schema-
oblivious, and all the leaf nodes mapped by Schema-
conscious. Internal nodes are used to describe the
structure of the XML document in the XML tree, and are
only useful for document navigation. Schema-oblivious
can provide the completed structure information in an
XML document, which can effectively and easily support
the document traversal. Since leaf nodes are the values

of the elements in an XML document, they are nearly
useful for the navigation of XML and it can be considered
that these leaf nodes only store the data values of nodes
in an XML document. The data type of each leaf node
can be effectively described by using Schema-conscious
storing data.

Query performance

In the query performance comparison in Table 3, four
queries, from Q1 to Q4, are compared by using three
methods. With regard to the performance of queries,
some points should be taken into account.
Q1: Query b is a quick XPath query. So there are not
many joins in the SQL statement for the Edge method.
The response time is very intimate as expected.
Q2: Using the XRecursive method, query requires one in
association with each step in the XPath query; however
in the path table the path information is used in the
SUCXENT and XParent. As a result, XRecursive is faster
in the long XPath query as expected.
Q3 and Q4: The execution time is comparable.

The proposed system was compared with other systems
to evaluate the query performances. In the experiment,
the size of the cache was fixed with 256 K. The execution
time includes the querying time and the used time in the
final results where were sorted according to the nodes

Fakharaldien et al. 4023

0

100

200

300

400

Edge XRel XParent XRecursive

Q1 Q2 Q3 Q4

Query performance

P
e
rf

o
rm

a
n

c
e

 l
e
v
e
l

Figure 6. Query performance comparison with other systems.

order. The comparison results were shown in Figure 6.
Because the edge approach basically utilizes one simple
table to conserve information in XML tree edges, it is
indispensable to associate frequently this table with
itself. If a path expression should be considered, the
produced numerous joints in the final SQL query
will result in the poor efficiency. In the XRel system, the
advantages are a significant reduction in storage space
and faster searching in Path table. In a XML tree, the
ratio of all paths in association with the path ended with
the leaf will increase exponentially. Nevertheless, XRel
requires the containment relationship of ancestor-
descendant. In the XParent system, the discovering
process of an ancestor for a special node is extremely
costly because it requires frequent association of the
tables. DataPath table, rather than Ancestor table, is
used for high capacity of ancestor table. In the proposed
XRecursive, it can provide flexible methods for storage
according to various requirements. Furthermore, the
technique of XRecursive is applied to all internal nodes
mapped by Schema-oblivious, and all the leaf nodes
mapped by Schema-conscious. In XRecursive method,
child-parent ideal results are used for the reduction of the
volume of the path table, which results in increasing the
speed of access to nodes in the table, and consequently,
it will cause a faster querying process.

Scalability

In this section, the scalability of the proposed XRecursive
system was tested in the document. The size of
XRecursive document was changed from 10 to 100 M,

and the size of the cache is fixed with 256 K, the size of
the page is 4 K. The four queries were observed in Figure
7, the results of the implementation can be seen from
these results, the physical I/O times and query execution
time increased linearly with the document size. Thus the
experiment showed a good linear scalability of
XRecursive’s indexing, storage, and querying
architecture.

Conclusion

In this paper, a typical approach to the storage of XML
document in a relational database, namely the
XRecursive, is proposed. In a relational database, the
method implements the model-mapping technique to
store the XML document, and the tree structure is
decomposed into nodes and all information of nodes is
stored recursively according to the types of nodes. Any
document can be processed, whether it has fixed schema
or not. XRecursive model is a multi-storage model of the
XML document, which conforms to the ML data querying
specific XPath and XQuery. The proposed mapping
mode of leaf nodes is considerably simpler than the
existing Schema-conscious. The mapping of an internal
node into tables only needs to map attribute information
about the node type. It is unnecessary to record the class
of relevant internal nodes for this node, such as parents’
and children’s nodes. It should be noted that relationship
of the descendant and ancestor should be mapped to the
relevant pattern by Schema-oblivious. In addition, the
XRecursive storage model for querying data is more
efficient than the Edge models, since it is easy to

4024 Int. J. Phys. Sci.

Figure 7. Experimental results: Physical IO vs. page size.

implement than the XRel model. The XRecursive storage
model is suitable for the storage of XML documents,
which is based on a relational database and without
schema information. By utilizing this approach, clearly,
the database size is decreased for storing the XML
documents into relational database. Furthermore, the
proposed method presents the storing approach of XML
document into relational database, and its accuracy is
determined by using the XML document in the
experimental performance section.

REFERENCES

Augeri CJ, Bulutoglu, DA, Mullins BE, Baldwin RO, Baird LC (2007). An

analysis of XML compression efficiency. Proc. Workshop Exp.
Comput. Sci., pp. 1-12.

Bancihon F, Barbedette G, Benzaken V, Delobel C, Gamerman S,
Lécluse C, Pfeffer P, Richard P, Velez F.(1988). The design and
implementation of o2, an object-oriented database system. Adv.
Object Oriented Database Syst., 6(1): 1-22.

Bohannon P, Freire J, Roy P, Simeon J (2002). From XML schema to
relations: a cost-based approach to XML storage. In Proceedings of
IEEE Int. Conf. Data Eng., pp. 64-75.

Florescu D, Kossman D. (1999). Storing and querying XML data using
an RDBMS. IEEE Data Eng. Bull., 27-34.

Goldman R, McHugh J, Widom J (1999). From semi structured data to
XML: migrating the lore data model and query language. In
Proceedings of WebDB, 99: 25-30.

Grandi F, Mandreoli F, Tiberio, P, Bergonzini M (2003). A temporal data
model and management system for normative texts in XML format. In
Proceedings of the 5th ACM Int. Workshop Web Inf. Data Manag.,
pp. 29-36.

Jiang H, Lu H, Wang W, Yu JX (2002). Path materialization revisited: an
efficient storage model for xml data. In Proceedings of the 13th
Australasian Database Conference, pp. 85-94.

Kyung-Soo J (2001). A design of middleware components for the
connection between xml and rdb. In Proc. IEEE Int. Symp. Ind.
Electron., pp. 1753-1756.

O'Neil PE, O'Neil EJ, Pal S, Cseri I, Schaller G, Westbury N (2004).
Ordpaths: Insert-friendly xml node labels. In SIGMOD Conf., pp. 903-
908.

Prakash S, Bhowmick SS, Mardia S (2004). SUCXENT: An Efficient
Path-based Approach to Store and Query XML Documents. Lecture
Notes in Computer Science Springer Verlag, 3180: 185-195.

Ramanath M, Freire J, Haritsa J, Roy P (2003). Searching for Efficient

XML-to-relational mappings. Lecture Notes in Computer Sciences
Springer Verlag, 2824: 19-36.

Reed D (2008).Take a good look. Data Strategy, from Business Source
Complete database, 2(4): 24-29.

Rys M (2000). Microsoft sol server 2000 xml enhancements. Microsoft
Support Webcast.

Sainan L, Caifeng L, Liming G (2009). Storage Method for XML
Document based on Relational Database. In Proceeding of the IEEE
Int. Symp. Comput. Sci. Computational Technol., pp. 127-31.

Sandeep P, Sourav SB, Sanjay M (2006). Efficient Recursive XML
Query Processing Using Relational Database Systems. In DKE,
58(3).

Shanmugasundaram J, Tufte K, Zhang C, He G, DeWitt DJ, Naughton
JF (1999). Relational databases for querying XML documents:
limitations and opportunities. In Proceeding of International
Conference on Very Large Data Base (VLDB), pp. 302-314.

Sybase Corporation: (1999). Using XML with the Sybase adaptive
server sol databases. Technical whitepaper.

Szlavik Z, Tombros A, Lalmas M (2006). The use of summaries in xml
retrieval. In Proceedings of the 10th European Conference on
Research and Advanced Technology for Digital Libraries, pp. 75-86.

Tatarinov I, Viglas S, Beyer K, Shanmugasundaram J, Shekita E, Zhang

C (2002). Storing and querying ordered XML using a relational
database system. Proc. ACM SIGMOD Conf., pp. 204-215.

Tatarinov I, Viglas S, Beyer K, Shanmugasundaram J, Shekita E, Zhang
C (2001). Storing and querying ordered XML using a relational
database system. In Proc. Proc. 2001 ACM SIGMOD Int. Conf.
Manag. data, pp. 204-215.

Tian F, DeWitt D, Chen J, Zhang C (2002). The design and
performance evaluation of alternative XML storage strategies. ACM
SIGMOD Record, 31(1): 5-10.

Xparent: (2002). An efficient rdbms-based xml database system. In
Proc. 18th Int. Conf. Data Eng., pp. 335-336.

Yoshikawa M, Amagasa T, Shimura T, Uemura S (2001). XRel: a path-
based approach to storage and retrieval of xml documents using
relational databases. ACM Trans. Internet Technol., 1(1): 110-141.

Fakharaldien et al. 4025

Yue L, Ren J, Qian Y (2008). Storage Method of XML Documents

Based-on Pre-order Labeling Schema. In Proceeding of the IEEE Int.
Workshop Educ. Technol. Comput. Sci., pp. 50-53.

Zafari H, Hasami K, Shiri ME (2010). Xlight: An Efficient Relational
Schema To Store And Query XML Data. In Proceeding of the IEEE
Int. Conf. Data Store Data Eng., pp. 254-257.

Zhang C, Naughton J, Dewitt D, Luo Q, Lohmann G (2002). On
supporting containment queries in relational database systems. In
Proceedings of the Proceedings of the 2001 ACM SIGMOD
International Conference on Management of data (ACM SIGMOD),
pp. 425-436.

.

