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A deterministic global optimization algorithm based on augmented Lagrangian is proposed for solving 
the nonlinear programming with cone constraints, which is often encountered in technical design and 

operational research. At each outer iteration , the method requires the -global minimization of the 

augmented Lagrangian of problems with cone constraints, where . The convergence to an -
global minimizer of the original problem is proved. 
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INTRODUCTION 
 
Nowadays, global optimization has ubiquitous applica-
tions in all branches of engineering sciences and applied 
sciences (Floudas, 2000; Lu and Quan, 2011). During the 
last decade, several textbooks addressed different facets 
of global optimization theory and applications. 

We often construct augmented Lagrangian framework 
and use this method to solve nonlinear programming 
problems (Andreani et al., 2007, 2008). We hope the 
augmented Lagrangian algorithm we used is global 
convergent, but generally, global convergence is difficult 
to achieve. In Birgin et al. (2010), Birgin EG has proposed 
a weaker global convergence for nonlinear programming 
problems with linear constraints and box constraints, that 

is, he has proposed an -global minimization. At each 

outer iteration , we can get the corresponding -

global minimization, which are convergent to the -
global minimization, so the convergence of the algorithm 
is proved. In this paper, we choose the augmented 
Lagrangian method in study of Al-Khayyal and Sherali 

(2000), and amend it, then we discuss the -global 
convergence of augmented Lagrangian algorithm for 
nonlinear programming problem with cone constraints 
(Anca, 2010; Gu et al., 2009; Liu and Zhang 2007). 
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The algorithm 
 

The problem to be addressed is: 
 

, 
 

where  are continuous and  
is convex. 
 
 

Assumption  

 
From now on, we will assume that there exists a global 

minimizer  of the problem. We define the following 
augmented Lagrangian function: 
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where , is a bounded set,  

 is the distance between  and 
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Algorithm  
 

Let  be a sequence of nonnegative 

numbers such that  Let  

and Initialize  
 

Step 1: Let  be a closed set such that a global 

minimizer (the same for all ) belongs to  Find an 

-global minimizer  of the problem 

subject to  

That is  satisfying: 
                          

                                     (2) 
 

for all The -global minimum can be obtained 
using a deterministic global optimization approach, such 

as  method (Adjiman et al., 1996, 1998a, b). 
 
Step 2:  Define 
 

，          (3) 

 

where is the normal cone of . 

If or 
 

                         (4) 
 

define  otherwise, define . 
 

Step 3: Compute  Set 

and go to Step 1. 
 
 

Convergence to an -global minimum 
 

In the theorems that follow, we assume that the sequence 

 is well defined. In other words, the -global 
minimizer of the Augmented Lagrangian can always be 
found. 
 
 

Theorem 1  
 

Assume that the sequence    is   well   defined   and 
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admits a limit point  Then,  is feasible. 
 

Proof: We consider two cases:  bounded and 

.If  is bounded, there exists  such that 

 for all .Therefore, for all ,  (4) 
holds. So, the limit point is feasible. 

Now assuming that .Let  be as in Step 1, 

therefore,  is feasible. So, . 

Suppose, by contradiction, that  is not feasible. 
Therefore, 
                         

                                (5) 
 

Let  be an infinite sequence of indices such that 

. Since  is bounded and , 

there exists  such that  large enough: 
               

    (6) 
 

Therefore, 
        

               
                                                                                (7) 
 

Since and  is continuous, for  
large enough. 
 

                                            (8) 
 
Therefore, 
 

    (9) 
 

Now, since  is a global minimizer, we have that  

for all .Therefore, the inequality aforementioned 

contradicts the definition of . 
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Theorem 2  
 

Under the same assumptions of Theorem 1, every limit 

point  of a sequence  generated by Algorithm 

previously given is an -global minimizer of the problem. 
 

Proof: Let  be such that . By 

Theorem 1,  is feasible. Let  as in Step 1. Then, 

 for all .We consider two cases:  and 

 bounded. 

 

Case 1( ): By the definition of the algorithm: 

 

  (10) 

 

for all . 

Since ,  we have: 
                      

                      (11) 
 
Therefore, by (10), 
          

    
                                                                                (12) 

 

Taking limits for and using  and 

, by the continuity of  and the convergence 

of , we get: 
                             

                                                     (13) 

 

Since  is a global minimizer, it turns out that  is an 
-global minimizer, as we wanted to prove. 

 
 
 
 

Case 2 (  bounded): In this case, we have that 

 for all . Therefore, by the definition of 

Algorithm, we have: 
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for all . Since , we have: 

                 

     (15) 

 

for all . 

By the feasibility of ,  taking limits in the inequality 

aforementioned for ,  we get: 

                  

       (16) 

 

Since , and 

                          

                                       (17) 

 
We have that 
                             

                                                      (18) 

 

Since  is a global minimizer, the proof is complete. 
 
 

CONCLUSION 
 

One of the advantages of the augmented Lagrangian 
approach for solving nonlinear programming problems is 
its intrinsic adaptability to the global optimization problem.  
But generally, global convergence is difficult to achieve. 
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For optimization problems with cone constraints, an -
global minimization has been proposed in this paper. At 

each outer iteration , we can get the corresponding 

-global minimization, which are convergent to the -
global minimization, so the convergence of the algorithm 
is proved. There are lots of unconstrained and 
constrained global optimization problems in Engineering, 
Physics, Chemistry, Economy and other areas that are 
not solvable with the present computer facilities. The field 
for improvement is all concerned in the global optima-
zation. So much research is expected in the following 
years in order to be able to efficiently solve more 
challenging practical problems. We will do more research 
on the global convergence of nonlinear programming 
problems at more general case, and strive to get better 
results. 
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