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In this work, we study the propagation of the plane waves in a solid medium (Aluminium) which 
contains a periodic two-dimensional (2D) array of cylindrical inclusions using a multiple scattering 
theory. The aim of this study is to validate the experience of certain theoretical predictions such as the 
frequential positions of the stop-bands and their widths like their evolution according to the 
geometrical characteristics of the 2D array. The cavities are excited in normal incidence. Measurements 
are taken in the case of the empty cavities. The acquisitions of all the transmission and reflection 
temporal signals are obtained by the use of transducers of contact. All the recorded signals are 
subjected to a signal processing (FFT, normalization). 
 
Key words: Multiple scattering theory/periodic distributions of inclusions/stop-bands/two-dimensional (2D) 
array. 

 
 
INTRODUCTION 
 
The propagation of acoustic waves in the heterogeneous 
medium equipped with a periodic structure has been the 
object of an interest growing for a few decades. A great 
number of periodic structures were studied and various 
theoretical approaches were employed. The existence of 
original physical properties such as the presence of stop-
bands, that is, frequential bands for which the waves 
cannot be propagated at long distance in the medium 
corresponding to a strong attenuation, and pass-bands of 
less attenuation were all highlighted. The analogy 
existing with the propagation of electromagnetic waves in 
the periodic dielectric structures stimulates today’s 
research on the "phononic crystals" composed of elastic 
inclusions periodically distributed in an elastic matrix. The 
propagation of elastic waves in such medium is in 
addition the subject of studies in fields as varied as: 
Geophysics, medical acoustics and mechanical 
engineering (let us quote like applications the Non- 
Destructive-Testing; NDT). 
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The periodic medium considered in this study is a 
periodic two-dimensional (2D) array of cylindrical 
inclusions in aluminium solid.The aim of this work is to 
validate by the experimental study certain theoretical 
predictions of Robert et al. (2004) such as the frequential 
positions of the stop-bands, their widths and their 
evolution according to the geometrical characteristics of 
the array. By using the finite element method, Langlet 
(1993) could characterize the propagation of waves in 
such an array by analyzing the dispersion and the 
attenuation of the waves of Lamb being propagated in a 
periodically bored elastic plate. The theory developed by 
Robert et al. (2004) is however valid only for infinitely 
long inclusions with respect to the wavelengths 
considered. The experimental study of the propagation of 
Lamb waves in a bored plate was thus not followed. This 
study will be based on the analysis of the reflection and 
transmission coefficients of a periodic 2D array finite 
thickness. 

In this study, the fundamental points of the theory are 
presented. This theory is an extension of the theoretical 
model developed by Audoly, Dumery, Mulolland and 
Heckl  (Sigalas and Garcia, 2000; Tanaka et al., 2000) for  
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the rigid or elastic obstacles arrays immersed in a fluid. 
This model consists to decompose the periodic 2D array 
into a series of periodic 1D linear array. If the scattering 
by each of these arrays is known, the propagation of the 
waves from one array to another is then deduced from 
the theorem of Bloch or an iterative method. The 
approach of these various authors is based on the work 
of (Mcphedran et al., 2000) on the plane waves scattering 
by a periodic linear 1D array cylindrical objects.  
Mcphedran et al. (2000) by using an exact calculation of 
multiple scattering, obtains an expression of the scattered 
field in the form of a superposition of plane waves 
diffracted under various angles. In the context of the 
scattering in an elastic medium, the formalism of 
Mcphedran et al. (2000) was generalized, while being 
based on the matrix theory of transition T, theory inten-
sively exploited by (Mulholland and Heckl, 1994; Heckl 
and Mulholland, 1995) for similar multi-scatters mediums. 

In the experimental study which is proposed, the 
various arrays are subjected to an incidental plane wave 
in a perpendicular plane to the axes of cylindrical 
inclusions. The cavities are excited in normal incidence. 
There will be thus never conversion between the 
longitudinal and transversal waves at the time of the 
reflection or the transmission by the 2D arrays. The study 
moreover will be led to the low frequencies for which the 
2D arrays diffract only one plane wave in the same 
direction as the incidental plane wave. Consequently, in 
normal incidence and low frequency, the 2D arrays will 
have the acoustic behaviour of a stratified fluid medium 
(and periodic) of which it will be a question of measuring 
the reflected and transmitted acoustics fields. 

To highlight the influence of the geometrical 
characteristics of the arrays on the reflected or 
transmitted acoustic field, two arrays are studied. Their 
implementation consists in practising holes in the 
thickness of an aluminium block, this thickness being 
large with respect to the wavelengths considered. 
Measurements are then taken in the air. The acquisition 
of the reflected or transmitted signal is obtained then by 
the use of transducers of contact to the plane interface 
between Aluminium and the air. The recorded signals are 
then subjected to a signal processing (Fast Fourier 
Transform (FFT), filtering, normalization). 

 
 
THEORY OF THE MULTIPLE SCATTERING FOR 
PERIODIC 2D ARRAY: CASE OF THE NORMAL 
INCIDENCE  
 
Reflection and transmission of a periodic and finite 
array 

 
Figure 1 presents the geometry of the studied array. It is 
composed of an arbitrary number S of periodic 1D and 
finite arrays, regularly spaced of a distance D along axis 
X. The global array is thus finite and thickness  e = (S - 1)  

 
 
 
 
D according to this axis. We consider in addition that all 

the 1D linear arrays are identical, d is the period 

according to the axis y, a2  is the diameter of the 

cylindrical cavities.  
The 2D array is subjected by acoustic longitudinal wave 

in normal incidence. The goal is then to express the 
reflection and transmission coefficients of the array, 

noted R and T, in the field of the low frequencies: 1

Lf f . 
Under these conditions we recall that there is no 
conversion mode during the transmission and of the 
reflection by the periodic 1D linear arrays and that the 
latter transmit plane modes purely propagates in the 
same direction as the incidental wave. The periodic 2D 
array can then be regarded as a "multi-layer" in which 
only a longitudinal plane wave is propagated 
perpendicularly with various interfaces. 

From now on, the reflection and transmission 
coefficients of the periodic 1D linear array which are 
defined by Equations 4 and 6 are supposed to be known. 
In the continuation, to reduce the notations, we will note 
them R and T. The goal now is to calculate the two 
coefficients R and T. 

Let us clarify the method for calculation of R. The idea 
consists to decompose the 2D array as shown (Figure 2) 
in the following way: the linear array 1 is isolated different 
from those that form a "sub-array", Numbered 1, of S-1 
linear arrays; the array being subjected by a longitudinal 
plane wave. The field L considered is then the 
superposition of a wave L reflected by linear array 1, and 
a series of waves L transmitted by linear array 1 and 
reflected several times between linear array 1 and sub-
array 1. The multiple reflections between the two linear 
arrays are described by series of Debye. The coefficient 

of reflection R-can then be written where Lk k is the 

number of waves in the elastic medium, and 
 
R1: the reflection coefficient of sub-array 1; 
r1: the reflection coefficient of the linear array 1; 
t1: the transmission coefficient of the linear array 1; 
T1: the transmission coefficient of sub-array1. 
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Geometrical series (Equation 1) is convergent. It can thus 
be written: 
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Finally, the reflection coefficient of the total 2D array is 
written: 



 
 
 
 

 
 

Figure 1. Geometry of the cylindrical cavities array. 
 
 
 

 
 

Figure 2. First decomposition to determine the global reflection 
coefficient. 
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That is to say: 
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We now search the global transmission coefficient T: in 
the same way that previously we can calculate T as 
follows: 
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The geometrical series (Equation 5) is convergent. It can 
thus be written: 
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Finally, the transmission coefficient can be written in the 
form: 
 

1 1

2

1 11

ik D

ik D

T t e
T

r R e



 

                                                        (6)        
 

In Equations 4 and 6, the reflection/transmission 
coefficients R1 

and T1 are unknown (Figure 3). It is thus 
necessary to repeat this decomposition for sub-array 1. In 
its turn, this last can be decomposed as follows: the 
linear array 2 is isolated from S-2 other linear arrays 
which then form a sub-array 2. We then note R2 

and T2 
the reflection and the transmission coefficients of this 
last. This second decomposition then provides: 
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In the same way, the reflection /transmission coefficients 
R2 

and T2 are unknown. It is thus necessary to 
decompose in its turn sub-array 2 like the precedents. 
This method is thus a recurrence. With the decomposition 
S, Equations 7 and 8 become  
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In this last decomposition, the last sub-array S does not 
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Figure 3. First decomposition to determine the global 
transmission coefficient. 

 
 
 

contain any more that only one linear array whose 
coefficients rs and ts are supposed to be known: 
 

,S S S SR r r T t t                                               (11) 

 

Consequently, the two relations in Equation 11 are 
relations which "close" the recurrence. To calculate R and 
T, we start these two last relations, and then we 
"descend" until the recurrence of Equations 4 and 6. This 
method of calculation is, numerically, very rapid when we 
know once and for all the reflection/transmission 
coefficients of all the linear arrays. In addition, the 
method can be generalized easily with the case of an 
oblique incidence (by taking in account mode 
conversions between the longitudinal and transversal 
waves) and if all the linear arrays are different from/to 
each other. 
 
 

Characteristic equation  
 

If the 2D array comprises a sufficiently large number of 
linear arrays, it can be regarded as being infinite so that 
the propagation of waves can be described by the 
theorem of Bloch. This theorem is applicable to the fields 
of potentials, displacements or constraints, binds the 
fields defined in two separate points of the array of a 
distance D applied to the fields of potentials and 
displacements, the theorem of Bloch is written: 
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Where indices i and j indicate the components according 
to x or y.  
The complex size γ is the number of wave of Bloch 
defined by: 
 

' i    "                                                                    (15) 
 

The real part  '
is the component according to x of the 

vector of a wave being propagated in the periodic array, 

and the imaginary part  " is its attenuation. That is to say 

a linear array S taken randomly. 
Between the arrays S - 1 and S, the scalar potential can 
be written; 
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Between the arrays S and S + 1, at a distance D. we 
have 
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Projection according to x and y of the relation of Bloch on 
displacements lead to; 
 

0
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            (18) 

 

With D kD  , the relation of Bloch on the constraints 

,xx xy  provides directly; 
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Remark 
 

There are two equations to determine four unknown 

factors, namely: DCBA
~

,
~

,
~

,
~

. The two missing equations 

are obtained in the following way: if we refer to Figure 4, 
we can observe that the field B results from the reflection 
of field A and the transmission of the field D: 
 

DtArB
~~~

               (20)  
 

In a similar way it is found that; 
 

AtDrC
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                                                                (21) 



 
 
 
 

 
 

Figure 4. 2d array composed of an infinite number of identical 
arrays and periodically spaced; the amplitudes of the waves are 
presented. 

 
 
 

There are now four equations for four unknown factors, 
the problem is thus well posed. There is finally the 
system of equation according to; 
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That we can still write in the matrix form; 
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The determinant associated with the system is thus; 
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The system of Equations 22 has a solution different to 
zero provided that the determinant associated with the 
system is null, we obtain the characteristic equation 
which gives γ. 

We can develop calculations further. If we eliminate 

CB
~

,
~

in (I) and (II) of Equation 22, it becomes: 
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The determinant associated with this new system is thus; 
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And by simplification, we have: 
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The characteristic equation D = 0 can be reduced to: 
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Because of the absence of mode conversions, this 
equation is identical to that established by Hecklin as in 
the case of submerged tubes array in water. 

 
 
EXPERIMENTAL DEVICE 

 
Description of the material 

 
Figure 5 shows the experimental device. The measurements are 
performed in the case of empty cavities and the two types of arrays 
2D are excited at normal incidence. The array consists of cylindrical 
cavities dug in an aluminum block to form an elastic matrix. Firstly, 
the excitation and reception of temporal signals reflected and 
transmitted is obtained by the use of contact transducer with a 
center frequency of 0.25 MHz. The bandwidth of this transducer is 
the order of twice the center frequency. The transmitter transducer 
is excited by a pulsed electric signal delivered by a pulse generator. 
The latter includes amplification and filtering for processing the 
signal received by the receiver transducer. This pulse generator 
comprises a swingable door on two positions. In the first position, it 
is used as a single transmitter and receiver transducer at a time. In 
the second position, it uses two transducers of the same center 
frequency as a transmitter and the other as a receiver. The 
received signal is displayed on an oscilloscope type Lecroy 9430. 
Average of 200 scans is then performed in order to filter the signal. 
The averaged signal is sampled and thereafter stored in a 
computer. All signals are recorded and then subjected to signal 
processing FFT. 
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Figure 5. Experimental device. 

 
 
 
Table 1. Extraction of all the normalization transmission and 
reflection temporal signals and with diffusers. 
 

Stop band Numerical (MHz) Experimental (MHz) 

S.B 0.25 - 0.52 0.26 - 0.47 

 
 
 
THE COMPARISON OF RESULTS BETWEEN 
NUMERICAL AND EXPERIMENTAL STUDY: CASE OF 
THE EMPTY CAVITIES AND NORMAL INCIDENCE 
 
Results obtained on the first 2D array with S = 6 
linear arrays and finite 
 
i) The ray of the cylindrical cavities: α = 2 mm, 
ii) The period of the cavities according to the axisy: d = 5 
mm, 
iii) The period of the 1D arrays according to the axisx: D = 
6 mm, 
iv) The thickness of the 2D array: e = (S - 1) D = 30 mm, 

v) The cut-off frequency is given by: c = 0.620 MHz,
 

vi) Curve in red color represent reflection coefficient in 
energy, 
vii) Curve in blue color represent transmission coefficient 
in energy. 
 
In the experimental study, we extracted all the 
normalization   transmission    and    reflection    temporal 

signals and with diffusers (Table 1). Then, they 
underwent several processing like the elimination of the 
undesirable parts (echoes), retiming, the FFT in order to 
obtain the normalized function of form, so that we can 
compare it with the result obtained numerically, by using 
several transducers.  

According to the curves (Figures 6 and 7), we see well 
that the stop-band obtained theoretically and the stop-
band obtained in experiments are superimposed, which 
means that this theoretical result was checked in 
experiments. 
 
 
Results obtained on the second 2D array with S = 5 
1D arrays and limited 
 
i) The ray of the cylindrical cavities: α = 2 mm,  
ii) The period of the cavities according to the axis: d = 6 
mm,  
iii) The period of the 1D arrays according to the axis: D = 
20 mm, 
iv) The thickness of the 2D array: e = (S - 1) D = 80 mm, 

v) The cut-off frequency is given by: c = 0.520 MHz, 
vi. Curve in blue color represent reflection coefficient in 
energy, 
vii. Curve in red color represent transmission coefficient 
in energy. 
 
According  to  the  curves  (Figures  8 and 9), we see well 
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Figure 6. Frequential evolution of the reflection and transmission coefficients in 

energy 
2

LLR and 
2

LLT empty cavities of the array in normal incidence with d/a=2.5, 

D/a=3,the cut-off frequencyc = 0.620 MHz. 

 
 
 

 
 

Figure 7. Function form normalized. 
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Figure 8. Frequential evolution of the reflection and transmission coefficients in 

energy 
2

LLR and  
2

LLT  the  empty cavities of an array in normal incidence with 

d/a=3, D/a = 10, the cut-off frequency c = 0.520 MHz. 

 
 
 

 
 

Figure 9. The function form normalized. 



 
 
 
 
Table 2. The three stop-bands obtained theoretically and the three 
stop-bands obtained in experiments. 
 

Stop-band Numerical (MHz) Experimental (MHz) 

S.B.1 0.12 - 0.18 0.11-0.17 

S.B.2 0.25 - 0.35 0.25-0.38 

S.B.3 0.42 - 0.45 0.41-0.46 

 
 
 
that the three stop-bands obtained theoretically and the 
three stop-bands obtained in experiments are 
superimposed (Table 2). 
 
 
CONCLUSIONS AND PERSPECTIVES 
 
A method of calculation of the scattering by a periodic 2D 
array in an elastic medium was presented. This method 
rest on the decomposition of the 2D array in a limited 
number of periodic 1D arrays. The scattering by each 1D 
array is determined by an exact calculation of multiple 
scattering which was adapted here to the scattering in an 
elastic medium. The scattering plan after plan is 
calculated using the theorem of Bloch. 

The numerical and experimental study verified the 
existence of two interesting properties which are: Stop-
bands and pass-bands. The appearance of one or more 
stop-bands is due to the choice of the geometry of the 
studied 2D array in the case of empty cavities and normal 
incidence. 
 

Moumena and Guessoum          139 
 
 
 
The theoretical study developed here can be the later 
development object and can be applied to an array with 
variable, a periodic or random porosity, according to the 
direction of propagation of plane waves. 
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