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In this paper, the lag synchronization problem is considered for chaotic dynamical systems with external 
disturbance via input-to-state stability (ISS). A sufficient condition for determining the lag 
synchronization between the drive and corresponding response systems is derived based on Lyapunov 
theory. The proposed ISS lag synchronization controller guarantees the exponential lag synchronization 
and achieves the bounded lag synchronization error for any bounded disturbance. The effectiveness of 
the proposed schemes is verified via numerical simulation. 
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INTRODUCTION 
  
Chaos synchronization is an interesting subject, which 
has attracted much attention particularly since it was 
suggested in Pecora and Carroll (1996) that it could be 
applied to secure communication. Originally, chaos 
synchronization refers to the state in which two chaotic 
systems will have identical state trajectories for t , 

which is now called complete synchronization or identical 
synchronization. It has been widely explored in a variety 
of fields including physical, chemical and ecological 
systems (Chen and Dong, 1998; Ahn, 2009). 

Input-to-state stability (ISS) is an interesting concept 
first introduced in Sontag (1989) to nonlinear control 
systems. The ISS property is concern with the continuity 
of state trajectories on the initial states and the inputs. 
Roughly speaking, a system is ISS if every state trajectory 
corresponding to a bounded control remains bounded, 
and the trajectory eventually becomes small if the input 
signal is small no matter what the initial state is. It had 
been widely accepted as an important concept in control 
engineering and many research results have been 
reported (Sontag, 1990; Jiang et al., 1994;  Sontag  and 
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Wang, 1995; Christofides and Teel, 1996; Sontag, 1998; 
Angeli and Nesic, 2001; Ahn, 2010b). 

On the other hand, experimental results have been 
shown that the complete synchronization of chaos is 
practically impossible for the finite transmission speed of 
signals (Shahverdiev et al., 2002; Taherion and Lai, 1999; 
Barsella and Lepers, 2002). Different from complete 
synchronization, chaotic lag synchronization appears as a 
coincidence of shift-in-time states of interactive systems. 
It is just synchronization lag that makes lag 
synchronization practically available (Huang et al., 2001). 
Thus, knowledge of the lag synchronization is of 
considerable practical importance (Li, 2009; Ahn et al., 
2009 ; Ahn, 2010a). To the best of our knowledge, 
however, for the ISS based lag synchronization of chaotic 
systems with external disturbance, there is no result in the 
literature so far. This situation motivates our investigation. 

In this paper, we present a new control scheme for the 
ISS lag synchronization of chaotic dynamical systems 
with external disturbance. By the presented scheme, the 
lag synchronization error converges exponentially and 
remains bounded for any bounded disturbance. Based on 
linear matrix inequality (LMI) formulation, a sufficient 
condition for the ISS lag synchronization is represented in 
terms of the LMI, which can be solved efficiently by using 
recently developed convex optimization algorithms (Boyd  



 
 
 
 
et al., 1994). Furthermore, we show that the proposed lag 
synchronization sheme can guarantee the integral ISS lag 
synchronization (Angeli et al., 2000). 
 

 

PROBLEM FORMULATION 
 

Throughout this paper, we will use the following 
definitions:  
 

 

Definition 1  
 

A function 00: RR  is a  function if it is 

continuous, strictly increasing and 0=(0) .  

 

 

Definition 2  
 

A function 00: RR  is a  function if it is a  

function and also )(s  as s .  

 

 

Definition 3  
 

A function 000: RRR  is a KL function if, for 

each fixed 0t , the function ),( t  is a  function, 

and for each fixed 0s , the function ),(s  is 

decreasing and 0),( ts  as t .  
 

Consider a class of chaotic systems:  
 

                    (1) 
 

where 
nRtx )(  is the state vector, 

nRtxf ))((  is a 

nonlinear function vector, 
nnRA  and 

nnRB  are 
known constant matrices. The system (1) is considered as 
a drive system. Now we design a response system as  
 

     (2) 
 

where 
nRtz )(  is the state vector of the response 

system, 
knRG  is a known constant matrix of the 

controlled response system. 
m

l Rtu )( , 
n

n Rtu )( , 

and 
kLtd )(  are the linear control input, the nonlinear 

control input, and the disturbance input, respectively.  
Defining the lag synchronization error 

)()(=)( txtzte , where 0>  is the 

synchronization lag. Then we obtain the lag 
synchronization error system  
 

   (3) 
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Definition 4 (Exponential lag synchronization)  
 
The error system (3) is exponentially lag-synchronized if 

the lag synchronization error )(te  satisfies  

 

                    (4) 
 

where M  and N  are positive scalars.  

 
 
Definition 5 (ISS lag synchronization)  
 
The error system (3) is ISS lag-synchronized if there exist 

a  function )(s  and a L  function ),( ts , such 

that, for each disturbance input 
kLtd )(  and each 

initial lag synchronization error 
nRe(0) , it holds that  

 

      (5) 
 

for each 0t .  

 

Subsequently, we design the controllers )(tul  and 

)(tun  guaranteeing the ISS lag synchronization if there 

exists the disturbance input )(td . It will be shown that 

these controllers )(tul  and )(tun  can guarantee the 

exponential lag synchronization when the disturbance 

input )(td  disappears. 

 
 

ISS and exponential lag synchronization 
 
Now we present the LMI feasibility problem for achieving 
the ISS lag synchronization in the following theorem.  
 
 

Theorem 1 
 

If there exist 0>= TPP , 0>= TQQ , 0>= TRR , 

and Y  such that  
 

0,<
RPG

PGQYYPAPA
T

TT

            (6) 

 
then the ISS lag synchronization is achieved and the 

controllers are given by ))()((=)( 1 txtzYPtul  

and )))(())(((=)( txftzfBtun . 

 

Proof: If we apply the linear control input  )(=)( tKetul  
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to the error system (3), we obtain  
 

 (7) 
 
If we select the nonlinear control input 

)))(())(((=)( txftzfBtun , we have  

 

).()()(=)( tGdteKAte                       (8) 

 
Consider a quadratic Lyapunov function 

)()(=))(( tPeteteV T
. Note that ))(( teV  satisfies the 

following Rayleigh inequality (Strang, 1986):  
 

 (9) 
 

where )(min  and )(max  are the maximum and 

minimum eigenvalues of the matrix. The time derivative of 

))(( teV  is  

 

(10) 
 
If the following matrix inequality is satisfied  
 

0,<
RPG

PGQPKPKPAPA
T

TT

     (11) 

 
we have  
 

)()()()(<))(( tRdtdtQeteteV TT             (12) 

 

            (13) 
  

Define functions )(1 r , )(2 r , )(3 r , and )(4 r  as 

 

,)()( 2

min1 rPr                           (14) 

 

,)()( 2

max2 rPr                           (15) 

 

,)()( 2

min3 rQr                           (16) 

 
 
 
 

.)()( 2

max4 rRr                           (17) 

 

Note that )(1 r , )(2 r , )(3 r , and )(4 r  are  

functions. From (9) and (13), we can obtain  
 

            (18) 
 

       (19) 
 
According to Sontag and Wang (1995), it is concluded 

that ))(( teV  is an ISS-Lyapunov function and the ISS 

lag synchronization is achieved. If we let PKY = , (11) is 
equivalently changed into the LMI (6). Then the gain 

matrix of the linear control input )(tul  is given by 

YPK 1= . 
 
 
Corollary 1 
 
If there is no the disturbance input, the control inputs 

)(tul  and )(tun  proposed in Theorem 1 can guarantee 

the exponential lag synchronization.  
 
 

Proof: When 0=)(td , we obtain  

 

      (20) 
 
This implies that 
 

.
)(

)(
exp(0))(<))((

max

min t
P

Q
eVteV             (21) 

 
Using (9), we have 
 

   (22) 
 
This guarantees the exponential lag synchronization. 



 
 
 
 
INTEGRAL ISS LAG SYNCHRONIZATION 
 
First, we introduce the following definitions: 
 
 
Definition 6 
 

A function 00: RR  is a positive definite function if 
it is zero at 0 and positive otherwise.  
 
 
Definition 7 (Integral ISS lag synchronization) 
 
The error system (3) is integral ISS lag-synchronized if 

there exist a  function )( , a  function 

),( , and a  function 
)(

 such that  
 

      (23) 
  
Next, we show that the controllers in Theorem 1 
guarantee the integral ISS lag synchronization. 
 
 
Corollary 2 
 

The control inputs 
)(tul  and 

)(tun  proposed in 
Theorem 1 can guarantee the integral ISS lag 
synchronization.  
 
 
Proof 
 

We use the proof of Theorem 1. The function 
)(3 r

 in 
(16) is a positive definite function. In addition, the function 

)(4 r
 in (17) is regarded as a  function. Thus, 

according to Angeli et al. (2000), it is concluded that 

))(( teV
 is an integral ISS-Lyapunov function and the 

integral ISS lag synchronization is achieved. 
 
 
APPLICATION TO LORENZ SYSTEM 
 
Considering the following Lorenz chaotic system:  
 

.

)()(

)()(

0
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


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     (24) 
 

Here, we let 
T

G 1  1  1=  and 0.5= . If we apply 
Theorem 1 to the system (23), we obtain the following 
feasible solution: 
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Figure 1. State trajectories. 

 
 
 

  (25) 

 

.

1.13651.58536.4700

3.85833.230110.7727

0.966927.270717.7656

=  1.2562,= YR   (26) 

 
Figure 1 shows state trajectories for drive and response 
systems when the initial conditions are given by 
 

,
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     (27) 

 

and the disturbance input )(td  is given by a Gaussian 

noise with mean 0  and variance 100 . This figure 

shows the lag synchronization between drive system and 

response system with a synchronization lag 0.5= . We 

can see from Figure 2 that the lag synchronization is 

achieved and the lag synchronization error )(te  is 

bounded for the disturbance input )(td . 
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Figure 2. Lag synchronization errors. 

 
 
 
Conclusion 
 
In the paper, the exponential lag synchronization has 
been investigated based on ISS approach. An LMI 
condition for the ISS lag synchronization of chaotic 
systems with disturbance input was derived. This 
condition also guaranteed the exponential lag 
synchronization when there is no disturbance input. In 
addition, the integral ISS lag synchronization was shown 
to be possible under this LMI condition. A numerical 
simulation was given to show the effectiveness and 
feasibility of the proposed method. 
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