
  

 

International Journal of the Physical Sciences Vol. 6(1), pp. 93-97, 4 January, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS10.594 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
 
 
 
 

Full Length Research Paper 

 

Approximate Kerr–like interior and exterior solutions 
for a very slowly rotating star of perfect fluid 

 

Bijan Nikouravan 
 

1
Department of Physics and Astrophysics, Islamic Azad University (IAU) - Varamin Pishva Branch, Iran,  

2
Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia.  E-mail: nikou@um.edu.my, 

bijan_nikou@yahoo.com. Tel: (+60) 0123-851513 
 

Accepted 30 December, 2010. 
 

Approximate Kerr- like interior and exterior solutions for a very slowly rotating star of perfect fluid is 
presented here which is valid for a very slowly rotating and hence very slightly oblate star of perfect 
fluid rotating with a very small constant angular velocity. Corresponding approximate exterior metric 
represents approximate Kerr exterior metric for a perfect fluid. The aim here is to obtain Kerr-like 
approximate exterior and interior solutions for a very slowly rotating star of perfect fluid simply 
following standard procedure used to obtain Schwarzschild solutions. 
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INTRODUCTION 
 
The first solution of Einstein field equation for a single 
spherical and non-rotating mass has been derived by 
Schwarzschild (1916). The next solution for a rotating 
star has been derived by Kerr (1965). However the 
Schwarzschild metric is very nice, but it is describing only 
for, non-rotating and spherical objects. By Schwarzschild 
metric it is possible to match the Schwarzschild vacuum 
exterior to a Schwarzschild fluid interior and it is more 
general for static spherically symmetric perfect fluid 
solutions. But the problem of finding a rotating fluid 
interior which can be matched to Kerr exterior or to any 
asymptotically flat vacuum exterior solution has proven 
very difficult and it is a major unsolved problem in general 
relativity (Wiltshire, 2003; Lorenzo, 2004). 

Wahlquist (1968) considered this problem and 
described a solution with a new metric. Bradley et al. 
(2000) contradicted Wahliquist’s metric. Here we are 
trying to derive an approximate Kerr-like interior and 
exterior solution for a very slowly rotating star and slightly 
oblate of perfect fluid with a different line element. 

As we know most of stars are not exactly in spherical 
form but rather slightly oblate in shape. This essentially 
involves   obtaining   the   interior   solution   to  Einstein’s 

equations Einstein (1916). 
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The quantities in the right-hand side of the above 
equations vanish where no matter is present. In this 
purpose, we start by describing the situation (Landau and 
Lifshitz, 1987) for a very slow rotating and hence very 
slight oblate star in the following spheroid coordinate 

system. Here we supposed ar >>  and 1=c  (velocity of 

light). 
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In this surfaces =r constant, are oblate ellipsoids of 

rotation. In these coordinate systems, the rotating flat-
space metric assumes the following form (Nikouravan, 
2001). 
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Therefore in the presence of matter, the metric (3) takes 
the form: 
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Here supposed ),( θλλ r= and ),( θυυ r=  not only 

depends on r  but also depends onθ , and is a constant 

angular velocity. 
The assumption used here enables us to study the 

behavior of the object not only in the radial direction but 

also along the angle θ  simultaneously. However, if the 

basis of this metric is in the spherical coordinate 

system ),,( ϕθr , but basically the metric (4) explains the 

shape of any stars and/or galaxies in more complete form 
so that the spherical form is only a part of this coordinate 
system. Otherwise, instead of working in terms of 

),,( ϕηξ with difficulty in calculation we can transform the 

coordinate system in term of ),,( ϕθr  as an easier way. 

 
 
APPROXIMATE KERR-LIKE INTERIOR SOLUTION 
 

To arrive at the solution let us start with the metric (4). When we 
assume that the star is rotating very slowly and hence ω  being 

very small, the terms involving 
2ω in the metric (4) may be 

neglected as compared with the other higher order terms. It can 

even be shown that the terms involving 
2ω  in ijR ’s are smaller by 

many orders of magnitude in comparison with other terms at the 
surface of the Sun or planets. Therefore, it is justifiable to neglect 

the terms involving 
2ω compared to other higher order terms. The 

metric (4) therefore assumes the form: 
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Let us write θρ 2222 Cosar +≡  and 
22 ar +≡∆ . Then the 

above metric can be written as, 
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Therefore, ijg  are given by, 
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and, 
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The Non-zero Christoffel symbols of second kind are given as 
follows: 
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For the calculation of all Christoffel symbols of first and second kind 
and also the Ricci tensors which are very tedious, it is possible to 
use the software Mathematica (Nikouravan, 2009). Here a prime 

denotes derivative with respect to r , )(
r∂

∂
=′

λ
λ and the dot 

denotes derivative respect to t )(
t∂

∂
=

λ
λ&  . Then ijR 's are given 

as follows: 
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In ijR 's , we can neglect the terms containing 
2ω , 

2a  , 
3a , 

4a  

as they are very small. Similar way the terms involving 
22

,υλ &&  

and υλ &&  can also be neglected. 

For zeroth approximation we may even neglect terms 

involving λ&  andυ& . Terms involving λ&  andυ&  are not zero but are 

very small so that we can approximate 0≈λ&  and 0≈υ& . This is 

rather stringent approximation but to obtain zeroth order solution we 
make this approximation. Nevertheless, we do consider that the star 
rotates extremely slow and hence have a  very  small  bulge.  Under 



  

 

 
 
 
 

this approximation scheme, we get 
i
jR from ijR  and obtained 

Einstein’s field equations as follows: 
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These are same as those in Schwarzschild static interior solution 
but with a difference that while integrating them the constants of 

integration A  and B  turn out to be the function of θ  and not just 

pure constants as they are in the Schwarzschild static case. This is 

because, although in stringent approximation 0≈λ&  and 0≈υ& , 

but λ  and υ  are functions ofθ . The relationship between )(θA  

and )(θB  is, 
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Where, 
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and 
1
r  is the equatorial radius of the spheroid. One can therefore 

arrive at the metric for a very slowly rotating and very slightly oblate 
star of perfect fluid of constant density ρ  and rotating with a 

constant velocity ω  to be, 
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where relation between )(θA and )(θB is given by Equation (12). 

Now it remains to determine )(θB . Ramsey (1961) and MacMillan 

(1958) have given the guidelines to find the expression for a 
Newtonian potential for a rotating oblate sphere to be, 
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where, 
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And ρ  being the constant density of an oblate sphere of equatorial 

radius
1
r , ε  the oblateness and M  is the mass of the oblate 

sphere contained within the equatorial radius ))((
11
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V  in terms of M and ε  at the equator 
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rr =  , we get the 

potential with a negative sign as, 
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To determine )(θB  and consequently )(θA , we use the well 

known result, that is, approximation, 
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where, V  is the internal Newtonian potential of a rotating and 

slightly oblate sphere at 
1
r  , as given by Equation (15) and get 

)(θB  to be, 
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 has small but significant value and hence 

may not be neglected and hence in this situation ε  will have a 

small but still significant value. In this situation, (14) along with (12) 
and (19), represents the gravitational field of a slowly rotating and 
slightly oblate sphere. Corresponding exterior metric is,  
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RELATION WITH KERR EXTERIOR METRIC 
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neglecting terms 
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The above metric, for outside of the body assumes in the following 
form, 
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Moreover the Kerr exterior metric, in Boyer and Lindquist 
coordinates system is given by, Landau and Lifshitz (1987), 
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In approximation as, ra << , then the term 
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Kerr exterior metric (Equation 23) in the following form, 
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RESULTS AND DISCUSSION 

 
By comparing approximate metrics (Equations 24 and 

22), we get )(
2 22

ar
r

aJ
+=ω . In the same level of 

approximation, this condition becomes, ω=
3

2

r

aJ . This 

condition is approximately valid because ω=
3

2

r

a , 

where aMJ = . The discussion here shows that in 

approximation, the exterior metric (Equation 22) to the 
interior metric (Equation 21) obtained in this paper, really 
corresponds in approximation to the approximate exterior 
Kerr metric (Equation 24) of exterior metric (Equation 23). 
Thus we can conclude that the metrics (Equation 14), 
along with Equations (12) and (19), represents Kerr 
interior metric.  

 
 
CONCLUSION 

 
The aim of this work was to obtain Kerr-like interior and 
exterior solutions for a slowly rotating star or galaxy with 
small in angular velocity. This approximate solution has 
been obtained by the standard procedure which is used 
in getting the standard Schwarzschild solutions. The 
advantage of the procedure is that the exterior Kerr 
solution has been obtained without going into detail, the 
procedure adopted in obtaining the actual exterior Kerr 
solution. The objective of the work has been achieved 
successfully.  
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