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In this paper, we consider the higher-order nonlinear rational difference equation 

,...1,0n,)BxA/()xx(x nknn1n , where the parameters 
,0B,A,,,

 and the initial 

conditions 
,0x,...,x 0k , 1k . We investigate the periodic character, the invariant intervals and the 

global asymptotic stability of all positive solutions of the equation. 
 
Key words: Difference equation, stability, periodicity, invariant interval, global stability. 

 
 
INTRODUCTION 
 
The study of properties of rational difference equations 
has been an area of intense interest in recent years. 
Related to this subject, are researches done by Devault 
(2001), Dourbaki (2008), Gibbons (2002), Jia (2010), 
Kulenovic (2003), Li (2005a, b), Saleh (2006), Sebdani 
(2006) and Tang (2010a, b). Our aim in this paper is to 
investigate the dynamical behavior of the following 
nonlinear rational difference equation: 
 

n n k
n 1

n

x x
x ,n 0,1,...

A Bx                                    (1) 
 

Where initial conditions k 0x ,..., x 0,
 and the 

parameters 
, , , A,B 0,

 and 1k . 
 
 
Definition 1 
 
Let Equation 1 be some interval of real numbers and let: 
 

 f : I I I                                                           (2) 
 
be a  continuously  differentiable  function. Then for every  
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set of initial conditions: 
 

k 0y ,..., y I
, the difference equation: 

 

n 1 n n k 0y f (y , y ) , n N
             (3) 

 

has a unique solution: n n k
y

. 
 

A point 
y

 is called an equilibrium point of Equation 3 if: 
 

y f (y, y)
               (4) 

 
That is, 
 

ny y , for n 0,
             (5) 

 
is a solution of Equation 3, or equivalently y  is a fixed 
point of f. 

 
 
Definition 2 

 

Let 
y

 be an equilibrium point of Equation 3 and assume 
that I is some interval of real numbers. 



 
 
 
 

(i) The equilibrium 
y

 is called “locally stable” (or stable) 

if, for every 0 , there exists 0  such that, if 

k 0y ,..., y I
and 

yy...yy 0k ,we have 

ny y
 for all n k . 

(ii) The equilibrium 
y

 of Equation 3 is called “locally 
asymptotically” stable (asymptotically stable) if it is locally 

stable and if there exists
0

 such that, if l 

k 0y ,..., y I
 and

yy...yy 0k , 

n
n
lim y y

. 

(iii) The equilibrium 
y

 of Equation 3 is called a “global 

attractor” if, for every k 0y ,..., y I
, we have

n
n
lim y y

. 

(iv) The equilibrium 
y

 of Equation 3 is called “global 
asymptotically stable” if it is locally stable and is a global 
attractor. 

(v) The equilibrium 
y

 of Equation 3 is called “unstable” if 
it is not stable. 

(v) The equilibrium 
y

 of Equation 3 is called a “source”, 

or a “repeller”, if there exists r 0  such that, for all 

k 0y ,..., y I
 and

ryy...yy 0k , there 

exists N 1  such that Ny y r
. 

 

An interval J I  is called an “invariant interval” for 
Equation 3 if: 
 

k 0 ny ,..., y J y J n 0
            (6) 

 
That is, every solution of Equation 3 with the initial 
conditions in J remains in J. 
 
Let: 
 

)y,y(
u

f
P

 and 
)y,y(

v

f
Q

    
 

Where, 
)v,u(f

 is the function in Equation 3 and 
y

 is an 
equilibrium of Equation 3. Then the equation: 
 

,...1,0n,QyPyy knn1n            (7) 
 
is called the “linearized equation” associated with 

Equation 3 about the equilibrium point 
y

. 
Its characteristic equation is: 
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0QP k1k

             (8) 
 
 
Theorem 1 
 

(i) If all the roots of Equation 8 lie in the open disk
1

, 

then the equilibrium 
y

 of Equation 3 is asymptotically 
stable. 
(ii) If at least one root of Equation 8 has absolute value 

greater than one, then the equilibrium 
y

 of Equation 3 is 
unstable (Kocic, 1993) (linearized stability). 
 
 
Theorem 2 
 

Assume that P,Q R  and
k 1,2,...

. Then (Kocic, 
1993): 
 

P Q 1
                          (9) 

 
is a sufficient condition for the asymptotic stability of the 
difference equation: 
 

n 1 n n ky Py Qy , n 0,1,...
         (10) 

 
 
Lemma 1 
 
Consider the difference Equation 3 (Li, 2005). 
 

Let: 
I [a,b]

 be an interval of real numbers and assume 

that 
f :[a,b] [a,b] [a,b]

 is a continuous function 
satisfying the following properties: 
 

(i) 
f (x, y)

 is non decreasing in each of its arguments. 
(ii) The equation: 
 

f (x, x)
           (11) 

 

has a unique positive solution in the interval 
[a,b]

. Then 

Equation 3 has a unique equilibrium point 
y [a,b]

 and 

every solution of Equation 3 converges to 
y

. 
 
 
Lemma 2 
 
Consider the difference Equation 3 (DeVault et al., 2001). 

Let 
I [a,b]

 be  an interval of real numbers and assume 
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that 
f :[a,b] [a,b] [a,b]

 is a continuous function 
satisfying the following properties. 
 

(a) 
f (x, y)

 is a non increasing function in x and a non 
decreasing function in y. 

(b) If 
(m,M) [a,b] [a,b]

 is a solution of the following 
system: 
 

m f M,m , M f m,M
        (12) 

 

then m M . 
 
Then Equation 3 has a unique equilibrium point 

y [a,b]
 and every solution of Equation 3 converges to 

y
. 

 
 
LOCAL STABILITY AND PERIOD-TWO SOLUTIONS 
 
Here, we will investigate the local stability and the 
periodic character of Equation 1. By the change of 

variables 
n ny x

B  reduces Equation 1 to the following 
difference equation: 
 

n n k
n 1

n

p y qy
y , n 0,1,...

r y
      (13) 

 

Where, 
2

B
p

, 
q

 and 

A
r

 with 

p,q, r (0, )
, k 0y ,..., y 0,

. 
 

Equation 13 has a unique positive equilibrium 
y

: 
 

2(q 1 r) (q 1 r) 4p
y

2          (14) 
 
The linearized equation associated with Equation 13 

about the unique positive equilibrium 
y

 is: 
 

n 1 n n k

1 y q
z z z 0

r y r y                         (15) 
 

and its characteristic equation is: 
 

k 1 k1 y q
0

r y r y           (16) 

 
 
 
 
Theorem 3 
 
(a) Assume that k is odd. Then Equation 13 has a prime 
period-two solution: 
 
..., , , , ,...

                        (17) 
 
if and only if: 
 

r 1 q
           (18) 

 
Furthermore when Equation 18 holds (17) is a prime 
period-two solution of Equation 13 if and only if: 
 

1
 and 

p

1             (19) 
 
(b) Assume that k is even. Then Equation 13 has no 
period-two solution. 
 
 
Proof 
 
Assume for the sake of contradiction that there exist two 

distinct non negative real numbers  and  such that 
..., , , , ,...

 is a prime period-two solution of 
Equation 13. 
 

(a) Let k be odd. Then n 1 n kx x
 and ,  satisfy the 

following system: 
 

p q

r ,

p q

r          (20) 
 
Subtracting both sides of the aforementioned two 
equations, we obtain: 
 

r 1 q 0
           (21) 

 

Since ,
r 1 q

. The reverse part is clear by 
simple computation. So it is omitted. 
 

Now, when Equation 18 holds, 
..., , , , ,...

 is a 
prime period-two solution of Equation 13 if and only if 

p
 with 

, 0,
 and . That is   

equivalent to Equation 19. 

 

(b) Let k be even. Then n n kx x
 and ,  satisfy the 

following system: 



 
 
 
 

p q

r  , 

p q

r         (22) 
 
Subtracting both sides of the aforementioned two 
equations, we obtain: 
 

r 1 q 0
                    (23) 

 

Since , 
r 1 q 0

; this contradicts the 

hypothesis that 
r,q 0

. 
 
 
BOUNDEDNESS AND INVARIANT INTERVALS 
 
Here, we will investigate the boundedness and invariant 
intervals of Equation 13.  

Let n n k
y

 be a nonnegative solution of Equation 13. 

Then we have the following identities: For 0n N
, 

 

n k

n 1

n

y r p / q q
y 1

r y
 

 

n k n

n 1

n

r p r p
q y (r y ) 1

q qr p
y

q r y  
 

n k n

n 1

n

p p
q y y 1

r q r qp
y (r q)

r q r y  
 

n k n n k

n 1 n k

n

p
(r q) y y 1 y

r q
y y

r y       (24) 
 

If 
r p q

, then the unique positive equilibrium 
y 1

 
and in Equation (24: 
 

n k

n 1

n

y 1 q
y 1

r y
 

 

n n k

n 1 n k

n

(p y ) 1 y
y y

r y
       (25) 

 

If 
q r

, then the unique positive equilibrium 

1 1 4p
y

2  and in Equation 24, 

Das and Bayram        2953 
 
 
 

n k n

n 1 n k

n

p 1 y y
y y

r y
            (26) 

 
Let, 
 

p x qy
f (x, y)

r x                                   (27) 
 
Then, 
 

2

r p qyf

x r x
 and 

f q

y r x           (28) 
 
 
Lemma 3 
 

Let 
)y,x(f

 be defined in Equation 27. Then the following 
statements are true: 
 

(i) Assume that
pr

. Then 
)y,x(f

 is increasing in each 

of its arguments for 

r p
y

q  and it is increasing in y and 

decreasing in x for

r p
y

q . 

(ii) Assume that
pr

. Then 
)y,x(f

 is decreasing in x and 

increasing in y for 0x . 
 
 
CASE 1 
 

qr
 

 
 
Lemma 4 
 

Assume that 
qpr

 and knny
 is a non negative 

solution of Equation 13. Then the following statements 
are true: 
 

(i) If for some 0N , q

pr
y kN

, then N 1y 1
. 

(ii) If for some 0N ,
q

pr
y kN

, then 
1y 1N . 

(iii) If for some 0N ,
q

pr
y kN

, then 
1y 1N . 

(iv) If for some 0N ,
qr

p
y kN

, then
qr

p
y 1N
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(v) If for some 0N , qr

p
y kN

, then kN1N yy
. 

(vi) If for some 0N , 
1y kN , then kN1N yy

. 
(vii) Equation 13 possesses an invariant interval 

q

pr
,

qr

p

 and 
q/)pr(),qr/(py

. The interval 

1,
qr

p

 is also an invariant interval of Equation 13 and 

1),qr/(py
. 

 
 
Proof 
 

When 
q/)pr(1)qr/(p

 holds, (i) to (vi) can be 
easily seen from the identities in Equation 24. 
 

(vii) From Lemma 3. (i) the function 
)y,x(f

 is increasing 

in each of its arguments for 

r p
y

q .For  
 

q

pr
,

qr

p
y,...,y 0k

, 
 

1 0 k

2

p p
y f (y , y ) f ( , )

r q r q

p(r 1) p

r qr p r q  
 

q

pr
1)

q

pr
,

q

pr
(f)y,y(fy k01

       (29) 
 

implies that

]
q

pr
,

qr

p
[1),qr/(py1

. 
 

By the induction, 
]

q

pr
,

qr

p
[1),qr/(pyn

 for 

every Nn . On the other hand, 
qpr

 implies that: 
 

1
2

)qr(4)r1q()r1q(

2

p4)r1q()r1q(
y

2

2

          (30) 
 

Furthermore, 
y

 is the positive root of the quadratic 
equation: 

 
 
 
 

0py)1qr(y2

     (31) 
 
Since, 
 

0
)qr(

)rqp(p
p

qr

p
)1qr(

qr

p
2

2

 
 

then we have that 
)qr/(py
. That is, 

]q/)pr(,)qr/(p[]1),qr/(p[y
. 

 
 
Lemma 5 
 

Assume that 
qpr

 and knny
 is a nonnegative 

solution of Equation 13. Then the following statements 
are true: 
 

(i) If for some 0N ,
1y kN , then N 1y 1

. 

(ii) If for some 0N ,
1y kN , then N 1y 1

. 

(iii) If for some 0N ,
1y kN , then N ky 1

. 

(iv) If for some 0N ,
1y kN , then kN1N yy

. 

(v) If for some 0N ,
1y kN , then kN1N yy

. 
 
 
Lemma 6 
 

Assume that 
qprq

 and knny
 is a nonnegative 

solution of Equation 13. Then the following statements 
are true: 
 

(i). If for some 0N ,
qr

p
y kN

, then 
N 1

p
y

r q . 

(ii). If for some 0N ,
qr

p
y kN

, then kN1N yy
. 

(iii). If for some 0N ,
1y kN , then kN1N yy

. 

(iv). Equation 13 possesses an invariant interval 
qr

p
,1

 

and
)qr/(p,1y

.  
 

Furthermore, if 
pr

 then
1yn  for all Nn . If

pr
, 

then the following statements are also true: 
 

(a) If for some 0N ,
q

pr
y kN

, then 
1y 1N . 



 
 
 
 

(b) If for some 0N ,
q

pr
y kN

, then 
1y 1N . 

(c) If for some 0N ,
q

pr
y kN

, then 
1y 1N . 

 
 
Proof 
 

When
)qr/(p1q/)pr(
 holds, (i) to (iii) can easily be 

seen from identities in Equation 24. 
 

(iv) From Lemma 2 (i) the function 
)y,x(f

 is decreasing 

in x and increasing in y in 
)qr/(p,1

. 

For qr

p
,1y,...,y 0k

,  

qr

p

q

pr
r

q

pr

qr

pr

)
qr

p
,

q

pr
(f)

qr

p
,1(f)y,y(fy k01

1 0 k

p
y f (y , y ) f ( ,1)

r q

p r p r p
f ( , ) 1

r q q q           (32) 
 

Which implies that 
)qr/(p,1y1 . By the induction, 

)qr/(p,1yn  for every Nn . 
 

On the other hand, 
qpr

 implies that: 
 

1
2

)qr(4)r1q()r1q(

2

p4)r1q()r1q(
y

2

2

         (33) 
 
Then like the proof of the Lemma 4 (vii), it can be proved 

that
)qr/(p,1y

. 
 
 
CASE 2 
 

qr
 

 
 
Lemma 7 
 

Assume that
qr

. Then the interval 
,1

 is  an  invariant  
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interval of Equation 13 and 
1y

. If
pr

, then the 
following statements are also true: 
 

(i) If for some 0N , q

pr
y kN

, then N 1y 1
. 

(ii) If for some 0N , q

pr
y kN

, then 
1y 1N . 

(iii) If for some 0N , q

pr
y kN

, then 
1y 1N . 

 
 
Proof 
 

When 
1q/)pr(

 holds, (i) to (iii) can be easily seen 

from the identities in Equation 24. Further, 
qr

 implies 
that: 
 

1
2

p411

2

p4)r1q()r1q(
y

2

    (34) 
 
 
GLOBAL ASYMPTOTIC STABILITY FOR THE CASE  
 

qr
 

 

Here, we will discuss the global attractivity of the unique 
positive equilibrium of Equation 13. 
 
 
Theorem 4 
 

Assume that
qr

. Then the positive equilibrium 
y

 of 
Equation 13 is a global attractor. The proof is finished by 
considering the following four cases (Theorem 6, 8, 10 
and 12). 
 
 
Theorem 5 
 

Assume that 
qpr

 holds and knny
 is a 

nonnegative solution of Equation 13. 

If
]q/)pr(),qr/(p[y0 , then 

]q/)pr(),qr/(p[yn  

for Nn . Furthermore, every nonnegative solution of 
Equation 13 lies eventually in the interval 

]q/)pr(),qr/(p[
. 

 
 
Proof 
 

Assume that
q/)pr(1)qr/(p

 holds.  
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If
]q/)pr(),qr/(p[y0 , from Lemma 4 (i) and (iv), we 

have 
q/)pr(1y)qr/(p n  for 1n . 

 
 
Theorem 6 
 

Assume that 
qpr

 holds. Then the unique positive 

equilibrium 
y

 of Equation 13 is a global attractor of all 
nonnegative solutions of Equation 13. 
 
 
Proof 
 
From Theorem 5 and Lemma 4 (vii) imply that every non 
negative solution of Equation 13 eventually enters the 

interval
]q/)pr(),qr/(p[
. Furthermore, from Lemma 3 

(i) the function 
)y,x(f

 is increasing in each of its 

arguments in 
]q/)pr(),qr/(p[
 and the equation: 

 
p y qy

y
r y                                  (35) 

 
has a unique positive solution on the interval 

]q/)pr(),qr/(p[
. From Lemma 1, Equation 13 is a 

global attractor of all non negative solutions of Equation 
13. 
 
 
Theorem 7 
 

Assume that 
r p q

 and knny
 is a nontrivial 

nonnegative solution of Equation 13. Then the sequence 

n n 0
y

 is monotonic and n nlim y 1
. 

 
 
Proof 
 

When 
r p q

 holds, we know that
y 1

. From Lemma 

5, if 0y 1
, then n n 0

y
 is decreasing and bounded 

below 1. If 0y 1
, then ny 1

 for n N . If 0y 1
, then 

n n 0
y

 is increasing and bounded above by 1. For each 

cases the sequence n n 0
y

 converges to 1. 
 
 
Theorem 8 
 

Assume   that  
r p q

.   Then    the    unique    positive  

 
 
 
 

equilibrium 
y

 of Equation 13 is a global attractor of all 
non negative solutions of Equation 13. 
 
 
Theorem 9 
 

Assume that 
q r p q

 holds and knny
 is a 

nonnegative solution of Equation 13. 

If 0y [1,p / (r q)]
, then ny [1,p / (r q)]

 for Nn . 
Furthermore, every non negative solution of Equation 13 

lies eventually in the interval 
[1,p / (r q)]

. 
 
 
Proof 
 

Assume that 
(r p) / q 1 p / (r q)

 holds. 

If 0y [1,p / (r q)]
, from Lemma 6 (i) and (iv), we 

have n1 y p / (r q)
 ny [1,p / (r q)]

 for 1n . 
 
 
Theorem 10 
 

Assume that 
q r p q

 holds. Then the unique 

positive equilibrium 
y

 of Equation 13 is a global attractor 
of all nonnegative solutions of Equation 13. 
 
 
Proof 
 
From Theorem 9 imply that every non negative solution 
of Equation 13 eventually enters the 

interval
[1,p / (r q)]

. Furthermore, from Lemma 3 (i) the 

function 
)y,x(f

is non increasing in x and non decreasing 

in y in
[1,p / (r q)]

. Let 
m,M [1,p / (r q)]

 be a 
solution of the system. 
 

p M qm
m

r M  , 

p m qM
M

r m     (36) 
 

Then we find that
(m M)(r 1 q) 0

. Since 

q1r
, we get that m M . From Lemma 2, Equation 

13 is a global attractor of all nonnegative solutions of 
Equation 13. 
 
 
Theorem 11 
 

Assume  that  
r q

 holds and knny
 is a nonnegative  



 
 
 
 
solution of Equation 13. Then every nonnegative solution 

of Equation 13 lies eventually in the interval 
,1

. 
 
 
Proof 
 

When 
r p

 

n n k
n 1 0

n

r y qy
y 1 ,n N

r y
         (37) 

 
So, it is true for this case. 
 

Assume that
r p

. So, 
(r p) / q 1

 holds. 
 

If 0y (r p) / q
, then from Lemma 7 (i) and (ii), we 

have 1y1  . If 0y (r p) / q
, then from Lemma 7 (iii), 

we have 1y 1
. If 1y (r p) / q

, the proof is 
aforementioned. 
 

Assume for the sake of contradiction ny (r p) / q
 for 

all n N . From identities in Equation 24, we get 

n n 1y y (r p) / q
 for n 1 , from which it follows the 

sequence ny
 is increasing and there is a 

finite n nlim y (r p) / q
; this contradicts the fact 

that
y 1 1 4p / 2 1

. 
 
 
Theorem 12 
 

Assume that 
r q

 holds. Then the unique positive 

equilibrium 
y

 of Equation 13 is a global attractor of all 
non negative solutions of Equation 13. 
 
 
Proof 
 

From Lemma 3 (ii), the function 
)y,x(f

 is non increasing 

in x and non decreasing in y in
,1

. 
 

Let 
m,M 1,

 be a solution of the system: 
 

p M qm
m

r M  , 

p m qM
M

r m           (38) 
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Then we find that
(m M)(r 1 q) 0

. 

Since q1r , we get m M . From Lemma 2, 
Equation 13 is a global attractor of all nonnegative 
solutions of Equation 13. 
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