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The steady flow of a third grade fluid which belongs to non-Newtonian fluid mechanics deserves more 
attention than it has been to date, because in the nonlinear systems, the literature is scarce. In this 
paper, we develop a formulation suitable for solution in the case of posttreatment of wire coating 
containing thermal effects of third grade fluids. The optimal homotopy asymptotic method (OHAM) and 
regular perturbation method are used to investigate the flow of the titled problem. Expressions for 
velocity and temperature distributions are given. It is noted that the solutions are strongly dependent 
on the Brinkman number, the ratio of velocityU  and non-Newtonian parameter β . Finally, a physical 
interpretation of the results is given with the help of several graphs. 
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INTRODUCTION 
 
Polymer extrudate is an important industrial process used 
for coating a wire for the purpose of high and low voltage 
and protection against corrosion. Wire coating have many 
application in the field of chemical and industrial 
engineering (Matallah et al., 2001; Binding et al., 1996). 
The basic concepts of modeling of different problems in 
the case wire coating for viscous fluids are given by Denn 
and middleman (Denn, 1980; Middleman, 1977). Many 
authors have studied the wire coating in the die.  Akhter 
and Hashmi (1999, 1977) have developed the 
mathematical model for wire coating using power law 
model and investigated the effect of the change in 
viscosity. Siddiqui et al. (2009) studied the wire coating 
extrusion in a pressure-type die for the flow of a third 
grade fluid. 

The coated wire after leaving the die is effected by the 
quality of the material used in coating process, the wire 
drawing velocity and the temperature. There are very few 
disclosures presenting theoretically analysis of flow in the 
post treatment process subsequent to the die. Kasajima 
and   Ito,  1973;  Nayfeh,  197 9  have   studied   the  post  
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treatment of polymer extrudate in wire coating. They used 
the power law model approach and derived the solutions 
for velocity and temperature distributions. In a wider flow 
and recent context, some recent attempts have been 
made by Mutlu et al., 1998; Mutlu et al., 1998; Matallah et 
al., 2002, that explain the pressure and tube-tooling wire 
coating and multi-mode wire coating of viscous and 
viscoelastic fluid flows. The exact solution of the Navier-
Stokes equations is notoriously, difficult to find because 
the non-linearity exist in these equations due to the 
convection term. To handle the non-linearity, different 
approximate analytical and numerical methods have 
been widely used in fluid mechanics and engineering. 
The perturbation methods are the most widely applied 
analytic tools for non-linear problems to obtain 
approximate solutions of these equations. Most of the 
perturbation methods require the presence of the small or 
large parameter in that equation but every equation has 
not small or large parameter. Therefore, there is a strong 
need to develop new methods (He 2006). 

Recently, Marinca and Herisanu developed a new 
method known as optimal homotopy asymptotic method 
(OHAM). The optimal homotopy asymptotic method 
(OHAM) combines the He’s Homotopy Perturbation 
Method   (HPM)    and   the  method  of  least  squares  to  
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optimally identify the unknown constants of the series 
solutions (Marinca and Herisanu, 2010). Marinca and 
Herisanu proposed this new homotopy technique called 
the optimal homotopy asymptotic method (OHAM) which 
is also proved to be a reliable approach to strongly 
nonlinear problems. In a series of papers by Marinca et 
al. (2008), Herisanu et al. (2008), Marinca and Herisanu 
(2008), Islam et al. (2010) and Javed et al. (2010) have 
not only applied this method successfully to obtain the 
solution of some important problems in engineering and 
fluid mechanics, but also they have shown that this 
method is a powerful tool than other perturbation tools for 
non linear problems. 

To the authors’ knowledge, no previous investigation 
has been reported to develop the governing equations for 
steady incompressible flow containing thermal effects of 
a third grade fluid in case of posttreatment of wire 
coating. In this work, it is intended to construct the 
equations for an incompressible flow of a third grade fluid 
containing thermal effects. The non-linear differential 
equations are made dimensionless and solved for 
velocity and temperature distributions by means of 
perturbation and optimal homotopy asymptotic method. 
 
 
BASIC GOVERNING EQUATIONS 
 
The basic equations governing the flow of an 
incompressible third grade fluid with thermal effects are: 
          

0∇ ⋅ =u ,                                                            (1) 
 

if
Dt
D ρρ +∇= Tu

. ,                                               (2)       

 
2 .p

D
c k

D t
ρ Θ = ∇ Θ + S L                                      (3) 

 

where u  is the velocity vector, ρ  is the constant 

density, f is the body force, T  is the Cauchy stress 

tensor, D Dt  denote the material derivative, Θ  is the 

fluid temperature, k is the thermal conductivity, pc  is the 

specific heat and  L  is the gradient of velocity vector u . 
The Cauchy stress tensor T  is defined as: 
 

SIT +−= p ,                                                (4) 
 

where p  is the dynamic pressure, I  course is the 

identity tensor, and S  is the shear stress tensor. For third 
grade fluid, the extra stress tensor S  is defined as: 
 

( ) ( ) 123122123112211 AAAAAAAAAAS trβββααµ ++++++= ,      (5) 
 
in  which µ   is  the  coefficient  of  viscosity  of  the  fluid,  

 
 
 
 

32121 ,,,, βββαα  are the material constants and 

321 ,, AAA are the line kinematic tensors defined by: 
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where the superscript T denotes the transpose of the 
matrix. 
 
 
FORMULATION OF THE PROBLEM 
 
In wire coating, the quality of the material and wire drawing velocity 
are important within the die, after leaving the die temperature and 
the shape of the transverse sectioning is also very important. 
Considering the flow of the polymer extrudate given in Figure 1 
denoted by the solid line; to analyze the flow behavior of a polymer 
used in wire coating, it is convenient to divide the flow transversely 
into many short sections as shown in broken lines in Figure 1; with 
the assumption that each section has almost the same shape, we 
analyze only one section because each section can be assumed to 
be approximately of the shape shown in Figure 2 and readily 

analyzable. Considering the wire of radius 1R  and temperature 

1Θ  is dragged in the z  direction through an incompressible third 

grade polymer (II) with a velocity 1V  and the gas (III) surrounding 

the polymer (II) is at temperature 2Θ  and flowing with a 

velocity 2V ; considering the cylindrical coordinates ( )zr ,,θ , such 
that  r  is perpendicular to the direction of flow;  boundary 
conditions are: 
 

1Vw = , 1Θ=Θ     at 1Rr = ,   2Vw = , 2Θ=Θ at  

2Rr = ,  (8) 
 
Assuming that the flow is steady, laminar, unidirectional and 
axisymmetric: 
 
We seek the velocity field of the form: 
 

( )0 , 0 , w r� �= � �u , ( )S r=S , ( )rΘ=Θ                           (9) 

 
The following are some more assumptions, which are made during 
the formulation of the problem: 
 
1. The fluid flow is incompressible. 
2. Polymer II holds the third order fluid model for shear rate. 
 
In Figure 2, the wire I, the polymer II and gas III are in contact with 
each other and consider no slippage occurs along the contacting 
surfaces of the wire, polymer, and the gas. 

Using the velocity field, the continuity Equation (1) is satisfied 
identically, and the non zero components of Equation (5) become: 
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Figure 1. Schematic profile of polymer extrudate in wire coating. 

 
 
 

 
 
Figure 2. Drag flow in wire coating. 
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Substituting the velocity field and equation (10) to (12) in the 
equation of balance of momentum (2) in the absence of body force 
takes the form: 
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        (15) 

Equation (15) represents the flow due to pressure gradient. After 
leaving the die, there is only drag flow. Hence, we consider:  
 

( )
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2 32 0
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r r
dr dr r dr dr
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 and the energy Equation (3) becomes: 
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Introduce the dimensionless parameters:  
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The system of Equation (16) to (17) and (8) after dropping the “ ∗ ” 
take the following form: 
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( ) 11 =w , and ( ) Uw =δ ,                                                       (20) 
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where Br  is the Brinkman number and  
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The traditional perturbation method is used to solve Equation (19) 
and (21) with the corresponding boundary conditions (21) and (22). 
 
 
PERTURBATION SOLUTION 
 
The approximate solution to Equation (19) subject to the boundary 
conditions (20) can be obtained by selecting β ε= , as 
perturbation parameter. The velocity field is chosen: 
 

( ) ( ) ( ) ( ) ..., 2
2

10 +++= rwrwrwrw εεε                     (24) 

 
Substituting the aforementioned consideration in Equation (19) and 

(20), and comparing the coefficient of
210 ,, εεε  we obtain the 

zeroth, first and second order problem in the following form: 
 
Zeroth-order problem: 
       

00
2

0
2

=+
dr

dw
dr

wd
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with the boundary conditions: 
 

( ) 110 =w , ( ) .0 Uw =δ                                                          (26) 

 
First-order problem: 
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with the boundary conditions: 
 

( ) 011 =w ,  ( ) .01 =δw                                                           (28) 
 
Second-order problem: 
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with the boundary conditions: 
 

( ) 012 =w , ( ) .02 =δw                                                          (30) 
 
Now we solve this sequence of problems and generate the series 
solution. 
 
Zeroth-order problem solution: 
 

( ) ( )1
ln
ln

10 −+= U
r

rw
δ

,                                                     (31) 

 
which is the Newtonian solution. 
 
First-order problem solution: 
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Second-order problem solution: 
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Next, we find the approximate solution for temperature profile, for 
which we write: 
   

( ) ( ) ( ) ( ) ..., 2
2

10 +Θ+Θ+Θ=Θ rrrr εεε                   (34) 

 
Submitted Equation (24), (34) and εβ =  in Equation (21) and 
(22) and collecting the same power ofε , yields different order 
problems. Zeroth-order problem with boundary conditions: 
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First-order problem with boundary conditions: 
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Second-order problem with boundary conditions: 
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with the solution:                    
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SOLUTION BY OHAM 
 
Here we apply the optimal homotopy asymptotic method (OHAM) 
(11) to (17) to Equation (19). Using: 
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where L and N are linear and nonlinear operators, respectively and 

[ ]0,1p ∈  is an embedding parameter. We construct a homotopy 

( ) [ ], : 0,1r p R Rφ × →  which satisfies: 

 

(1 )[ ( ( , ) ( )] ( )[ ( ( , ) ( ) ( ( , ))],p L r p g r H p L r p g r N r pφ φ φ− + = + +     (45) 

 
with boundary conditions: 
 

( ) ( )1, 1, ,p p Uφ φ δ= = .                                                   (46) 

 
Here ( )H p  is a nonzero auxiliary function for 0p ≠ , 

(0) 0H =  and ( ),r pφ  is an unknown function. Obviously, 

when 0p =  and 1p = , ( ) ( ),0r w rφ =
�

 and 

( ) ( ),1r w rφ =   respectively. Thus, as p  varies from 0 to 1 , 

the solution ( , )r pφ  approaches from ( )w r
�

 to ( )w r , where 

( )w r
�

 is obtained from equation (45) for 0p = . The auxiliary 

function ( )H p  depends either upon some constants (11) to (17) 

or upon some functions depending on a physical parameter 
(Herisanu and Marinca, 2010). It was shown in the paper (Herisanu 

and Marinca, 2010) that a more complex function ( )H p  leads to 

more accurate results. 
We choose the auxiliary function ( )H p in the form: 
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( ) 2
1 2 . . .H p p C p C= + +                                                    (47) 

 

where 1 2,, ...C C are constants to tackled the solution easily. 

To get an approximate solution, we expand ( ), , ir p Cφ  in 

Taylor’s series about p in the following manner: 
 

( ) ( ) ( )1 2
1

, , , , , ..., k
i k k

k

r p C w r w r C C C pφ
∞

=
= + ��
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Substituting Equations (47) and (48) into equation (45) and 
equating the coefficient of like powers of p , we obtain the following 
linear equations: 
 
Zeroth-order problem: 
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0
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0 =+
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subject to the boundary conditions: 
        

( ) 110 =w , ( ) .0 Uw =δ                                                          (50) 
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subject to boundary conditions: 
    

( ) 011 =w , ( ) .01 =δw                                                            (52) 
 
 Second-order problem: 
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subject to boundary conditions: 
 

( ) 012 =w , ( ) .02 =δw                                                          (54) 
 
The convergence of the series (48) depends upon the auxiliary 

constants 1 2,, ...C C .If it is convergent at 1p = : 

 

( ) ( ) ( )1 2 1 2
1

, , ,..., , , ,...,
m

m i i
i

r C C C w r w r C C Cφ
=

= +��

.           (55)  

 
Substitution of Equation (55) into Equation (45), yields the following 
expression for residual: 
 

( )1 2 1 2 1 2, , ,..., ( ( , , ,..., )) ( ) ( ( , , ,..., )).m m mR r C C C L r C C C g r N r C C Cφ φ= + +   (56) 
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Figure 3. Comparison of dimensionless velocity profiles using PM and OHAM, 
when 

1 20 . 6 , 0 .0 1 , 0 . 0 0 1 3 5 7 2 8 6 , 0 . 0 0 2 7 1 2 5 7 2 1 .U C Cβ= = = − = −  
 
 
 
To find the optimal values , 1, 2,3,...iC i = , one can apply 

different methods like method of least squares, Galerkin’s, Ritz, and 
collocation method. Here we used method of least squares as: 
 

( ) ( )2
1 2 1 2, ,..., , , ,...,

b

m m
a

J C C C R y C C C dy= �            (57)  

 

1 2

0
m

J J J
C C C

∂ ∂ ∂= = = =
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�                                           (58) 

 
where anda b are properly chosen numbers to locate the 

desired ( 1,2,..., )iC i m= . With these constants known, the 

approximate solution (of order m ) is well-determined. 
In view of all these, the corresponding solutions of Equations 

(49), (51) and (53) together with the boundary conditions (50), (52) 
and (54) are given as follows: 
 

( ) rrw ln1 100 Ψ+=                                                               (59) 

 

( ) r
r

rw ln13122
11

1 Ψ+Ψ+
Ψ

= .                                           (60) 

 

( ) r
rr

rw ln17162
15

4
14

2 Ψ+Ψ+
Ψ

+
Ψ

=                                    (61) 

 

where 16151413121110 ,,,,,, ΨΨΨΨΨΨΨ  and 17Ψ  are 

constants which holding the auxiliary constants 1C  and 2C  are 
given in appendix.               

Now since the second order approximation is: 
 

( ) ( ) ( ) ( )rwrwrwrw 210 ++=                                           (62) 

the second order approximate solution to velocity distribution is 
given by:  
 

( ) ( ) ( ) ( )14
11 15 12 16 13 174 2

1
1 lnw r r

r r
Ψ= + Ψ + Ψ + Ψ + Ψ + + Ψ + Ψ       (63) 

 
Finally, we solve the energy Equation (21) with respect to the 
boundary conditions (22). For this we substitute equation (63) in 
Equation (21) and integrate twice, we obtain the temperature 
distribution function as follows: 
 

( ) 0 10 13 1511 12 14
18 16 14 12 10 8 6

16 17
18 194 2 ln

r
r r r r r r r

r
r r

τ τ τ ττ τ τ

τ τ τ τ

Θ = + + + + + +

+ + + +

            (64) 

 

where 161514131211100 ,,,,,,, ττττττττ  and 17Ψ  are 

constants which involve the auxiliary constants 1C  and 2C are 
given in appendix. 
 
 
RESULTS AND DISCUSSION 
 
In this paper, approximate analytical solutions for the fluid 
velocity and temperature distribution have been found for 
the heat transfer flow of a third grade fluid for the 
posttreatment of wire coating. The governing non-linear 
ordinary differential equations are solved using the 
traditional perturbation method as well as the recently 
introduced optimal homotopy asymptotic method and the 
results are compared. The graphs for the functions 

( )w r and ( )rΘ are plotted against r in Figures 3 to 8. It 

is found in Figures 3 and  6  that  PM  and  OHAM  are  in  
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Figure 4. Velocity profile for different values of the velocities ratioU for .01.0=β  

 
 
 

 
 
Figure 5. Velocity profile for different values of the dimensionless parameter β  fixing 

.2.0=U  
 
 
 
good agreement for small values of β  ( 0β → ). But 

since PM can not be applicabable for large values of β  
and for highly non-linear problems while; OHAM works 
also for large values of the non-Newtonian  parameter β  

and non-highly non-linear problems (Islam et al., 2010; 
Javed et al., 2010). As the polymer applied to wire 
coating is considered here to be the third grade fluid, so 
the non-Newtonian parameter β  can not approaches to 
zero physically, therefore OHAM  can  better  capture  the  
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Figure 6. Comparison of dimensionless temperature distribution using PM and OHAM, when 

1 20.7, 0.01, 10, 0.001473286, 0.0002569261.U Br C Cβ= = = = − = −   

 
 
 

 
 
Figure 7. Temperature distribution for different values of Brinkman number, taking .7.0=U  

 
 
 
demand solution for this physical problem. Figure 4 
shows the variation of velocity field ( )w r . It is observed 

that the fluid velocity increases as the velocity ratio U 
increases and vice versa.  Figure  5  is  displayed  for  the 

variation of the fluid velocity. It is observed that the 
velocity decreases as the value of the dimensionless 
parameter β  increases by keeping U and Br fixed. 
Figure   7   indicates   that   the   temperature  distribution  
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Figure 8. Temperature distribution for different values of the velocities ratio ,U  taking Brinkman 

.10=Br  
 
 
 
increases with an increase in the Brinkman number Br , 
while Figure 8 admits that temperature distribution 
decreases as the velocity ratio increases.  
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