Timelike tubes with Darboux frame in Minkowski 3-space

Sezai Kızıltuğ* and Yusuf Yaylı

1Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey.
2Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

Accepted 31 December, 2012

In this study, we define a timelike tube around a spacelike curve with timelike binormal by taking Darboux frame instead of Frenet frame in Minkowski 3-space E^3_1. Subsequently, we compute the Gaussian curvature, the mean curvature, and the second Gaussian curvature of timelike tube with Darboux frame and obtained some characterizations for special curves on this timelike tube around a spacelike curve with timelike binormal.

Key words: Darboux frame, tube surface, Minkowski space-time, mean and gaussian curvatures, second gaussian curvature, asymptotic and geodesic curves, line of curvature.

INTRODUCTION

Tube surface is a special case of the canal surface. A canal surface is defined as one of the parameter family of spheres. Or, a canal surface is the envelope of a moving sphere with varying radius, defined by the trajectory $\alpha(\omega)$ (spine curve) of its centers and a radius function $r(\omega)$. If the radius function $r(\omega) = r$ is a constant, then the canal surface is called a tube or tubular surface. Several Geometers have studied canal surfaces and tube surfaces, and have obtained many interesting results. Maekawa et al (1998) carried out a research on the necessary and sufficient conditions for the regularity of tube surfaces. Also, Ro and Yoon (2009) studied the tubes of Weingarten type in a Euclidean 3-space. Abdel-Aziz and Khalifa (2011) studied the Weingarten timelike tube surfaces around a spacelike curve in Minkowski 3-Space E^3_1. Recently, Dogan and Yayli (2012) investigated tubes with Darboux frame in Euclidean 3-space. Surface theory had been a popular topic for many researchers in many aspects. Furthermore, using the curves, surfaces, and canal surfaces are the most popular in computer aided geometric design such as designing models of internal and external organs, preparing of terrain-infrastructures, constructing of blending surfaces, reconstructing of shape, robotic path planning.

In this study, we investigate the timelike tube surface around a spacelike curve with timelike binormal by taking the Darboux frame instead of Frenet frame in Minkowski 3-Space E^3_1 and the characterizations of some special curves on this timelike tube are given.

PRELIMINARIES

The Minkowski 3-space E^3_1 is the Euclidean 3-space \mathbb{R}^3 provided with the indefinite inner product given as:

$$\langle , \rangle = -d^2_{y_1} + d^2_{y_2} + d^2_{y_3}$$

Where,

(y_1, y_2, y_3) is natural coordinates of E^3_1.

Since \langle , \rangle is indefinite inner product, recall that a vector $\beta \in E^3_1$ can have one of the three causal characters it can be spacelike if $\langle \beta, \beta \rangle > 0$ and or $\beta = 0$, timelike if $\langle \beta, \beta \rangle < 0$ and null (ligthlike) if $\langle \beta, \beta \rangle = 0$ and $\beta \neq 0$. Similarly, an arbitrary curve $\alpha = \alpha(\omega)$ in E^3_1 can locally called be as spacelike, if its velocity vector $\alpha'(\omega)$ is spacelike. Recall that the norm of a vector is given by $||\beta|| = \sqrt{\langle \beta, \beta \rangle}$ and that the spacelike $\alpha(\omega)$ is said to be of unit speed if $\langle \alpha'(\omega), \alpha'(\omega) \rangle = +1$. Moreover, the velocity of curve $\alpha(\omega)$ is the function $\theta(v) = ||\alpha'(\omega)||$.

*Corresponding author. E-mail: skiziltug24@hotmail.com.
Denote by \(\{ T(u), N(u), B(u) \} \) the moving Frenet frame along the curve \(\alpha(u) \) in the Minkowski 3-space \(E^3_1 \). Then Frenet formula of \(\alpha(u) \) in the space \(E^3_1 \) is defined by (Neill, 1983)

\[
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}
\]

Where,

\((T,T) = \langle N, N \rangle = 1, (B,B) = -1, (T,B) = \langle N, B \rangle = 0 \)

and \(\kappa \) and \(\tau \) are curvature and torsion of the spacelike curve \(\alpha(u) \), respectively. Then \(\alpha(u) \) is a spacelike curve with timelike principal normal \(N \) and spacelike binormal \(B \).

The vector product of the vectors \(x = (x_1, x_2, x_3) \) and \(y = (y_1, y_2, y_3) \) is defined by

\[
x \times y = \det
\begin{bmatrix}
e_1 & -e_2 & e_3 \\
x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3
\end{bmatrix} = (x_2 y_3 - x_3 y_2, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1).
\]

We denote a timelike surface \(M \) in \(E^3_1 \) by:

\[M(u, v) = (m_1(u, v), m_2(u, v), m_3(u, v)) \]

Let \(U \) be the standard unit of normal vector field on a surface \(M \) defined by:

\[U = \frac{M_u \times M_v}{\| M_u \times M_v \|} \]

Where \(M_u = \frac{\partial M(u,v)}{\partial u} \) and \(M_v = \frac{\partial M(u,v)}{\partial v} \). Then the first fundamental form \(I \) and the second fundamental form \(II \) of a surface \(M \) are defined by (Gray, 1999), respectively

\[
I = Edu^2 + 2Fdudv + Gdv^2
\]

\[
II = edu^2 + 2fdudv + gdv^2
\]

Where,

\[E = \langle M_u, M_u \rangle, F = \langle M_u, M_v \rangle, G = \langle M_v, M_v \rangle \]

\[e = \langle M_u, U \rangle, f = \langle M_v, U \rangle, g = \langle M_v, U \rangle. \]

On the other hand, the Gaussian curvature \(K \) and the mean curvature \(H \) are:

\[
K = \frac{eg - f^2}{EG - F^2}
\]

\[
H = \frac{Fg - 2Ef + Ge}{2(EG - F^2)}
\]

respectively.

If the second fundamental form is non-degenerate; \(eg - f^2 \neq 0 \). In this case, one define formally the second Gaussian curvature \(K_{II} \) a similar one to Brioschi’s formula for the Gaussian curvature obtained on \(M \) replacing the components of the first fundamental form \(E,F,G \) by those of the second fundamental form \(e,f,g \) as (Khalifa, 2011).

\[
K_{II} = \frac{1}{(eg - f^2)^2}
\]

\[
\begin{bmatrix}
\frac{1}{2}e_{uv} + f_{uv} - \frac{1}{2}g_{uu} & \frac{1}{2}e_{u} - \frac{1}{2}f_{v} & 0 \\
\frac{1}{2}g_{u} & e & f \\
\frac{1}{2}f_{u} & g & f
\end{bmatrix}
\]

TIMELIKE TUBES WITH DARBOUX FRAME IN \(E^3_1 \)

In this section, we define a timelike tube surface around spacelike curve with timelike binormal by taking Darboux frame instead of Frenet frame and compute the coefficients of first and second fundamental form, the Gaussian curvature \(K \), the mean curvature \(H \), and the second Gaussian curvature \(K_{II} \) for this timelike tube, respectively.

Let \(\alpha = \alpha(u): (a,b) \rightarrow E^3_1 \) be a spacelike unit speed curve with a timelike binormal \(B \), where \(u \) is the arclength parameter of \(\alpha \). Consider \(M \) as a timelike tube surface parametrized by (Khalifa, 2011)

\[M(u,v) = \alpha(u) + r(N(u) \cosh v + B(u) \sinh v). \]

Let \(M \) be timelike surface and \(\alpha = \alpha(u): (a,b) \rightarrow E^3_1 \) be unit speed spacelike curve on the timelike surface \(M \). Then, Darboux frame \(\{ T, Y = Z \times T, Z \} \) is well-defined along the spacelike curve \(\alpha \) where \(T \) is the tangent of \(\alpha \) and \(Z \) is the unit normal of \(M \). The derivative formule of the Darboux frame of \(\alpha(u) \) is given by:

\[
\begin{bmatrix}
T' \\
Y' \\
Z'
\end{bmatrix} =
\begin{bmatrix}
0 & k_g & -k_n \\
k_g & 0 & t_r \\
k_n & t_r & 0
\end{bmatrix}
\begin{bmatrix}
T \\
Y \\
Z
\end{bmatrix}
\]

\[(T,T) = (Z,Z) = 1, (Y,Y) = -1 \]

\[(T,Y) = (T,Z) = (Y,Y) = 0. \]

In this formuale \(k_g, k_n \) and \(t_r \) are called the geodesic curvature, the normal curvature and the geodesic torsion, respectively (Uğurlu and Kocayigit, 1996). The relations between geodesic curvature, the normal curvature, the geodesic torsion and \(\kappa, \tau \) are given as follows:

\[k_g = \kappa \cosh v, \ k_n = \kappa \sinh v, \ t_r = \tau + \frac{d_v}{d_u} \]

Besides, in the differential geometry of surfaces, for a curve \(\alpha(u) \) lying on a surface \(M \) the following are
well-known:

i) \(\alpha(u) \) is a geodesic curve if and only if \(k_g = 0 \),

ii) \(\alpha(u) \) is an asymptotic curve if and only if \(k_n = 0 \),

iii) \(\alpha(u) \) is a principal line if and only if \(t_r = 0 \).

Let the center spacelike curve \(\alpha(u) \) be on the timelike surface \(M \). Since the characteristic circles of canal surface lie in the plane which is perpendicular to the tangent center of spacelike curve \(\alpha(u) \), we can write timelike tube surface with Darboux frame as:

\[
M(u, v) = \alpha(u) + r(Y(u) \cosh v + U(u) \sinh v)
\]

(2)

where \(U \) is the unit normal of the surface \(M \) along the curve \(\alpha(u) \).

Let \(M \) be a timelike tube surface with Darboux frame in \(E^1_2 \) given in Equation 2. So, from the derivative formulas of Darboux frame, partial differentiation of \(M \) with respect to \(u \) and \(v \) are as follows:

\[
M_u = (1 + r k_g \cosh v + r k_n \sinh v) T + r t_r \sinh v Y + r t_v \cosh v U,
\]

\[
M_v = r \sinh v Y + r \cosh v U.
\]

Therefore, we find the components of the first fundamental form of \(M \) to be:

\[
E = (1 + r k_g \cosh v + r k_n \sinh v)^2 + r^2 t_r^2, \quad F = -r^2 t_r, \quad G = r^2.
\]

(3)

On the other hand, the unit surface normal vector field \(Z \) is obtained by:

\[
Z = \frac{M_u \times M_v}{||M_u \times M_v||} = \cosh v Y + \sinh v U.
\]

(4)

The second order partial differentials of \(M \) are found as:

\[
M_{uu} = [r(k_g + k_n t_v) \cosh v + r(k_n + k_g t_r) \sinh v] T
+ [r(k_g^2 + t_r^2) \cosh v + k_g + r(k_n k_g + t_r) \sinh v] Y
+ [r(t_r - k_g k_n) \cosh v - k_n + r(t_v - k_g^2) \sinh v] U,
\]

\[
M_{uv} = (r k_g \sinh v + r k_n \cosh v) T + r t_v \cosh v Y + r t_r \sinh v U,
\]

\[
M_{vv} = r \cosh v Y + r \sinh v U.
\]

From Equation 4 and the last equations we find the second fundamental for coefficients as follows:

\[
e = (k_g \cosh v + k_n \sinh v) (-1 + r k_g \cosh v + r k_n \sinh v) + r t_v^2, f = r t_r, g = r.
\]

(5)

Thus, the Gaussian curvature \(K \), the mean curvature \(H \), and the second Gaussian curvature \(K_{ij} \) are given by:

\[
K = \frac{k_g \cosh v + k_n \sinh v}{r(-1 + r k_g \cosh v + r k_n \sinh v)},
\]

\[
H = \frac{2r(-k_g \cosh v - k_n \sinh v) + 1}{2r(-1 + r k_g \cosh v + r k_n \sinh v)},
\]

\[
k_{ij} = \left[3 + k_g \cosh 2v + k_g \sinh 2v - 12r k_g \cosh 2v - 12r k_n \cosh v \sinh v - 8r^2 k_n^2 \cosh 2v \right] \frac{\text{sech}^2 v}{r(-1 + r k_g \cosh v + r k_n \sinh v)}.
\]

(6)

respectively.

Where \(k_g, k_n \), and \(t_r \) are the geodesic curvature, the normal curvature, and the geodesic torsion of \(\alpha(u) \), respectively.

SOME CHARACTERIZATIONS FOR SPECIAL CURVES ON THIS TIMELIKE TUBE SURFACE

In this section, we investigate the relation between parameter curves and special curves such as geodesic curves, asymptotic curves, and lines of curvature on this timelike tube surface \(M(u, v) \).

Theorem 1

For the timelike tube surface \(M(u, v) \):

i) \(v \) - parameter curves are also geodesics.

ii) \(u \) - parameter curves are also geodesic if and only if \(k_g, k_n \) and \(t_r \) of \(\alpha(u) \) satisfy the equation system:

\[
k_g \sinh v + k_n \cosh v + r k_n k_g \cosh 2v - \frac{1}{2} r(k_n^2 - k_g^2) \sinh 2v - r t_r^2 = 0,
\]

\[-(k_g^2 + k_n t_r) \cosh v - (k_n + k_g t_r) \sinh v = 0.
\]

(7)

Proof

For \(u \) - and \(v \) - parameter curves, we get

\[
Z \times M_{uv} = r \sinh v \cosh v T - r \sinh v \cosh v T = 0
\]

\[
Z \times M_{uu} = \left[k_g \sinh v + k_n \cosh v + r k_n \cosh 2v - \frac{1}{3} r(k_n^2 - k_g^2) \sinh 2v - r t_r^2 \right] T
+ r(k_g^2 \sinh v - k_n(k_n \sinh v - k_g t_r \sinh v) - k_n k_g \cosh v) Y
- r(k_g \cosh v + k_n \cosh v + k_g t_r \sinh v + k_n \c_n \cosh v) U.
\]

i) Since \(Z \times M_{uv} = 0 \), \(v \) - parameter curves are also geodesics.
ii) Because T, Y and U are linearly independent, $Z \times M_{uu} = 0$ if and only if

$$k_g \sinh v + k_n \cosh v + r k_g k_n \cosh 2v - \frac{1}{2} r (k'_g - k'_n \sinh 2v - r t'_r = 0.$$

$$k_g \sinh v \cosh v - k'_g (\sinh v)^2 - k_n t_r \sinh v + k_n t_r \cosh v = 0.$$

$$k_n (\cosh v)^2 + k_g \sinh v \cosh v + k_g t_r \sinh v + k_n t_r (\cosh v)^2 = 0.$$

By the last two equations, we have

$$-(k'_g + k_n t_r) \cosh v - (k'_n + k_g t_r) \sinh v = 0.$$

Then k_g, k_n, and t_r hold the equation system

$$k_g \sinh v + k_n \cosh v + r k_g k_n \cosh 2v - \frac{1}{2} r (k'_g - k'_n \sinh 2v - r t'_r = 0.$$

$$-(k'_g + k_n t_r) \cosh v - (k'_n + k_g t_r) \sinh v = 0.$$

This completes proof.

Corollary 1

Let $a(u)$ be a geodesic on timelike tube surface M. If u-parameter curves are also geodesic on $M(u, v)$, then the curvatures k and τ of $a(u)$ satisfy the equation:

$$r \tau - k \sinh v + r k^2 (\sinh v)^2 = c.$$

Where, c is a constant.

Proof

Since the center curve $a(u)$ is an asymptotic curve, $k_n = 0$. If we replace $k_n = 0$ in Equation 7, we obtained:

$$k \sinh v (1 - rk \cosh v) - r \tau' = 0,$$

$$-k' \tau \sinh v - k' \cosh v = 0.$$

In the first equation above, if we leave $k \sinh v$ alone and substitute this in the second equation we will get:

$$r \tau - k \cosh v + r k^2 (\cosh v)^2 = c.$$

Theorem 2

For the timelike tube surface $M(u, v)$,

i) v-parameter curves cannot also be asymptotic curves on $M(u, v)$,

ii) u-parameter curves are also asymptotic curve on $M(u, v)$ if and only if $M(u, v)$ is generated by a moving sphere with the radius function:

$$r = \frac{k_g \cosh v + k_n \sinh v}{(k_g \cosh v + k_n \sinh v)^2 + t_r^2} = c$$ (8)

such that r is a constant.

Proof

i) As $(Z \times M_{uv}) = -r(\cosh v)^2 + r(\sinh v)^2 = r \neq 0$ v-parameter curves cannot also be asymptotic curves on $M(u, v)$.

ii) u-parameter curves are also asymptotic curve on $M(u, v)$ if and only if

$$(Z \times M_{uu}) = (k_g \cosh v + k_n \sinh v)(rk_g \cosh v + rk_n \sinh v - 1) + r t_r^2 = 0.$$

From this, we get the radius function:
This completes proof.

Corollary 3

Let u - parameter curves are also asymptotic curves on $M(u, v)$.

i) If the center curve $a(u)$ is a geodesic curve on $M(u, v)$, then

$$r = \frac{ksinhv}{k^2 (sinhv)^2 + \tau^2} = c.$$

ii) If the center curve $a(u)$ is a asymptotic curve on $M(u, v)$, then:

$$r = \frac{k sinh v}{k^2 (cosh v)^2 + \tau^2} = c.$$

iii) If the center curve $a(u)$ is a line of curvature on $M(u, v)$, then:

$$r = \frac{1}{k_g cosh v + k_n sinh v} = c.$$

Proof

Because u - parameter curves are also asymptotic curves on $M(u, v)$, from Equation 8:

$$r = \frac{k_g cosh v + k_n sinh v}{(k_g cosh v + k_n sinh v)^2 + \tau^2} = c.$$

i) Since $a(u)$ is a geodesic curve on $M(u, v)$, $k_g = 0$ So, $k_n = k$, and $t_r = \tau$. If we replace these in Equation 8, we obtained:

$$r = \frac{ksinhv}{k^2 (sinhv)^2 + \tau^2} = c.$$

ii) Since $a(u)$ is a asymptotic curve on $M(u, v)$, $k_g = 0$ So, $k_n = k$ and $t_r = \tau$. If we replace these in Equation 8, we obtained:

$$r = \frac{k cosh v}{k^2 (cosh v)^2 + \tau^2} = c.$$

iii) Since $a(u)$ is a line of curvature on $M(u, v)$, $t_r = 0$. If we replace these in Equation 8, we will get:

$$r = \frac{1}{k_g cosh v + k_n sinh v} = c.$$

Theorem 3

The parameter curves of $M(u, v)$ are also lines of curvature if and only if the center curve $a(u)$ is a line of curvature on $M(u, v)$.

Proof

From Equations 3 and 5 we have:

$$F = -r^2 t_r, f = r t_r.$$

According to theorem of line of curvature, the parameter curves on a surface are also lines of curvature if and only if $F = f = 0$. From $F = f = 0$, it concludes that $t_r = 0$, that is, $a(u)$ is a line of curvature on $M(u, v)$.

Theorem 4

For the timelike tube surface $M(u, v)$,

i) If the center curve $a(u)$ is a geodesic curve on $M(u, v)$, then the Gaussian curvature K, the mean curvature H, and the second Gaussian curvature K_{II} of surface $M(u, v)$ are as follows:

$$K = \frac{ksinhv}{r(-1 + rksinhv)}$$

$$H = \frac{-2rksinhv + 1}{r(-1 + rksinhv)}$$

$$K_{II} = \frac{(3 + sinh 2v - 12rk(sinhv)^3 + 8r^2 k^2 (sinhv)^4) (coshv)^2}{8r(-1 + rksinhv)^2}$$

ii) If the center curve $a(u)$ is a asymptotic curve on $M(u, v)$, then the Gaussian curvature K, the mean curvature H and the second Gaussian curvature K_{II} of surface $M(u, v)$ are as follows:

$$K = \frac{k cosh v}{r(-1 + rk cosh v)}$$

$$H = \frac{-2rk cosh v + 1}{r(-1 + rk cosh v)}$$

$$K_{II} = \frac{(3 + cosh 2v - 12rk(coshv)^3 + 8r^2 k^2 (coshv)^4) (sechv)^2}{8r(-1 + rk cosh v)^2}$$
Proof

i) Because \(\alpha(u) \) is a geodesic curve on \(M(u, v) \), \(k_g = 0 \). So, \(k_n = k \) and \(t_v = \tau \). If we replace these in Equation 6, we obtain:

\[
K = \frac{ksinhv}{r(-1 + rksinhv)}
\]

\[
H = \frac{-2rksinhv + 1}{r(-1 + rksinhv)}
\]

\[
K_{ii} = \frac{(3 + sinh2v - 12rk(sinhv)^3 + 8r^2k^2(sinhv)^4)(cschv)^2}{8r(-1 + rksinhv)^2}
\]

ii) Because \(\alpha(u) \) is an asymptotic curve on \(M(u, v) \), \(k_g = 0 \). So, \(k_n = k \) and \(t_v = \tau \). If we replace these in Equation 6, we obtain:

\[
K = \frac{kcoshv}{r(-1 + rkcoshv)}
\]

\[
H = \frac{-2rkcoshv + 1}{r(-1 + rkcoshv)}
\]

\[
K_{ii} = \frac{(3 + cosh2v - 12rk(coshv)^3 + 8r^2k^2(coshv)^4)(sechv)^2}{8r(-1 + rkcoshv)^2}
\]

ACKNOWLEDGEMENT

The authors would like to thank the referee for his/her valuable suggestions which improved the first version of the paper.

REFERENCES

