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Cultural algorithms (CAs) are one of the metaheuristics which can be adapted in order to work in multi-
objective optimization environments. On the other hand, portfolio selection problem (PSP) is a well-
know problem in literature. However, only a few articles have applied evolutionary multi-objective (EMO) 
algorithms to these problems and articles presenting CAs applied to the PSP have not been found. In 
this article, we present a bi-objective cultural algorithm (BOCA) which has been applied to the PSP, and 
obtaining acceptable results in comparison with other well-known EMO algorithms from the literature. 
The considered criteria of the problem are risk minimization and profit maximization. The different 
solutions obtained with the BOCA have been compared using max-delta-area metric.  
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INTRODUCTION 
 
In order to solve several complex optimization problems, 
the evolutionary algorithms have become an efficient and 
effective choice for researchers principally because this 
kind of techniques are capable to find good solutions for 
most of these problems in acceptable computational 
times. Hence, it is reasonable to think that if these 
algorithms are used in this context we can reach good 
solutions in a multi-objective environment, in a similar 
way as in mono-objective optimization problems. In fact, 
several researches in the last two decades have 
developed this idea. However, the difficulties that these 
algorithms present (particularly genetic algorithms) in a 
mono-objective environment could also happen in multi-
objective environments. Specifically,  they  easily  fall  into 
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premature convergence with low evolution efficiency 
because the implicit information embodied in the 
evolution process and domain knowledge corresponding 
to optimization problems is not fully used (Guo et al., 
2010). In order to effectively make use of implicit 
evolution information, Reynolds (1994) proposed Cultural 
algorithms (CAs) which were inspired from human culture 
evolution process. 

CAs has a dual evolution structure which consists in 
both spaces: population and belief space. The population 
space works as any other evolutionary algorithm. 
However, the belief space implicit knowledge is extracted 
from better individuals in the population and stored in a 
different way. Then, they are used to guide the 
evolutionary process in the population space so as to 
induce population escaping from the local optimal 
solutions. It has been proved that CAs can effectively 
improve the evolution performance. Furthermore, the 
algorithms also provide a universal model for extraction 
and utilization of the evolution information (Guo et al., 
2010). 

In the last 20 years, several authors have centered 
their efforts in the development of several EMO 
algorithms in order to solve a specific group  of  problems 
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which are called Multi-objective or, generalizing, Multi-
Criteria. Maravall and De Lope (2007) used a genetic 
algorithm in order to solve the multi-objective dynamic 
optimization for automatic parking system, Deb et al. 
(2000) proposed an improvement to the well-known 
NSGA algorithm (and that they called NSGA-II) based on 
an elitist approach, and Borgulya (2008) presents an 
EMO algorithm applied for a specific variation of the well-
studied CVRP, where he includes in the EMO algorithm 
an explicit collective memory method, namely the 
extended virtual loser (EVL). Bhattacharya and 
Bandyopadhyay (2010) reported a complete and 
extensive literature review related with EMO. However, 
where the CA is applied to PSP was found in literature 
articles, In fact, some recent published books (Coello et 
al., 2007, 2010; Coello and Landa, 2003) only mention as 
an example of CA application to solve MOPs. 

In this article, we present a bi-objective cultural 
algorithm (BOCA) which has been applied to the portfolio 
selection problem (PSP) and it obtains an important 
improvement in comparison with other well-known EMO 
algorithms as P-MOEA and E-MOEA presented in 
Branke (2009). The criterion considered in this work 
included both, risk (in order to minimize it) and profit (in 
order to maximize it). The different solutions obtained 
with the CA were compared using a max-delta-are which 
was derived from hypervolume S metric proposed in 
Knowles and Corne (2002) and used in several works in 
the literature. 
 
 
Evolutionary (Multi-objective) optimization 
 
Here, we briefly introduce the main principles of MOP and 
particularly, MOCO problems. The following definitions 
were extracted from Kaliszewski (2006). 

Given a set of alternatives, a feasible alternative x  is 

called dominated if there is another feasible alternative in 

the set, say alternative
,x , such that: 

 

i) 
,x  is equally or more preferred than x with respect to 

all criteria, and 

ii) 
,x  is more preferred than x for at least one criterion 

 

If the above holds, the alternative 
,x is called dominating. 

A pair of alternatives x  and 
,x , where x  is dominated 

and 
,x in dominating, is said to be in Pareto dominance 

relation and is denoted by 
,x xp . In a set of more than 

two alternatives, one alternative can be dominating and 
dominated at the same time. 

Given a set of feasible alternatives, one which is not 
dominated by any other alternative of this set is called 
efficient. In other words, an alternative is efficient if there 
is no other alternative in the set: 

 
 
 
 
i) equally or more preferred with respect to all criteria, 
and 
ii) more preferred for at least one criterion 

 
Alternatives which are not efficient are called nonefficient.  

The Pareto optimal set ( )P
∗

is composed of the 

feasible solutions which are not dominated by any other 
solution. Therefore, 

 

{ }, ,
: ,P x there isnox x x

∗ = ∈Ω ∈Ω p  

 

The Efficient (or Pareto) Frontier ( )PF
∗

is the image of 

the Pareto optimal set in the objective space, that is; 

 

( ) ( ) ( )( ){ }1
, ......., :kPF f x f x f x x P∗ ∗= = ∈  

 
As said above, many authors have worked in order to 
solve different MOCO problems. Particularly, EMO is an 
important research area for this goal. An evolutionary 
algorithm is a stochastic search procedure inspired by the 
evolution process in nature. In this process, individuals 
evolve and the fitter ones have a better chance of 
reproduction and survival. The reproduction mechanisms 
favor the characteristics of the stronger parents and 
hopefully produce better children guaranteeing the 
presence of those characteristics in future generations 
(Villegas et al., 2006). A complete review about different 
EMO algorithms is presented in Zitzler (1999) and Coello 
et al. (2007, 2010). 

 
 
Portfolio selection problem (PSP) 

 
The PSP was presented by Markowitz (1952). He 
proposes an asset selection method for portfolios which 
considers the conduct that an investor does (or should) 
have. This conduct consist in searching the combination 
where portfolio maximize its returns for a given risk level 
or  portfolio minimize its risk for an expected returns. 
From Markowitz mean-variance model, several 
extensions have been proposed in the literature. Crama 
and Schyns (2003) showed an extended list of several 
variations to the model and different solving approaches 
of the PSP. DiTollo and Rolli (2006) proposed three 
additional constraints to the model: cardinality, min-max 
constraint for assets of the portfolio and minimum size of 
the transaction. However, the inclusion of these 
constraints makes the problem intractable. 

The main problem of the PSP is to solve two conflicting 
optimization criteria: On one hand the risk of a portfolio, 
represented by its variance is to be  minimized,  while  on 



 
 
 
 

 
 
Figure 1. Spaces of a cultural algorithm. 

 
 
 

the other hand the expected return of the portfolio is to be 
maximized. The model formulation for PSP is presented 
as follows: 
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Where N corresponds to the number of available assets, 

i
w  represents the investment portion in asset  

{ }1,2,.....,i N∈ ; where { }1
,......,

N

N
w w w= ∈ℜ  is the N-

dimensional solution vector; i
µ

 corresponds to the 

expected return of asset 
{ }1,2,.....,i N∈

; ij
σ

 corresponds 
to the covariance between the returns of assets 

{ }, 1, 2,.....,i j N∈ , and ( )
1,...., ; 1,....,

ij
i N j N

σ σ
= =

=  denotes the 

corresponding N N×  covariance matrix. 

As said above, other approaches have been proposed 
in the literature, for example, Loraschi and Tettamanzi 
(1996), Li et al. (2001) and Lin and Liu (2006); however, 
in this article, we solved the well-known Markowitz mean-
variance model presented in Equations 1, 2 and 3. 
 
 
Bi-objective cultural algorithm (BOCA) 

 
The experience and beliefs accepted  by  a  community  in  a  social 
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system are the main motivations for the creation of CAs. They were 
developed by Reynolds (1994), in order to model the evolution of 
cultural systems based on the principles of human social evolution 
from the literature of social sciences, who believe that the evolution 
can be seen as an optimization process. The CAs are identified to 
guide the evolution of the population based on the knowledge. This 
applies to the knowledge provided to future generations, allowing 
them to accelerate the convergence of the algorithm to obtain good 
solutions (Reynolds, 1999). Besides, the domain knowledge is 
modeled separately from the population, because there is certain 
independence between both, which allow to work and to model 
separately each one of them, in order to enhance the overall 
algorithm and thus, improving the search for best solutions. Figure 
1 shows this interaction. 

CAs are mainly characterized by presenting two inheritance 
systems: at the population level and knowledge. This key feature is 
designed to increase the learning rates and convergence of the 
algorithm, and thus to do a more responsive system for a number of 
problems (Landa and Coello 2004). This feature identifies two 
significant levels of knowledge: a micro-evolutionary level 
(represented by the area of population) and macro-evolutionary 
level (represented by the space of beliefs) (Soza et al., 2007). CAs 
have the following components: population space (set of individuals 
who have independent features) (Soza et al., 2007); belief space 
(stored knowledge individuals have acquired in previous 
generations) (Landa and Coello, 2004); computer protocol, 
connecting the two spaces and defining the rules on the type of 
information to be exchanged between the spaces, by using the 
acceptance and influence function; and finally, knowledge sources 
which are described in terms of their ability to coordinate the 
distribution of individuals on the nature of an instance of a problem. 
These knowledge sources can be of the following types (Kobti, 
2004): circumstantial, normative, domain, topographic, historical. 

General structure of BOCA and its principal functions and 
operators are presented in appendix 1. In this article, we choose a 
continuous representation. Each individual in the population 
represents an alternative portfolio and is implemented by an N-
length vector (with N a number of possible assets) where each 
position is in a range (0, 1). In order to treat the unfeasible 
individuals in the population, a normalization rule has been 
implemented which allows tp to keep the ratio between the weights 
of each asset and at the same time satisfy the constraint of the 
problem (Equation 3).  Then, the new weight for each asset in the 
unfeasible individual is calculated as follows:  
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The initial population is generated using a random function for each 
weight. Once the population has been created, the repair function is 
used in order to ensure the feasibility of all individuals in the 
population. This is a necessary evaluation criterion In order to 
compare the two different solutions (individuals). As previously 
mentioned, this criterion is difficult to define due to the multi-
objective nature of the environment. Given the dominance concept 
explained in the introductory part of the study, many individuals are 
not comparable only using the objective functions of the problem. 
To solve this problem, we propose a grid which defines areas where 
they are located to different non-dominated solutions. The 
boundaries of this grid will be defined by the lower and upper 
bounds of each objective function, which will be updated every few 
generations. This update is not done by every generation because 
is very expensive in CPU time and the improvements are marginal. 
This grid is divided into 8 columns and 8 rows. Figure 2 shows the 

proposed network. Where, 
1

lb is the lower bound of function
1

z ; 
2

lb
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Figure 2. Classification network. 

 
 
 

Table 1. Parameters of BOCA algorithm. 
 

Parameter Description 

N # of variable decision.  

K # assets to include in the portfolio 

SizaPop Size population 

G Number of generation 

pMut Mutation Probability 

Gnorm Number of generation before update the normative knowledge (boundaries of the grid) 

 
 
 
is the lower bound of function

2
z . Finally, 

1
ub  and 

2
ub  are the 

upper bounds of 
1

z and 
2

z  function, respectively.  

The most distinctive feature of CAs is the integration of 
knowledge, which through an influence function affects future 
generations. In this paper, the influence function that was used is 
based on normative knowledge. This normative knowledge keeps 
the upper and lower bounds raised for the maximization and 
minimization function respectively in past population. The 
initialization of the beliefs space is done after the first generation, 
because the candidates for this space are the non-dominated 
individuals. Van Veldhuizen (1999) reported that for any population, 
there is always an individual that is not dominated by the rest of the 
population. 

The influence of belief space occurs when generating the next 
population. At that time the genetic information of the new 
generation should be influenced not only by the individuals of the 
current generation (such as genetic algorithms) but also by 
individuals who reside in the belief space. The tournament selection 
proposed in Landa (2002) was used, which apply the following 
rules: 
 

i) If 'x xp , 'x  is selected 

ii) If are not comparable 

iii) If 'x and x  are located into the grid boundaries we select  

to the individual that is located in the less populated cell in the grid. 

iv) If 'x and x  are located into the grid boundaries we select to 

the individual that is located in the less populated cell in the grid. 

v) If x  is within the limits of the grid and 'x is outside these limits, 

we select 'x  

 
The algorithm finishes when the total generation number is raised. 
Table 1 shows the parameters of our BOCA algorithm. 

 
 
NON DOMINATED SETS (NDSs): METRICS 

 
Metrics for comparing different NDSs 

 
One of most important problems in MOCO is how to compare two 
NDSs. Numerous quality assessment metrics have been developed 
by researchers to compare the performance of different MOEA. 
These metrics show different properties and address various 
aspects of solution set quality (Farhang-Mehr and Azarm, 2003). 



 
 
 
 

 
 
Figure 2.  Classification network. 

 
 
 

Farhang-Mehr and Azarm (2003) describes several excellence 
relations. These relations establish strict partial orders in the set of 
all NDSs with respect to different aspects of quality. Previously, 
Hansen and Jaszkiewicz (1998) and Zitzler (1999) consider several 
outperformance relations to address the closeness of NDSs to the 
Pareto frontier (PF). Besides the above, is also necessary to 
measure in a quantitative way the approximation to PF. In this way, 
we need to identify desirable aspects of NDSs. Zitzler et al. (2000) 
define those desirable aspects: 

 
1. The distance of the resulting non-dominated set to the Pareto-

optimal frontier should be minimized. 

2. A good (in most cases uniform) distribution of the solutions 
found is desirable. The assessment of this criterion might be 
based on a certain distance metric. 

3. The extension of the obtained non-dominated frontier should 
be maximized, that is, for each objective a wide range of 
values should be covered by the non-dominated solutions. 

 
The main problem of these is that the three criteria should be 
combined in different ways to establish the performance of an EMO 
algorithm in a quantitative way. However, such combinations are 
simply linear combinations of weights. 

In this article, we choose the max-delta-area which derives from 
the S metric. Zitzler (1999) shows the formal definition for the S 
metric can be found. This metric calculates the hyper-volume of the 
multi-dimensional region (Knowles and Corne, 2002) and allows the 
integration of aspects that are individually measured by other 

metrics. In this article, the total area is bounded by 
1

lb , 
2

lb , 
1

ub  

and 
2

ub  previously defined. It is easy to note that, given the 

mentioned area, the ideal point (maximum coverage at minimum 
cost) will have a value for the metric equivalent to S = 1 (equivalent 
to 100% of the area). An advantage of the S metric is that each 
MOEA can be assessed independently of the other MOEAs. 
However, the S values of two sets A, B cannot be used to derive 
whether either set entirely dominates  the   other.   Fortunately,   this  
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Table 2. Adjust Instances from OR-Library. 
 

Instance Source Assets 

port1 HongKong 31 

port2 Germany 85 

port3 UK 89 

port4 USA 98 

port5 Japan 225 

 
 
 
disadvantage  does not affect the metric used in this article. 

 
 
EXPERIMENTAL RESULTS  

 
The results obtained and the main characteristics of our 
BOCA implementation are discussed. We presents the 
adjust parameter phase and its results. Following, we 
show the results for the definitive instances extracted 
from OR-Library (Beasley, 1990) and the comparison 
with the results obtained by Branke (2009). Our 
implementation has been written in ANSI C. Tests have 
been performed on a 1.86 GHz Intel Core2 Duo with 2GB 
RAM running Windows XP. 
 
 
Parameter adjust 
 
The instances used in this article in order to adjust were 
extracted from the OR-Library (Beasley, 1990). Table 2 
shows the main characteristics of these instances. Some 
results related with this adjust phase are showed in 
Figure 3. Figure 3a illustrates the improvement on the 
average return when the size of population is 
incremented. This effect can be observed for three tested 
instances. Figure 3b shows how the increment in 
population size influences the mean risk. If we consider 
only both port2 and port5 instances we can said that this 
increment decreases the medium risk obtained. However, 
for instance port1 this effect is different, because the 
increment in population size increases the medium risk 
obtained. This situation may be explained by the size of 
the problem or the K used value.  

Figure 3c depicts the mean size of NDS. It is clear that 
the increment on the population size allows increment the 
size of NDS. However, this situation does not ensure that 
the diversity or covering of this NDS will be better. Finally, 
Figure 3d shows the execution time necessary for each 
population size. As occurs in other evolutionary 
algorithms, the execution time increases when the 
population size does it too. 

Figure 4a illustrates the improvement on the average 
return when the g value increases. This effect can be 
observed for three tested instances, however is important 
to note that this increment is marginal after g=100. Figure 
4b shows how the  increment  in  g  value  influences  the
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Figure 3. Adjust of population size (sizePop) parameter. 

 
 
 
mean risk. If we consider only both port2 and port5 
instances we can say that this increment decreases the 
medium risk obtained. However, for instance port1, this 
effect is different because the increment in g value 
increases the medium risk obtained. The above is similar 
to the effect in the Figure 3b. 

Figure 4c depicts the mean size of NDS. It is clear  that 

the increment on the population size allows increment the 
size of NDS. As we said above, this situation does not 
ensure that the diversity or covering of this NDS will be 
better. Finally Figure 4 (d) shows the execution time 
necessary for each value of g. As occurs in other 
evolutionary algorithms, the execution time increases 
when the number of generation does it too. Naturally, the 
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Figure 4. Adjust number of generation (g) parameter. 

 
 
 
behavior of BOCA algorithm is too similar in term of 
growth in both size population and number of generation. 
This behavior generates a tradeoff between the increases 
in both size population and g value and execution time. 
For this reason, in order to minimize the execution time of 
our BOCA, the size population used for experiments was 
fixed in 40, and g value was fixed in 100 generations. 

In   order   to   adjust   the   mutation   probability  (pMut 
parameter) we consider only two instances: port1 and 

port2. The values for pMut that were used in the test are: 
0.2; 0.5; 0.8. 1s 5a and b showed that the influence of the 
pMut value in each objective function separately is 
marginal. However, Figure 5c illustrates that when the 
pMut value increases, the size of NDS does it too. This 
situation can be explained because the mutation 
functions improve the exploration level of the algorithm. 
Finally, Figure 5d shows that the increases in the pMut 
value are not relevant w.r.t. the execution time. By above,
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Figure 5. Adjust mutation probability (pMut) parameter. 

 
 
 

Table 3. Used K values for each instance. 
 

Instance Total possible assets 10% 20% 50% 

Port1 31 4 8 16 

Port2 85 9 22 43 

Port5 225 23 57 113 

 
 
 

we have fixed the pMut value in 0.6. 
In order to adjust the K parameter which represent the  
maximum assets that can be included in a specific 
portfolio, we evaluate our BOCA algorithm using three 
instances of the literature: port1, port2 and port5. The 

tested values for K parameter were: 0.1; 0.25; 0.5, 
respectively.  

These values correspond to a portion of the total 
possible assets. This portion will correspond to the K 

value. Table 3 shows the used values for each instance. 
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Figure 6. Adjust % of total assets that can be included in portfolio (K parameter). 

 
 
 

As we can see in Figure 6 (a) and (b), K value 

influences the behavior of BOCA algorithm in both 
objective functions separately. In fact, better solutions for 
them have been obtained for K=0.5. However, Figure 6 

(c) and (d) illustrates that this influence is marginal w.r.t. 
size of NDS and execution time". 

DISCUSSION 

 
The adjust parameters used for final experiments are: N= 
40; g = 100; pMut = 60%. For parameter K we use two 
values   (4 - 8) depending on the characteristics of the 
instance   to    evaluate.    The    obtained    results   were
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(a) (b) 

 
(c)  

 
Figure 7. Approximation to Pareto frontier for P1. 

 
 
 
compared with that obtained in Branke (2009) which uses 
two envelope-based multi-objective evolutionary 
algorithms (MOEA) called P-MOEA and E-MOEA. In this 
article, the used instances were: Hang Seng (31 assets, 
K=4), S and P (98 assets, K=4) and Nikkei (225 assets, 
K=8). Figures 7a, b and c show the performance of our 
BOCA algorithm and are related with the Pareto frontier 
(which is given in the OR-Library and was obtained using 
an exact algorithm without including any constraint to the 
model) for all benchmark instances. 

BOCA algorithm provides a good solution for P1 
instance obtaining a closest approximation to the Pareto 
frontier. In the case of the P3 and P5 instances, we 
obtained an acceptable result considering the size of 
them and that the Pareto frontier is obtained without 
constraint for the model. Thus, the constraint affects 
mainly the extension of the approximation and not its 

proximity to the front. 
In order to compare our results w.r.t. [Branke, 2009], 

Table 4 shows the difference using the max-delta-area 
which is derived from the hyper-volume metric explained 
above. BOCA algorithm obtains acceptable solution for 
all instances, even improves the performance of P-MOEA 
for the P5 instance. 

We can say that BOCA algorithm showed that it is 
capable of achieving good results for bi-objective 
problems (particularly for PSP). However, additional 
diversification strategies must be implemented in order to 
achieve greater dispersion of NDS. 
 
 

Conclusion 
 

In this work, we have confirmed that the CAs are 
competitive   w.r.t.   other   evolutionary  techniques.  This
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Table 4. Comparison between P-MOEA, E-MOEA and BOCA. 
 

Algorithms P1  P3  P5  

P-MOEA 1.1613 ± 0.0159 2.7787 ± 0.0521 9.3292 ± 0.2287 

E-MOEA 0.2275 ± 0 0.8048 ± 0.00003 0.0561 ± 0.0052 

BOCA 2.4514 ± 0.0126 10.998 ± 0.0034 4.5547 ± 0.0087 

 
 
 
better performance of CAs has been widely reported in 
mono-objective problems; however, the research in a 
multi-objective context has not achieved that maturity 
level yet. 

The main goal of this article was to study the behavior 
and performance of an implementation of a CA in a multi-
objective environment. In this sense, our implementation 
has achieved promising results. Thus, confirming that the 
CAs are real alternative, and a line of development that 
has not been sufficiently developed. 

We implement a BOCA which is compared with two 
well known envelope-based evolutionary algorithms (P-
MOEA and E-MOEA), obtaining acceptable results. 

As future work, we envision two lines of work that are 
relevant and presented thus: 
 
i) Regarding the type of knowledge used. In this 
investigation a normative knowledge has been inserted in 
the space of belief. This opens a line of work for 
experimenting with other kinds of knowledge to further 
improve the performance of the algorithm. 
ii) Regarding the metrics. It seems interesting to evaluate 
the performance of cultural algorithm using other metrics 
to measure the level of consistency and quality of the 
approximations obtained. 
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Appendix 1. 
 

General Structure of BOCA 

1 Begin 

2 t = 0 

3 initialize Population P(t) 

4 initialize belief Space B(t) 

5 evaluate individual fitness P(t) 

6 while (not finish condition)do 

7 t=t+1 

8 parents = select parents from P(t-1) and Influence from B(t) 

9 child = crossover (parents, Influence(B(t)) 

10 Evaluate (child) 

11 Evaluate (child) 

12 P(t) = child 

13 Update (B(t)) 

14 Accept ( (P(t)) 

15 end while 

16 while (not finish condition)do 

17 i=i+1 

18 Baux(i) = Mutate(B(t)) 

19 Evaluate (Baux(t)) 

20 Update (B(t)) 

21 Accept (Baux(t)) 

22 end while 

23 end 

 
 
 
 
 
 
 


