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An exact solution to the problem of a transient free convective mass transfer flow of a Newtonian non-
Grey optically thin fluid past a suddenly started infinite vertical plate embedded in a porous medium 
with ramped wall temperature as well as ramped plate velocity in presence of appreciable thermal 
radiation and first-order chemical reaction is presented. The resulting system of equations governing 
the flow is solved by employing Laplace Transform technique in closed form. Detailed computations of 
the influence of ramped velocity parameter A, radiation parameter Q, Reynolds number Re, Schmidt 
number Sc, porosity parameter S and chemical reaction parameter K on the variations in the fluid 
velocity, fluid temperature, fluid concentration, and skin friction, Nusselt number  and Sherwood 
number at the plate are demonstrated graphically. The results show that the effect of the ramped 
parameter A accelerates the fluid flow substantially. Further, our investigation reveals the fact that the 
viscous drag at the plate gets increased due to chemical reaction in case of ramped plate temperature. 
Comparison of some of the results of the present work is made with previously published results under 
special cases, and shows a good agreement. 
 
Key words: Ramped plate velocity, ramped plate temperature, thermal radiation, chemical reaction, optically 
thin, porosity. 

 
 
INTRODUCTION 
 
Natural or free convection is a physical process of heat 
and mass transfer involving fluids which originates when 
the temperature as well as species concentration change 
causes density variations inducing buoyancy forces to act 
on the fluid. Such flows exist abundantly in nature, and 
due to its applications in engineering and geophysical 
environments, these have been studied extensively in 
practice. The heating of rooms inside buildings using 
radiators is an example of application of heat transfer by 
free convection. Detailed areas of applications of free 
convection flow are found in Ghoshdastidar (2004) and 
Nield and Bejan (2006). 

Welty et al. (2007) defines mass transfer as the 
transport   of   one  constituent  from  a  region  of   higher 
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concentration to that of a lower concentration. Mass 
transfer is the basis for many biological and chemical 
processes. Biological processes include the oxygenation 
of blood and the transport of ions across membranes 
within the kidney. Chemical processes include the 
chemical vapour deposition of Silane (SiH4) onto a silicon 
wafer, the doping of silicon wafer to form a 
semiconducting thin film, the aeration of wastewater, and 
the purification of ores and isotopes. Mass transfer also 
occurs in many other processes such as absorption, 
adsorption, drying, precipitation, membrane filtration and 
distillation. 

Another process of heat transfer is radiation through 
electromagnetic waves. Radiative convective flows are 
encountered in several industrial and environmental 
processes. Some of these include heating and cooling 
chambers, evaporation from large open water reservoirs, 
solar   power   technology  and  astrophysical  flows.  The 



 
 
 
 
study of radiation interaction with convection for heat and 
mass transfer in fluids is quite significant. Various 
problems on steady and unsteady fluid flow past a 
moving plate in the presence of free convection and 
radiation has been studied by Cess (1966), England and 
Emery (1969), Raptis and Perdikis (1999), 
Muthucumaraswamy et al. (2001b) and Chamkha et al. 
(2001). These model studies have been performed on 
flows in a non-porous medium. Among the studies on 
radiative and free-convective flow past a vertical plate in 
porous medium, works of Raptis (1998), Sattar et al. 
(2000) and Hossain and Pop (2001) are significant. 

In several occasions it is observed that a foreign mass 
reacts with the fluid and in such situations chemical 
reaction plays an important role in heat and mass transfer 
problems. In particular, the presence of foreign mass in 
air or water causes some kind of chemical reaction. Bird 
et al. (2001) states that during a chemical reaction 
between two species, heat is also generated. The 
reaction rate in chemical reactions generally depends on 
the concentration of the species itself. In Cussler (2009), 
a reaction is defined to be of first order if the rate of 
reaction is directly proportional to the concentration of the 
species. The effect of the presence of foreign mass on 
the free convection flow past a semi-infinite vertical plate 
was studied by Gebhart and Pera (1971). Several 
investigators have studied the effect of chemical reaction 
on different convective heat and mass transfer flows, 
among whom Anjalidevi and Kandasamy (1999), 
Muthucumaraswamy and Ganesan (2001a), 
Muthucumaraswamy and Shankar (2011) are worth 
mentioning. 

Recently, Das et al. (2011) have studied the radiation 
effect on natural flow of an optically thin viscous 
incompressible fluid near a suddenly moving vertical 
plate with ramped wall temperature by adopting Cogley-
Vincenti-Gilles equilibrium model introduced by Cogley et 
al. (1968). An optically thin fluid has no self absorption 
property, but it can absorb radiation emitted by the 
boundaries. In the investigation done by Das et al. 

(2011), a particular characteristic time 0 2

0

t
U


  depending 

on the kinematic viscosity and the plate velocity has been 
considered. 

In the present work an attempt has been made to study 
the effects of ramped plate velocity and chemical reaction 
on a natural flow of an optically thin viscous 
incompressible radiating non-Grey fluid past an 
impulsively started infinite vertical plate embedded in a 
porous media, with ramped wall temperature. The 
acceleration of the plate is sustained for a finite time 
interval and thereafter it moves with uniform velocity. In 

this proposed work, not a specific characteristic time 0t  is 

considered. Due to an arbitrary choice of 0t , the 

Reynolds number Re gets introduced into the problem.  
Subsequently, the influence of the Reynolds number on 

the  flow  field  in  addition  to  other  similar parameters is 

Ahmed and Dutta          255 
 
 
 
investigated in the preview of current study. 
 
 
BASIC EQUATIONS 
 
The equations governing the motion of an incompressible, viscous, 
radiating and chemically reacting fluid past a solid surface in porous 
medium are: 
 
Equation of continuity: 
 

0q                   (1) 

 
Momentum equation: 
 

  2

*

q
q q p g q q

t k


  
 

        
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             (2) 

 
Energy equation: 
 

  2 r
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qT
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              (3) 

 
Species continuity equation: 
 

   2

M

C
q C D C K C C

t



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
              (4) 

 
All the physical quantities are defined in the list of symbols. 
Consider a transient, radiative and chemically reactive natural flow 
of an incompressible, Newtonian, non-Grey and optically thin fluid 
past an impulsively started vertical plate embedded in a porous 
medium with ramped plate velocity and temperature. For the sake 
of idealization of the model, the following assumptions are made: 
 
(i) All the fluid properties are considered constants except the 
influence of the variation in density in the buoyancy force term. 
(ii) The viscous dissipation of energy is negligible. 

(iii) Permeability of the medium (
*k ) is considered to be constant. 

(iv)The flow is assumed to be one dimensional (parallel to the 
vertical plate). 

(v) The radiation heat flux ( rq ) in the direction of the plate velocity 

is considered negligible in comparison to that in the normal 
direction. 
(vi) The chemical reaction is considered to be homogeneous and of 
first order. 
 

A coordinate system  , ,x y z    is now introduced with X-axis along 

the plate in the upward vertical direction, Y-axis normal to the plate 
directed into the fluid region and Z-axis along the width of the plate 
(Figure 1). 

Initially the plate and the surrounding fluid were at rest and at the 

same temperature T
  and concentration C

 . At time 0t  , the 

plate is suddenly moved in its own plane with initial velocity 0U  and 

uniform acceleration 0

0

A
U

t

, and the wall temperature raises to 

 
0

W

t
T T T

t
 


         and     the   concentration    changes    

to
 

0

W

t
C C C

t
 


   

    for   00 t t  ,    and    a   constant    temperature
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Figure 1. Geometry of the problem. 
 
 
 

  W WT T T
   , a constant concentration   W WC C C

   , and a 

uniform plate velocity   0A 1 U  is maintained at 0t t  . Let 

 ,0,0q u  denote the fluid velocity at the point  , , ,x y z t     in 

the fluid. Then Equation (1) reduces to 0
u

x





 which yields  

 

 ,u u y t                     (5) 

 
In light of the above coordinate system, Equation (2) takes the form 
 

2

2 *
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g u

t x y k
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and  0
p

y





                 (7) 

 

From Equation (7) it is inferred that p  is independent of y  

indicating the fact that the pressure near the plate is same as that 
far away from the plate in normal direction. This observation 
establishes the result that as one moves far away from the plate,  
 

p
g

x



 
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                 (8) 

 

Elimination of p

x




 from Equations (6) and (8), then yields 
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The equation of state according to classical Boussinesq 
approximation is: 

 
 
 
 

   1 T T C C     
        
 

            (10) 

 
Coupling Equations (9) and (10) together and accomplishing the 

fact that 1



  , the following  linear partial differential equation is 

obtained: 
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Further, since the plate is of infinite length and in view of 
assumption (II), the following reduced form of the Equations (3) and 
(4) are obtained: 
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The initial and boundary conditions to be satisfied by Equations 
(11), (12) and (13) are: 
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0,  ,   as  for 0u T T C C y t 
                      (17) 

 
Cogley et al. (1968) emphasized that the rate of radiative heat flux 
in optically thin limit for a non-Grey gas near equilibrium is given by: 
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Where, 
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In view of Equation (18), Equation (12) becomes 
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In order to normalize the flow model, the following non-dimensional 
variables and parameters are introduced: 
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All physical quantities are defined in the list of symbols as 
mentioned earlier. Utilizing the transformations and definitions 
Equation (21), the Equations (11), (13) and (20) become 
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subject to the relevant initial and boundary conditions: 
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0,  0,  0 as  for 0u y t                                (28) 

 
 
METHODS OF SOLUTION 
 
Taking Laplace transform of the Equations (22), (23) and (24), the 
following equations are obtained 
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The corresponding boundary conditions for u ,   and   are: 
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0,  0,  0 as u y                  (34) 

 
The Equations (29), (30) and (31) are ordinary second order 
differential equations, the solutions of which subject to the 
conditions (33) and (34) are as follows: 
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Taking inverse Laplace transform of Equations (35), (36) and (37), 
the representative velocity, temperature and concentration fields 
are obtained and are as below: 
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The real valued functions  ,  , F  and G  are defined as 

follows: 
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Where ,  ,  ,  ,  ,  y t     are real variables. 

 
 
LOCAL CO-EFFICIENT OF SKIN FRICTION 
 
The viscous drag at the plate per unit area in the direction of the 
plate velocity is given by the Newton’s law of viscosity in the form: 
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The co-efficient of skin friction at the plate is given by 
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LOCAL CO-EFFICIENT OF RATE OF HEAT TRANSFER 
 

The heat flux 
*q  from the plate to the fluid is given by Fourier’s law 

of conduction in the form 
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The co-efficient of the rate of heat transfer from the plate to the fluid 
in terms of Nusselt number is given by 
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LOCAL CO-EFFICIENT OF MASS TRANSFER 
 
The mass flux from the plate to the fluid is governed by Fick’s law in 
the following form: 
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The rate of mass transfer from the plate to the fluid in terms of the 

Sherwood number Sh  is given by 
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Detailed computations of skin friction, Nusselt number and 
Sherwood number are obtained but not presented here for the sake 
of brevity. 

 
 
RESULTS AND DISCUSSION 
 

In order to get clear insight of the physical problem, 
numerical calculations from the analytical solutions for 
the representative velocity field, temperature field, 
concentration field, the co-efficient of skin friction, the rate 
of heat transfer at the plate in terms of Nusselt number 
and the rate of mass transfer near the plate in terms of 
Sherwood number have been carried out by assigning 
some arbitrarily chosen specific values to the physical 
parameters like ramped velocity parameter A, Reynolds 
number Re, Schmidt number Sc, the radiation parameter 
Q, the porosity parameter S, and the chemical reaction 
parameter K. The numerical values computed from the 
analytical solutions of the problem have been visualized 
in Figures 2 to 13. Comparison has been made in Figure 
14 with Figure 15 (viz. Figure 4 of Das et al., 2011). 
Figure 14 clearly shows how the problem taken by Das et 
al. (2011) is a special case of the current problem for the 
parameters A = 0, Gm = 0, Re = 1, Pr = 0.71, Sc = 0.6, Q 
= 2, S = 0.04, K = 0.001 and t = 0.1. Both Figures 14 and 
15 establish the conformity of the two problems (viz. the 
current problem and the work of Das et al. (2011)) in the 
special case when the effect of A, Gm and K (that is, 
ramped velocity parameter, solutal Grash of number and 
chemical reaction) are absent. These figures uniquely 
indicate that an increase in thermal Grash of number 
causes an overall increase in fluid velocity. Further the 
velocity profiles for both the problems are almost 
identical, thereby showing an excellent agreement 
between the results obtained by Das et al. (2011) and the 
present authors. 

The velocity profiles under the influence of A and K are 
exhibited in Figures 2 and 3. Figure 2 shows that an 
increase in ramped velocity parameter A causes the fluid 
velocity to increase steadily indicating the fact that the 
fluid motion is accelerated under the influence of 
parameter A. This figure further establishes  the  fact  that 
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the fluid velocity first increases in a thin layer adjacent to 
the plate and thereafter it decreases asymptotically as we 
move away from the plate. It is found that an increase in 
Reynolds number leads the velocity to increase 
gradually. We recall that an increase in Reynolds number 
means a decrease in internal friction. That is, the fluid 
velocity increases for small viscosity and this 
phenomenon is in excellent agreement with the physical 
fact that fluid become freer to move when the internal 
friction gets decreased. It is observed that our chemical 
reaction decelerates the flow as is evident from Figure 3. 

The temperature profiles have been depicted in Figures 
4 and 5. From Figure 4, we notice that an increase in 
Reynolds number raises the fluid temperature 
considerably. The thermal radiation has an inhibiting 
effect on the temperature distribution (Figure 5) which is 
supported by the phenomena that radiation causes a 
faster dissipation of heat and consequently lowers the 
temperature. 

Figures 6 and 7, corresponds to concentration profiles 
versus normal coordinate y under the effect of the 
parameters Sc and K. It is inferred from Figures 6 and 7 
that an increase in Sc or K leads the concentration level 
of the fluid to drop steadily. We recall that an increase in 
Schmidt number Sc means a fall in mass diffusivity. It 
interprets that an increase in mass diffusivity causes the 
species concentration of the fluid to rise upwards. This 
observation is in agreement with the outcome of Figure 6. 
Moreover, chemical reaction results in gradual decrease 
in the concentration level of the fluid as validated by 
Figure 7. 

The variation in skin friction versus Reynolds number 
under the influence of Q, S and K are presented in 
Figures 8 to 10. All these three figures uniquely indicate 
that an increase in Q or S or K causes a corresponding 
increase in skin friction. It indicates that the viscous drag 
at the plate gets increased under the influence of 
radiation, porosity of the medium and chemical reaction. 
Further, we observe that the effect of the above 
parameters on the skin friction are more pronounced for 
small Reynolds number and for higher Reynolds number 
these parameters ceases to affect  . This phenomenon 

is well supported by the fact that for large Reynolds 
number (that is, for small viscosity) the internal friction 
decreases significantly. The trend of behaviour of skin 
friction under Q, S and K is identical in case of ramped 
plate temperature and isothermal plate temperature. 

Figure 11 shows how the rate of heat transfer from the 
plate to fluid in terms of Nusselt number Nu is influenced 
by Q and Re. An interesting observation is made in this 
figure that for ramped wall temperature, the Nusselt 
number decreases at a faster rate for small Reynolds 
number and it decreases slowly and steadily for higher 
Reynolds number that is, for small viscosity; on the other 
hand in case of uniform temperature (isothermal plate) 
Nu becomes steady after an initial increase for large 
viscosity. 
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Figure 2. Velocity versus y for Gr = 10, Gm = 5, Re = 10, Pr = 
0.71, Sc = 0.60, Q = 5, S = 4, K = 0.4. 

 
 
 

 
 

Figure 3. Velocity versus y for A = 1, Gr = 10, Gm = 5, Re = 
10, Pr = 0.71, Sc = 0.60, Q = 5, S = 4. 

 
 
 

 
 

Figure 4. Temperature versus y for Pr = 0.71, Q = 5. 

 
 
 
 

 
 

Figure 5. Temperature versus y for Re = 10, Pr = 0.71. 
 
 
 

 
 

Figure 6. Concentration versus y for Re =10, K = 0.4. 
 
 
 

 
 

Figure 7. Concentration versus y for Re = 10, Sc = 0.60. 



 
 
 
 

 
 

Figure 8. Skin friction versus Re for A = 1, Gr = 10, Gm = 5, Pr = 
0.71, Sc = 0.60, S = 4, K = 0.4. 

 
 
 

 
 

Figure 9. Skin friction versus Re for A = 1, Gr = 10, Gm = 5, Pr = 
0.71, Sc = 0.60, Q = 5, K = 0.4. 

 
 
 

 
 

Figure 10. Skin friction versus Re for A = 1, Gr = 10, Gm = 5, Pr 
= 0.71, Sc = 0.60, Q = 2, S = 4. 
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Figure 11. Nusselt number versus Re for Pr = 0.71. 

 
 
 

 
 

Figure 12. Sherwood number versus Re for Sc = 0.60, t = 0.5. 

 
 
 

 
 

Figure 13. Sherwood number versus Re for Sc = 0.60, t = 2. 
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Figure 14. Velocity versus y for A = 0, Gm = 5, Re = 1, Pr = 0.71, 
Sc = 0.6, Q = 2, S = 0.04, K = 0.001, t = 0.1. 

 
 
 

 
 

Figure 15. Figure 4 of the work of Das et al. (2011). 

 
 
 
Figures 12 to 13 exhibit the change of behavior of the 
rate of mass transfer from the plate to the fluid in terms of 
Sherwood number Sh for 1t   (ramped temperature) and 

1t   (isothermal temperature) respectively. Under 

chemical reaction, the mass transfer rate falls down in 
case of ramped plate temperature; but a reverse trend of 
behaviour is observed in case of isothermal plate 
temperature. For small Reynolds number, this rate is very 
sharp in either case. However, in case of uniform 
temperature of the plate, for small value of Reynolds 
number, Sh sharply decreases and as Reynolds number 
increases an opposing behavior is marked. 

 
 
 
 
Conclusions 
 
The fluid flow is accelerated with a corresponding 
increase in ramped velocity parameter A. Chemical 
reaction has a retarding effect on the fluid flow. The fluid 
temperature decreases with increasing thermal radiation 
and it increases as viscosity drops. The species 
concentration in the fluid decreases with increasing 
Schmidt number. The viscous drag at the plate gets 
increased under the influence of radiation, porosity of the 
medium and chemical reaction. In case of velocity, 
temperature and concentration profiles, as well as the 
skin friction, the trend of behavior is similar for both 
isothermal ( 1t  ) and ramped ( 1t  ) plate temperature. 

For ramped wall temperature, the Nusselt number 
decreases at a faster rate for small Re and it decreases 
slowly and steadily for higher Re; however, in case of 
uniform temperature Nu becomes steady after an initial 
increase for large viscosity. Under chemical reaction, the 
mass transfer behavior is grossly different for ramped 
and isothermal plate temperature. 
 
 

NOMENCLATURE 
 

A, Ramped velocity parameter (dimensionless); pC , 

specific heat at constant pressure; WC , Reference 

concentration; C
 , concentration far away from plate; C , 

fluid concentration; MD , mass diffusivity; he , Plank 

function; g , gravitational acceleration vector; g , 

acceleration due to gravity; Gr , thermal Grashof number; 

Gm , solutal Grashof number; *k , permeability of porous 

medium; TK , thermal conductivity; K , rate of first order 

homogeneous chemical reaction;  
W

K , absorption co-

efficient; K , chemical reaction parameter; p , pressure; 

Pr , Prandtl number; q , fluid velocity vector; rq , radiative 

heat flux; Q , radiation parameter; Re , Reynolds number; 

S , porosity parameter; Sc , Schmidt number; t  , time; T  , 

fluid temperature; WT  , reference temperature; T
 , 

temperature far away from the plate; t , non-dimensional 

time; 0t , characteristic time; 0U , plate velocity; u , x-

component of q ; u , non-dimensional fluid velocity; 

 , ,x y z   , cartesian coordinates; y , non-dimensional y-

coordinate;  f ,y s , Laplace transform of function  f ,y t ; 

 , fluid density;  , fluid density far away from plate; 

 , co-efficient of viscosity;  , viscous dissipation of 

energy per unit volume; n  , an element of the outward 

normal;  , co-efficient of volume expansion for heat 

transfer;  , co-efficient of volume expansion for mass 

transfer;   ,   kinematic   viscosity;    ,   non-dimensional  



 
 
 
 
temperature;   , non-dimensional concentration;  , 

wavelength;  Subscript
W

 refers to the values of the 

physical quantities at the plate;  Subscript


, refers to the 

values of the physical quantities far away from the plate. 
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