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We introduce an algorithm for the forward modeling of multiple scattering of teleseismic surface waves 
where the underground structure beneath the linear (or quasi-linear) seismic station array is assumed 
two-dimensional and the teleseismic surface waves may be approached from an arbitrary direction. The 
current algorithm is two-and-half-dimensional since even though the structure is two-dimensional, the 
displacements are three-dimensional because of scattering outside the sagittal plane. The total 
displacement field is computed by applying a convolutional type integral equation for which the 
Green’s function is obtained by employing the normal mode theory in one-dimensional reference 
structure. When the number of data points gets large, the wavefield computations become awkward. In 
order to alleviate the computational burden, we employ the proficient multilevel fast multipole method 
where the central processing unit (CPU) time increases logarithmically with the size of the model. 
 
Key words: Green’s function, heterogeneity, integral equation, multiple scattering, multipole expansions, 
surface waves. 

 
 
INTRODUCTION 
 
Numerical simulation of seismic wave propagation (both 
body and surface waves) is one of the major geophysical 
tools widely used to delineate the earth’s elastodynamic 
structure where the basic process (that is inversion) is to 
seek a match between the observational and theoretical 
wavefields (Lebedev and van der Hilst, 2008). Depending 
on the target structure, a particular segment of the 
recorded wavefield is modeled; e.g. travel times in 
tomography (Schmid et al., 2008), primary reflections in 
reflection seismology (Laigle et al., 2008) and converted 
phases in receiver function modeling (Xu et al., 2007). In 
these modeling efforts, the main concern is to increase 
the resolution power of the respective simulation process 
for which geophysicists have developed sophisticated 
data acquisition systems involving multidimensional 
coverage such as two-and-half-dimensional (2.5-D) and 
three-dimensional (3-D) seismograph arrays and also 
sophisticated numerical algorithms capable of computing 
wave propagation in heterogeneous structures.  

The numerical algorithms fall into several categories 
where the most commonly known methods are finite 
elements (Pain et al., 2005), finite differences (Moczo et 
al., 2000), spectral elements (Tromp et al., 2008), direct 
solution method (Cummins et al., 1997), complex-screen 
method (Wu et al., 2000) and boundary element method 
(Liu et al., 2008). Other distinctly defined methods 
(Faccioli et al., 1997; Fu and Bouchon, 2004; Haines et 
al., 2004; Gao and Zhang, 2006) also exist, which are 
capable of solving complex wave propagation problems. 
Some of these methods discretize the entire propagating 
medium (e.g. finite elements and finite differences) while 
others use diagonal mass matrix (e.g. spectral element 
method). 

Herein we propose a 2.5-D algorithm for fast and 
memory efficient forward modeling of teleseismic surface 
waves recorded on a linear (or quasi-linear) seismograph 
array. This 2.5-D treatment is adequate for regions along 
active  and  passive  continental  margins,  suture zones,  
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Figure 1. A simplified graphical view of the recording geometry for a 2.5-D teleseismic surface wave 

experiment is shown. The underground geology is assumed 2-D for a slab with width Y , which is 
theoretically realized as extending to infinity. 

 
 
 
mountain ranges and sedimentary valleys where the 
earth’s structural variation is mostly smooth or 
approximately translationally invariant, for a slab with 
comparable width to the observed wavelength. Figure 1 
represents a simplified drawing of the 2.5-D geometry. 
The wavefield is mainly solved in a 1-D layered reference 
structure and the heterogeneities have arbitrary 2-D 
variations. The incident wave may arrive from an arbitrary 
Back Azimuth, which makes the observed waveforms 3-D 
in nature, which is as a result of scattering observed 
outside the arrival plane, and the source and receiver on 
the same great-circle path. Many seismic experiments 
conducted on quasi-linear station arrays (Zhu, 2000; 
Yamauchi et al., 2003; Chen et al., 2005; Wilson et al., 
2005) indicate the importance of 2.5-D approach for the 
teleseismic surface waves. 

In the proposed algorithm, we represent the total 
wavefield as a combination of low frequency 
homogeneous waves traveling in the smoothly varying 
background structure and high frequency heterogeneous 
waves created by arbitrary structural variations perturbing 
the background structure. Thereby heterogeneities 
adequately discretized are treated as secondary impulse 
sources in the medium, which are then coupled to the 
total wavefield through a convolutional integral equation. 
We solve the homogeneous wavefield in a one-
dimensional (1-D) layered Cartesian structure overlying a 
half-space for which the impulse response is defined 
using the normal mode theory (Abo-Zena, 1979; Chen, 
1993). In order to achieve the current 2.5-D surface wave 
algorithm, we basically modify the 3-D surface wave 
formulation already defined elsewhere (Takeuchi and 
Saito, 1972; Maupin, 2001; Çakir, 2006). 

We take the advantages of the fast multipole method 
(FMM), which was first proposed by Rokhlin (1985) and 
later improved by Greengard and Rokhlin (1987).  
Increasingly more geophysicists (Fujiwara, 1998, 2000; 
Pollitz, 2002; Çakir, 2006; Chaillat et al., 2008, 2009) 
favor the FMM in their computations as the FMM is well 
known to provide great reduction in requirement for 
computational resources (that is CPU and RAM (Random 

Access Memory)) from incompetent )( 2NO  to practical 

)log( NNO  where N  stands for the number of data 

points. In addition, the FMM provides effective tools to 
serve as preconditioners suitable for iterative solvers 
such as GMRES (Generalized Minimum Residual 
Method; Saad, 2003) (Çakir, 2008; Chaillat et al., 2008, 
2009). We utilize the multilevel fast multipole method 
(MLFMM), which is technically explained in great detail 
elsewhere (Fujiwara, 1998; Nishimura, 2002; Gumerov et 
al., 2003). The current method is fast and memory 
efficient to compute surface wave scattering in local 
structures due to teleseismic surface wave arrivals where 
2.5-D approach is applicable. And also only the 
perturbing structures need to be discretized, which 
greatly increases the flexibility of the method. 
 
 
THEORETICAL FORMULATIONS 
 
Lippman-Schwinger integral equation in 3-D 
 

The fundamental equations of linear elasticity are 
extensively defined elsewhere (Aki and Richards, 1980) 
and  therefore  we  omit  the respective definitions to start  



 
 
 
 
directly with the Lippman-Schwinger integral equation 
representation of the 3-D displacement wavefield in the 
frequency domain (Huang and Fehler, 2000; Bostock et 
al., 2001; Snieder, 2002), that is in indicial form 
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where summations over repeated indices are assumed. 
The Fredholm integral equation of second kind in (1) 
utilizes the perturbation theory correct to first order along 

with the elasticity tensor )()()( (1)(0)
xccxc  z  defined 

in the Cartesian space ),,( zyxx  where 

)((0) zc defines the homogeneous (embedding, low 

frequency) medium and the perturbing volumetric 
heterogeneities (embedded, high frequency) are given by 

)((1)
xc . The Green’s function (or impulse response) of 

the homogeneous medium describing the motion 
excitation at x  (that is evaluation point) in direction i due 

to a point source at 'x  (that is source point) in direction n 

is given by )',((0)
xxinG . To the incident waves given by 

)(x(0)
iu  are added to these scattered waves off the 

heterogeneities given by the second term under the 

integral sign in (1), which we define as )(x(s)
iu , that is, 

)(xxx
(s))0( )()( iii uuu  . 

In practice, we are unable to solve the equation in (1) 
analytically since the elastic perturbations have 3-D 
arbitrary shapes forcing us to resort to numerical 
resources such as adapted herein. We discretize the 

arbitrarily shaped volume occupied by )((1)
xc  and then 

compute contributions of individual pieces each with a 
simple shape (e.g. a cube). The discretization is 
performed using sufficiently large number of data points 
per wavelength (PPW) where PPW values in the range of 
3 to 6 usually suffices (Lu et al., 2008). Upon 

discretization, within each volume defined by zyx  , 

the model parameters are assumed constant where 

)PPW( maxmin fczyx   km, which is 

desampled in accordance with a lower frequency (that is 

maxff  ) in the spectrum. The surface wave phase 

velocity defined by minc  corresponds to the slowest 

surface waves with shortest wavelengths propagating in 
the medium. 

Along the contact between the reference medium (that 

is 
(0)

c ) and heterogeneities (that is 
(1)

c ) there exist 

impedance contrasts causing contact forces and interface 
forces  due  to   likely   displacements   of   internal   layer  
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boundaries of the reference medium. These two force 
terms are cancelled by applying Gauss’s theorem and 
partial integration (Maupin, 2001; Snieder, 2002). The 
wavefield representation in Equation (1) is valid for 
evaluation points both inside (that is s'x-x ) and 

outside (that is s 'xx ) the heterogeneities with physical 

size parameterized by s. The densities (  ) in the 

medium can also be perturbed, but the influence of 
density perturbation to the surface wave propagation is 
only secondary and therefore the representation in (1) 
includes only the elasticity perturbation. Usually an 
empirical relation such as 77.032.0    (Berteussen, 

1977), where   is the compressional-wave (or P) 

velocity computed from the shear-wave (or S) velocity 

(  ) using Poisson’s ratio, is used to obtain the densities 

(Xia et al., 1999). In addition, we assume that the 
reference medium and the heterogeneities are isotropic, 

that is )( jkiljlikklijijklc    where   and 

  are the Lamé elastic constants and ij  is the 

Kronecker delta function (Aki and Richards, 1980). 
Let us write the scattered energy in (1) in an expanded 

form as follows. 
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                                                                                 (2) 
 
where the partial derivative over a space coordinate (e.g. 

y ) is denoted by y  and '''' dzdydxd x  stands for 

volume integration over the heterogeneous area. The 
expression in (2) is made of several differential potentials 
summed to give the total scattered wavefield. The 
following expression can be used to represent any one of 
these potentials in (2), that is 

 

  ')',( '
)1()0(

' xxx duGP pq                           (3) 

 

where several supplementary indices ( qp,,,','  ) are 

used to represent combinations of space coordinates 

( ',,',,', zzyyxx ). The supplementary parameter 
)1(  

stands for one of the Lamé parameters, that is 
)1( , 

)1(  

or  )1()1( 2   representing the model parameter 

perturbations.  In  the  following,  we progressively modify 
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the representative expression in (3) to attain the proper 
expression for the 2.5-D displacement. 
 
 

Rayleigh and Love Green’s functions in 3-D 
 

The Rayleigh (R) and Love (L) surface wave Green’s 
functions used in (2) have the following 3-D tensor 
expressions (Takeuchi and Saito, 1972; Maupin, 2001). 
 

  )(
8

j
)'()'()'(

)(

)(

)(

)',(
)2(

0

1

1'3
1

'3
1

1

3
1

3
1

)0( krH
ucI

zyzykzyk

zy

zyk

zyk

G R
y

R
x

R

k
R

y
R

x
R

in
R 



























 



xx

     

                                                                                     (4a) 
 

  )(
8

j
0)'()'(

0

)(

)(

)',(
)2(

0

1

'1
1

'1
1

1
1

1
1

)0( krH
ucI

zykzykzyk

zyk

G x
L

y
L

k

x
L

y
L

in
L 

























 



xx
    

                                                                                     (4b) 
 

where 
222
yx kkk   and 

222 )'()'( yyxxr  . 

The Rayleigh waves made of compressional (P) and 
vertically polarized shear waves (SV) are excited by the 

three components (that is xF , 
yF  and 

zF ) of a single-

force F  whilst the Love waves made of horizontally 
polarized shear waves (SH) are excited by only horizontal 

force components (that is 
xF  and 

yF ). Herein 
Ry1  

(vertical) and 
Ry3  (horizontal) represent Rayleigh surface 

wave displacement eigenfunctions as a function of depth. 

Similarly Ly1
 a function of depth represents the 

displacement eigenfunction of Love surface wave modes. 
The surface wave motion generally includes fundamental 
and higher modes propagating independently from each 
other. The total wavefield is made of linear combination 
of these modes as the sum over modes represented by k 
(horizontal wavenumber) implies. In Equations (4a) and 

(4b), the parameters c, u and 1I  explain the modal phase 

velocity, group velocity and energy integral, respectively 

whilst 1j  . The complex exponential 
te jω
, which is 

used to attain the temporal (t – time) amplitudes via an 

inverse Fourier transform (ω  – angular frequency), is 

suppressed in the Green’s function expressions above. 
In order to compute the dispersion parameters of the 

embedding structure in Equations (4a) and (4b), we use a 
stable normal mode algorithm (Abo-Zena, 1979; Chen, 
1993) considering a layered Cartesian structure over a 
half-space. The propagating medium is assumed to 
intrinsically attenuate the wavefield over the horizontal 
distance (r), that is, the surface wave amplitudes are 

multiplied by 
uQrωe 2

 where the modal quality factor Q is 

determined via the variational principle (Aki and Richards, 
1980) along with complex layer velocities defined through  

 
 
 
 
P- and S-wave quality factors in the embedding. The 
Hankel function of second kind and zeroth order [that is 

)(
)2(

0 krH ] in the Green’s functions, as standing for only 

outward propagating surface waves, defines the 
geometrical spreading including both near- and far-field 
effects on the amplitude and phase. 

In performing the scattering computations in Equation 
(2), we consider phase conversions of Rayleigh-to-Love 
and Love-to-Rayleigh as well as Rayleigh-to-Rayleigh 
and Love-to-Love off the heterogeneities. When the 
higher mode surface wave propagation is considered, the 
mode coupling between various Rayleigh and Love 
modes is also taken into account. In certain cases, the 
heterogeneities may also convert some part of surface 
wave energy to body waves for which case we create a 
quasi-waveguide adding extra fast, sufficiently deep cap 
layer below the crust (e.g. at 300-km depth). Such 
extended structure allows more surface wave modes to 
exist in the propagating medium, which consequently 
allows better representation of steeply traveling body 
waves (Maupin, 2001). 

The computation of synthetic seismograms using the 
normal mode theory (NMT) involves a general three-
stage mechanism. The first stage involves computations 
of displacement eigenfunction at depth corresponding to 
the source point. In the second stage, the source term is 
propagated to the evaluation point in the horizontal plane. 
And, in the third stage, the displacement eigenfunction 
computed at depth corresponding to the evaluation point 
is used to obtain the final amplitude. In the present work, 
we employ the MLFMM in the second stage to accelerate 
the expensive computation of interactions between the 
source and evaluation points eigenfunction. 

Figure 2 shows that the anomalous volume (or velocity 
perturbation) at depth is discretized at certain rate. The 
source contributions denoted by )',','( zyxA  due to the 

anomalous structure are properly weighted by the 
corresponding surface wave eigenfunctions at depth and 
then these amplitudes are vertically integrated using the 
trapezoidal rule that results the amplitude distribution 

)','( yxB  in the horizontal plane (left panel in Figure 2). As 

shown in the middle panel, through various levels upward 
and downward passes the MLFMM integrates the latter 
amplitudes over the horizontal plane to result another 
amplitude distribution denoted by ),( yxC . In the final step, 

the ),( yxC  amplitudes are weighted by the evaluation 

point eigenfunctions at depth to result the amplitudes 

),,( zyxD , which are used to compute the wavefield at a 

target point (right panel in Figure 2). 

 
 
Modification of integral equation  

 
The integral in Equation (3) can also be written as 
follows: 
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Figure 2. The normal mode theory (NMT) and the multilevel fast multipole method (MLFMM) are combined as 
shown in the schema. The anomalous volume at depth is shown discretized. 
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where we basically factor out the Hankel function in 
Equations (4a) and (4b) to define a slightly different 

Green’s function given by )',()0(
xxpqG , that is: 
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We continue modifying the expression in Equation (3) by 
substituting the below (plane-wave decomposition) 
integral for the Hankel function (Wenzel et al., 1990) 
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Let us now assume that the local (or regional) structure 
has only two-dimensional (2-D) variations as shown in 
Figure 1. The general strike of regional geology is in the 
y-direction whereas the direction of geological change is 

in the x-direction, that is )','()1()1( zx   and 

)','()1()1( zx  . The surface waves can arrive from 

an arbitrary backazimuth creating scattering also in the y-
direction. Therefore, the displacements are essentially 3-
D even though the underground geology has only 2-D 
features.  We  assume   that   the   surface   waves   have 

teleseismic arrival with planar (or quasi-planar) wavefront 
represented by a certain horizontal wave number 

yyxx kk
~~~

eek  . If the backazimuth (BAZ) and the 

horizontal slowness ( s~ ) are used, then )BAZcos(~~
sωkx   

and )BAZsin(~~
sωk y  . 

Albeit the displacements are 3-D, the waves in the y-
direction still scatter independent of overall scattering of 
waves in the vertical (or sagittal) plane as predicted by 
Snell’s law (Papageorgiou and Pei, 1998; Bostock et al., 
2001; Bostock, 2002). In this respect, the following 
relation holds (Papageorgiou and Pei, 1998). 
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where û  stands for the Fourier transform of the wavefield 

with respect to 'y  and yc~  represents the y-component of 

the horizontal phase velocity of the incident waves. If we 
evaluate the expression in (9) at another arbitrary 

location (that is at '~' yy  ), then we get 
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From the ratio of expressions in Equations (9) and (10), 
we get the following expression that connects the 

wavefields at these two locations ( 'y and '~y ) taking 

place along the geological strike (or y-axis). 
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Substituting the expression (11) in (8) yields: 
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Depending on the particular tensor component of the 
Rayleigh or Love surface waves, the integrand in (12) 
includes various spatial differentiations at both evaluation 
and source points [Equations (4a) and (4b)]. A close 
inspection of Equation (12) shows that in each case of 
different tensor component, we can isolate these terms 

dependent solely on the independent variable 'y  after 

explicitly performing the corresponding spatial 
differentiations. Therefore, Equation (12) can be put in 
the following abstract form. 
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where we have introduced two new variables as 1  and 

2 . These two variables can be a function of different 

parameters combined (e.g. xk , yk , yk
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 or unity), but not 

a function of 'y . Then the integration on 'y  is isolated by 

changing the integration order whilst gathering the 'y  

dependent terms together as follows. 
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which after Fourier transform with respect to 'y , yields 
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Using the properties of the Dirac delta function, we can 
further simplify the expression in (14), that is 
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We can now reverse the effect of temporary variables 1  

and 2  to write that 
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Rayleigh and Love Green’s functions in 2.5-D 
 
The modified Rayleigh (R) and Love (L) Green’s 
functions that can be used in the 2.5-D surface wave 
scattering computations have the following definitions. 
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where 
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There are two special cases in Equation (16) regarding 

the differentiation with respect to 'y  that we have used to 

define the Green’s functions in Equations (17a) to (17d), 

that is  uku y
~~

j~
'   if '' y  and also 

)0()0(
'

~~
j

~
pqypq GkG   if '' y .  

 
 
Lippman-Schwinger integral equation in 2.5-D 

 
Considering the assumptions made earlier, the 3-D 
Lippman-Schwinger integral equation in (1) takes the 
following form. 
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                                                                                     (18) 

 
where the perturbed wavefield is effectively solved in the 

vertical plane ( ',' zx ) corresponding to '~' yy  . Here '~y  

can also be set to zero without changing the generality of 
the algorithm. 
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Figure 3. The multilevel fast multipole method is illustrated using various levels translation operators on a tree 
structure. The plus and minus signs indicate all outward motions. The arrows are used to indicate the direction 
of translations where consolidations take place. 

 
 
 
Application of MLFMM 
 
We build our MLFMM application on top of these complex 
exponentials in the 2.5-D Green’s functions in Equations 
(17a)-(17d) that define the wave propagation in the 
horizontal plane. Note that the distance between the 
source and evaluation points is measured as absolute 
along the x-direction. Therefore, we construct our 
MLFMM algorithm in two parts separating the waves as 
traveling outward in the positive and negative directions. 

It follows that if 'xx   (positive direction), 
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where the complex exponential in (17c) is interpreted in 

terms of an expansion centre at cx . Similarly, for another 

expansion centre at cx  
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The two expansions in (19a) and (19b) can be connected 

via the multipole-to-multipole [
)|( MM ] translation 

operator given as follows. 
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Moreover, if 'xx  (negative direction), the two 

expansions with respect to cx  and cx~  can have the 

following expressions. 
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And the corresponding multipole-to-multipole [ )|( MM ] 

translation operator takes the form 
 

)(j
)|( ccx xxk

eMM
             (19f) 

 

The other two translation operators, that is, multipole-to-
local [ )|( LM ] and local-to-local [ )|( LL ], have the 

same functional forms as [ )|( MM ] in Equations (19c) 

and (19f), respectively. 
Figure 3 illustrates the MLFMM scheme on a 1-D data 

structure where the maximum tree level ( maxh ) is set to 

four. The first active level is 2h . The data structure 

includes 16 boxes corresponding to max2
h

 and each box 

is represented by a box centre ( cx ) used as expansion 

centre. A binary-tree space subdivision represents the 1- 
D   data   hierarchy   and   the   slight   thickness   in    the 
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y-direction is used for only demonstration where 

'~' yyy   is implemented. As shown in the topmost 

panel, we create expansion coefficients 
B  for each data 

point at 'x  with respect to the box centre 
cx  to which the 

data point belongs and then these expansion coefficients 
are consolidated to obtain one expansion coefficient per 
box centre. Note that two expansion coefficients (that is 

B  and B ) per data point are prepared to account for 
the waves traveling outward in both positive and negative 
directions. 

The higher level coefficients consolidated at 4h  are 

 
 

 
 
 
 

)|( MM  translated (that is upward pass) and are 

consolidated at a lower level (that is 3h ) as one 

instance shows in the second panel from top. As shown 
in the third panel, the upward pass and consolidation 
processes are similarly repeated for another lower tree 
level, which continues until the minimum tree level (that 
is 2min h ) at which level the downward passes start. The 

fourth and fifth panels show the )|( LM  and )|( LM  

translations from the distance range outside the 1’s 
neighborhood (shaded area) in the minimum tree level 
applied to waves traveling in the negative direction 
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(forth panel) and in the positive direction (fifth panel), 

respectively. The latter coefficients are then 
)|( LL  or 

)|( LL  translated (that is downward pass) depending on 

the particular wave propagation direction and are added 

to the )|( LM  translated coefficients at higher level tree 

(that is 3h ) as one instance shows in the sixth panel. 

The seventh panel shows another instance of downward 

pass at 3h  where only waves traveling in the positive 

direction are valid. The eighth and ninth panels show 

various instances of downward passes at 4h  in the 

positive and negative directions. The resulting 

coefficients defined by ),( yxC c
  are temporarily stored 

to use them to obtain the final MLFMM coefficients given 

by ),( yxC  shown in the bottom panel. Note that some 

near-field coefficients not treated within the MLFMM are 
added to the MLFMM coefficients as one instance shows 
in the lower left of Figure 3. 

After inserting the multipole expansions in (19a) and 
(19d) into the integral equation in (18), factoring out the 
common terms and rearranging, one can rewrite the 
scattering part of the integral equation in (18) as a 
collection of dot products, that is the partial derivative 

operators, that is, 

xD  and 


'xD , correspond to spatial 

differentiations at evaluation and source locations, 

respectively. The derivative operator 
R
xD '  corresponding 

to the Rayleigh surface waves has the following 
definition. 
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where the first integral is for the waves traveling outward 
in the positive direction and the second integral, for the 
waves traveling  outward  in  the  negative  direction. The 

algorithm in Equation (20) is performed multiple times for 
each surface wave mode traveling independently from 
each other in the medium. Here, R  represents a 

Rayleigh surface wave mode and L  stands for a  

Love surface wave mode.  
The partial derivative operators, that is 

xD  and 
'xD , 

correspond to spatial differentiations at evaluation and 
source locations, respectively. The derivative operator 

R
xD '

 corresponding to the Rayleigh surface waves has 

the following definition. 
In Equation (21), the wave potentials )8,,2,1( iRi

 

functions of displacement and displacement gradients 
and also of heterogeneities of the medium have the 
following expressions. 
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Table 1. List of parameters to build the partial derivative operator R
xD  of the impinging 

Rayleigh surface waves at the evaluation points. 
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Table 2. List of parameters to build the partial derivative operator L
xD  of the impinging Love 

surface waves at the evaluation points. 
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where  )','(2)','()','( )1()1( zxzxzx   . Similarly, 

the derivative operator 
L
xD '  corresponding to the Love 

surface waves has the following definition. 
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In Equation (23), the wave potentials )5,,2,1( iLi  

functions of displacement and displacement gradients 
and also of heterogeneities of the medium have the 
following expressions. 
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The necessary parameters to build the second derivative 

operator in Equation (20), that is 

xD , are listed in Table 

1 for the Rayleigh surface waves (
R
xD ) and in Table 2 for 

the Love surface waves (
L
xD ). Intersecting rows and 

columns in Tables 1 and 2 are used to construct the 
corresponding derivatives. For instance, if the z-gradient 

of the x-component of displacement (that is xzu ) due to 

an impinging Rayleigh surface wave mode is considered, 

then x
R

z
R
x zyD  )(3 , which is found from the 

intersection of z  (last row) and xu  (second column) in 

Table 1. The third derivative operator D  in Equation 
(20) is used to identify if the outcome of Equation (20) is 
either    displacement   or    displacement   gradient.  This 
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Figure 4. A pseudo-code for the current algorithm is 
shown. 

 
 
 

operator ( D ) is equal to the corresponding spatial 

partial (e.g. x ) if the outcome is a displacement 

gradient. If, on the other hand, the outcome is a 
displacement, then it is equal to unity. 

We symbolically use ik
~

 to show that the teleseismic 

surface wave arrival at certain frequency may also 
include a few higher mode arrivals, in addition to the 
usual fundamental mode arrival. If such multimode 
surface wave propagation is considered, one then 
performs the wavefield computations in (1) as many 
times as the number of arriving modes and then sum up 
the individual mode contributions to get the total 
wavefield. Therefore, the incident waves represented by 

)(x(0)
iu  in (1) change in accordance with the arriving 

surface wave mode. For instance, 
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where Rayleigh surface wave arrivals of fundamental 

mode   ( FMR ),   first  higher  mode  ( FHR )  and   second  

 
 
 
 

 
 

Figure 5. The 2-D model structure used for the current 
numerical calculations is shown. 

 
 
 

higher mode ( SHR ) are simultaneously considered. 

Similarly, fundamental ( FML ), first higher ( FHL ) and 

second higher ( SHL ) Love surface wave modes are also 

considered to teleseismically arrive. 
Figure 4 gives a pseudo-code to show how the current 

algorithm runs. A 1-D spherical model structure 
characterizing the background (or reference) velocity 
structure is introduced into the source code. Since we 
carry out our surface wave calculations assuming flat 
structure, we perform spherical-to-flat transforms 
(Schwab and Knopoff, 1972) to take the Earth’s sphericity 
into account. The phase velocity and period of the 
respective teleseismic surface wave (Rayleigh or Love) 
arrival and also data structure for the discretized 2-D 
heterogeneities are provided as input into the source 
code. Both incident and scattered waves travel in the 
reference structure for which we compute Rayleigh and 
Love surface wave dispersion considering multimode 
propagation. The Born approximation (Maupin, 2001) 
suffices for the current scattering calculations. Therefore 
we first compute the wavefield at heterogeneities 
replacing the total wavefield by the incident wavefield and 
then update the wavefield in the propagating medium. A 
stopping criterion based on convergence or maximum 
number of iterations is set to terminate the Born series. 
Once this criterion is satisfied, the wavefield at the 
seismic stations are finally computed. 
 
 

NUMERICAL EXAMPLES 
 

The 2-D model structure used to perform numerical 
experiments  is  shown  in  Figure  5  where the reference  
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Figure 6. Rayleigh surface wave (vertical and E-W or radial component) displacements are shown upon 
teleseismic fundamental mode Rayleigh surface wave arrival from the west onto the structure given in Figure 5 
(Rayleigh surface wave scattering results). 

 
 
 
structure is simply made of one-layer crust overlying a 
half-space. The model parameters are listed in Figure 5. 
The propagating medium is assumed attenuating 
characterized by P- and S-wave quality factors, that is 

100sQ
 and 

sp QQ 25.2
. The crust layer is modestly 

perturbed by three inclusions each with 5% perturbation. 
The inclusion with a slightly different depth range in the 
middle slows the wavefield whilst the two inclusions on 
either side are faster. The linear (or quasi-linear) seismic 
station array is spread over the perturbed region 
approximately perpendicular to the geological strike (that 
is N-S direction in Figure 5). Planar (or quasi-planar) 
teleseismic surface waves are assumed to arrive from the 
west perpendicular to the geological strike, which makes 
current surface wave scattering calculations effectively 2-
D; that is showing no changes with respect to current x-
axis (North). 

We presently assume that teleseismic Rayleigh and 
Love fundamental modes are emergent from the west 
with 6.25 s period and 3.34 and 3.68 km/s phase 
velocities, respectively. At this period the background 1-D 
velocity structure supports 2 Rayleigh and 2 Love surface 
wave modes; that is fundamental mode plus one higher 
mode. We do not include the effect of body waves that 
scatter at high incidence angles corresponding to phase 
velocities greater than that of normal modes in the 
propagating medium (Maupin, 2001). The seismic 
stations are spread over the region of  interest  placed  at 

the surface with 5-km interval in both N-S and E-W 
directions. The 2-D model structure is discretized using 
PPW=6. In case of emergent Rayleigh surface waves, we 
show vertical and E-W (or radial) component 
displacements computed at the seismic stations whilst N-
S (or tangential) component displacements are negligible. 
And in case of emergent Love surface waves, we show 
N-S (or tangential) component displacements at the 
stations whilst vertical and E-W (or radial) component 
displacements are negligible.  

In Figure 6, we first show the scattering results due to 
the incident fundamental mode Rayleigh surface waves. 
The upper panel corresponds to the vertical component 
whilst the lower panel depicts E-W (or radial) component. 
The spectral amplitudes are shown after normalization 
with respect to the reference medium amplitudes. The 
obstacles each with 15-km width have central locations 
placed at 420, 450 and 480 km along the E-W direction. 
As seen from the E-W component amplitudes, the 
horizontal motions are mostly trapped within the obstacles. 
The anomalous structures act as barriers blocking the 
passage of horizontally polarized Rayleigh waves resulting 
mostly back scattering and relatively weaker forward 
scattering. Compared to the E-W component, the vertically 
polarized Rayleigh surface waves are less affected from the 
obstacles, as seen from the vertical component amplitudes. 
Both back scattering and forward scattering mechanisms are 
valid, but significant part of the vertically polarized Rayleigh 

surface  wave energy is able to continue pass through the  
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Figure 7. Love surface wave (N-S or tangential component) displacements are shown upon teleseismic 
fundamental mode Love surface wave arrival from the west onto the structure given in Figure 5 (Love 
surface wave scattering results). 

 
 
 
three obstacles. From this it is straightforward to predict 
that Rayleigh surface waves observed on the vertical 
component rather than the horizontal component will 
perform better when one wishes to study the surface 
waves for inter-station phase velocity analysis (Yao et al., 
2006). 

The scattering results due to the incident fundamental 
mode Love surface waves are shown in Figure 7. Again 
the spectral amplitudes are illustrated after normalization 
with respect to the reference medium amplitudes. Similar 
to the horizontally polarized Rayleigh surface waves in 
Figure 6, the Love surface waves are also blocked by the 
three obstacles. Most of the Love surface wave energy is 
back scattered and is trapped within the obstacles. Only 
a fraction of the Love surface wave energy continues 
passing through the obstacles. The latter suggests that 
the observed Love surface waves analyzed for inter-
station phase velocities requires extra attention. 
 
 

DISCUSSION AND CONCLUSIONS 
 

The resolution power of the teleseismic surface waves is 
generally limited to those structures called target anomaly 
in Figure 1. The ones called small anomaly in the same 
figure may not be resolved well because the teleseismic 
surface waves are mostly made of lower frequency 
fundamental mode propagation. A few higher modes with 
higher frequency cutoff are also available, but generally 
smaller in amplitude compared to the fundamental mode 
because of relatively higher attenuation. In addition, the 

higher mode amplitudes are partitioned between broader 
depth ranges resulting smaller near-surface amplitudes 
(Kobayashi, 2007). 

If the number of data points obtained after 
discretization and the number of iterative solutions 
(GMRES; Saad, 2003) applied to the linear system in 
(18) are given by N and q, respectively, then the overall 
time complexity can be given as )log( NqNO , which is 

much more competent compared to, for instance, a direct 
integration method via the trapezoidal rule with a cost 

awkward )( 2qNO . 

The proposed algorithm is able to compute the 
displacement field for complex structures of arbitrary 
shapes and sizes within large spatial domains. All three 
parts illustrated in Figure 2 consume significant amount 
of computational time where the second part is 
significantly accelerated by the application of MLFMM. 
The first and third parts include features suitable for 
vector or parallel strategies that can be employed to 
further accelerate the computations.  

The 2.5-D treatment is adequate for certain geological 
structures; e.g. active and passive continental margins, 
suture zones, mountain ranges and sedimentary valleys. 
The current study provides a fast algorithm to forward 
model 2.5-D teleseismic surface wave amplitudes over 
these structures and is suitable for designing an inversion 
scheme to solve approximately 2-D velocity structures 
under linear (or quasi-linear) station arrays. The 2.5-D 
approximation may not be valid for the propagating 
medium under the station array, but can be used as initial  



 
 
 
 
models for the complex 3-D studies to reduce the overall 
cost. 
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