
International Journal of Physical Sciences Vol. 7(15), pp. 2339 - 2363, 9 April, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.1316
ISSN 1992 - 1950 ©2012 Academic Journals

Full Length Research Paper

Comparative study of distributed implementation using
Tuple space technology of two t-way test suite

generation strategies

Zainal Hisham Che Soh1*, Syahrul Afzal Che Abdullah1 and Kamal Zuhairi Zamli2

1
Centre of Computer Engineering Studies, Faculty of Electrical Engineering, Universiti Teknologi MARA (Penang

Campus) 13500 Permatang Pauh Pulau Pinang, Malaysia.
2
School of Electrical and Electronic Engineering, Universiti Sains Malaysia Engineering Campus 14300 Nibong Tebal,

Pulau Pinang, Malaysia.

Accepted 3 February, 2012

This paper highlights a comparative study of two new distributed t-way test suite generation strategies,
called test suite generator one parameter (TS_OP) and test suite generator one test (TS_OT). Both
strategies adopt computational greedy algorithm and were implemented on distributed shared memory
environment using Tuple space technology. To characterize the behavior of both strategies in term of
test size growth and test generation time, both TS_OP and TS_OT were subjected to a few
experimentations with varied parameter, parameter value and interaction strength. Furthermore, to
determine their scalability performance in term of speedup gained and test size ratio, both strategies
were subjected to scalability analysis on single machine and multiple machine environments. An
encouraging result on speedup is obtained for both strategies thus indicating the effectiveness of using
Tuple space technology in distributing the t-way test suite generation computing work. A comparison
against existing strategies in terms of the generated test suite size also indicates that both strategies
give sufficiently competitive results. Furthermore, in comparison between both strategies on test suite
size, TS_OP gives more satisfactory and competitive results as compared to TS_OT strategy.

Key words: T-way testing, distributed test suite generation, map and reduce, tuple space technology.

INTRODUCTION

Nowadays, software is developed in a modular way;
complete working software system is achieved by
integrating these small modules together. In order to
construct a quality software system, a thorough
integration testing with lots of test cases needs to be
tested during integrating these small modules. As for
highly customizable and configurable software system,
such as web application (Wenhua et al., 2009; Sampath
et al., 2008; Cohen et al., 2007), the number of input
parameter that needs to be tested can be enormous. In
both cases, large numbers of test cases are needed to
test all possible software interaction in the whole system.

*Corresponding author. E-mail: zainal872@ppinang.uitm.edu.my.

Indeed, a lot of testing work is required to ensure all
possible software interactions between input parameters
are tested to avoid faulty condition. Lacks of testing can
result in an unintended or faulty interactions remain
undetected and can cause the whole software system
failure in future. On the other hand, exhaustive testing is
next to impossible due to limited time and resources
constraint (Zamli and Younis, 2010).

In order to overcome the aforementioned issues in
minimizing the testing works while maintaining an
adequate testing coverage, a systematic approach known
as t-way testing can be used (Schroeder et al., 2004).
The t-way testing (t indicate the interaction strength) is a
systematic sampling technique to ensure fault detection
of faulty interaction inside a given software system by
executing its t-way test suite. The t-way test suite is a set

2340 Int. J. Phys. Sci.

Figure 1. Mobile share trading system.

of test cases that cover all possible interaction element
combination among t input parameters by at least one of
test cases in the test suite. The pairwise or 2-way
interaction testing is one form of t-way interaction testing
that is used to test all possible interaction among two
different input parameters (Czerwonka, 2006; Bryce and
Colbourn, 2007; Kimoto et al., 2008; Klaib et al., 2008;
Calvagna and Gargantini, 2009).

In recent time, the software size is growing fast from
megabyte to terabyte due to high demand from mass
public for new software application, add-on features and
advance software tools. Nowadays, most of the
significant software system is commonly made of millions
of line code. For real, large and complex software
system, the complexity and rapid software growth result
in many possibility of new intertwines dependency among
large software input parameter or component involved
thus justifying the need to support for high interaction
strength. Furthermore, there are a few works (Kuhn et al.,
2004, 2009, 2008) indicate the needs for higher
interaction strength to ensure full faults detection in
system under test (SUT).

However, producing optimum t-way test suite for high
interaction strength is a NP hard problem (Williams and
Probert, 2001; Shiba et al., 2004; Kuo-Chung and Yu,
2002) and requires significant computational power and
memory resources. Furthermore, as the interaction
strength increases coupled with large input parameter,
the possible interaction element combinations are likely
to be huge and could lead toward a combinatorial
explosion problem. This critical problem can possibly halt
the test suite generation due to out of memory problem.

Nowadays, mostly available works on t-way testing
exploits sequential algorithm, running on single or
standalone machine and cannot be extend to work on
multiple machine. Although useful, sequential algorithm
can be counterproductive particularly when dealing with
large input parameters and high interaction strength.

Furthermore, a standalone machine appears to be
lacking of processing power and memory space. Due to
this limitation, the standalone computers were insufficient
in dealing with large input parameters and high
interaction strength.

In order to address these issues, we opted to develop a
distributed t-way test suite generation strategy capable of
distributing the computing work among participating
workstations on different physical location. Here, tuple
space technology is utilized to provide the parallel and
distributed processing mechanism. The tuple space
technology provided a generative communication
mechanism between application services by mean of
associative matching of tuple in a shared memory space
called tuple space. The associative matching process is
fast, simple and support concurrent applications.

On distributed memory system (that is, network of
workstation), the tuple space data is usually distributed
among the participating workstation using hashing
system or partitioning system. The tuple space data can
also be fully replicate to all workstation. In both scenarios,
parallel or distributed processing can be achieved by
assigning more applications or services to compute the
data at each different workstation.

In this paper, we develop, implement, evaluate and
compare two distributed t-way test suite generation
strategies based on “one-test-at-a-time” strategy and
“one-parameter-at-a-time” strategy for t-way testing. Both
strategies described in this paper are based on map and
reduce framework using tuple space technology.

FORMULATION OF T-WAY PROBLEM MODEL

A simple customizable software system is used here as a
model to illustrate the idea of t-way software interaction.
Figure 1 represents the topology of an online mobile
share trading system.

Soh et al. 2341

Table 1. Share trading system components and configurations.

Input parameter
Components or parameter

Internet connection Mobile device Internet service provider Bank

Configurations or parameter value
3G iPhone Celcom CIMB

Wifi Galaxy S2 TM RHB

Table 2. Test suite for t=4 for above share trading system.

Test no. Internet connection Mobile device Internet service provider Securities

1 3G iPhone Celcom CIMB

2 3G iPhone Celcom RHB

3 3G iPhone TM CIMB

4 3G iPhone TM RHB

5 3G Galaxy S2 Celcom CIMB

6 3G Galaxy S2 Celcom RHB

7 3G Galaxy S2 TM CIMB

8 3G Galaxy S2 TM RHB

9 Wifi iPhone Celcom CIMB

10 Wifi iPhone Celcom RHB

11 Wifi iPhone TM CIMB

12 Wifi iPhone TM RHB

13 Wifi Galaxy S2 Celcom CIMB

14 Wifi Galaxy S2 Celcom RHB

15 Wifi Galaxy S2 TM CIMB

16 Wifi Galaxy S2 TM RHB

The system enable share trader to buy or sell stock
online via stock broking bank using a mobile device such
as smart phones, tablets etc at anytime and anyplace.
The system may use different components or
parameters. In this paper, the term “parameter” (or P) is
used to describe the components of the system. In this
example, the system consists of four parameters. The
mobile share trader user can use smart phones such as
iPhone and Galaxy S2 as their mobile devices. For any
selected mobile device, the share trading platform at
CIMB or RHB securities is assessable through internet
connection via 3G or Wifi provided by internet service
provider such as Celcom and TM. There are different
configurations in any cases. The term “value” (or v) is
used to describe the configuration of each component.
Thus, the system in Figure 1 can be summarized as a
four-parameter system with two values as in Table 1, to
illustrate how t-way testing works, and hence
demonstrate the test case reduction, for the
aforementioned example. Here, the range of acceptable t
is between two to maximum parameter number which is
four. Tables 2 to 4 shows the examples of the generated
test cases for t-way testing with varying t value of four,
three and two respectively. t=4, here can also be refer as
exhaustive testing, it involves explicit enumeration of all
possible combinations of their input parameter and for

this case the number of test case is 16 test cases (that
is,, 2 × 2 × 2 × 2). Using t-way testing approach, for t=3,
their test case number is reduce to only 8 test cases and
adhere to 3-way interaction coverage. As for t=2, as
normally called pairwise testing, their test case is further
reduce to only 6 test cases. As a result, it is added
advantages to utilized t-way testing to reduce the test
case number while maintaining adequate interaction
coverage.

RELATED WORKS

As Lei et al. (2007) briefed in his paper, there have been
two strategies for generation of test suites either
computational or algebraic approach. Both computational
and algebraic approaches have their own advantages
and disadvantages such as computational approaches
can be applied to any input system configurations, but the
computation can be intensive. Algebraic approaches on
the other hand usually involved lightweight computations
and in some cases, algebraic approaches can produce
optimal test sets. However, algebraic approaches often
impose restrictions on input system configurations to
which they can be applied.

In algebraic approaches, test suite is constructed using

2342 Int. J. Phys. Sci.

Table 3. Test suite for t=3 for above share trading system.

Test no. Internet connection Mobile device Internet service provider Securities

1 3G iPhone Celcom CIMB

2 3G iPhone TM RHB

3 3G Galaxy S2 Celcom RHB

4 3G Galaxy S2 TM CIMB

5 Wifi iPhone Celcom RHB

6 Wifi iPhone TM CIMB

7 Wifi Galaxy S2 Celcom CIMB

8 Wifi Galaxy S2 TM RHB

Table 4. Test suite for t=2 for above Share Trading System.

Test no. Internet connection Mobile device Internet service provider Securities

1 3G iPhone Celcom CIMB

2 3G Galaxy S2 TM RHB

3 Wifi iPhone TM CIMB

4 Wifi Galaxy S2 Celcom RHB

5 Wifi Galaxy S2 Celcom CIMB

6 3G iPhone TM RHB

pre-defined rules using mathematical function such as
Latin square (Mandl, 1985), orthogonal array (Burroughs
et al., 1994) and graph theory (Meagher and Stevens,
2005) to produce a t-way test suite. Other algebraic
approaches are based on the idea of recursive
construction based on orthogonal arrays, which allows
larger test sets to be constructed from smaller ones such
as TConfig (Williams, 2000; Aguirre et al., 2009).

Unlike algebraic approaches, computational
approaches often rely on generating all possible
interaction elements and search the entire interaction
element combinations to generate the test suite until all
interaction elements are covered. There are a few search
techniques that can be utilized such as greedy algorithm
or artificial intelligence technique. Artificial intelligent
technique usually start from a pre-existing test suite and
then apply a series of transformations using a fitness
function to determine the test suite until a complete test
suites is reached that covers all the combinations.
Strategies that adopted artificial tracking techniques such
as GAPTS (McCaffrey, 2009), Tabu Search (Nurmela,
2004), Ant Colony Algorithm (ACA) (Shiba et al., 2004),
Genetic Algorithm (GA) (Shiba et al., 2004), Simulated
Annealing (SA) (Cohen et al., 2003), and augmented
annealing (Cohen et al., 2008) are proposed in the
literatures. Briefly, these strategies start from some
known test set. Then, a series of transformations were
applied (starting from the known test set) until an
optimum set is reached to cover all the interaction

elements. Unlike AETG and IPOG, which build a test set
from scratch, artificial intelligence search strategies can
predict the known test set in advance. As such, these
search techniques can produce smaller test sets than
AETG and IPOG, but they typically take longer time to
complete. In addition, they can only support small
parameters and values, with low interaction strength. SA,
Tabu Search, ACA and GA reported result with
interaction strength up to 3-way coverage only.

For greedy algorithm, there are two categories of
greedy algorithm for test suite generation known as “one-
test-at-a-time” strategy which build test suite one test
case at a time until all interaction elements are covered
and “one-parameter-at-a-time” strategy which extend the
test case by one parameter at a time until all parameter
and interaction elements are covered. Typical “one-test-
at-a-time” is exemplified by Automatic Efficient Test
Generator (AETG) which iteratively builds a complete test
case using greedy search technique until all the
interaction element combinations are covered (Cohen et
al., 1997, 1996), TCG (Yu-Wen and Aldiwan, 2000), DDA
(Bryce and Colbourn, 2007). Because AETG uses
random search, the generated test case is highly non
deterministic.

Contradictorily, both TCG and DDA produce a deter-
ministic test suite results due to fixed rule in generating a
test case that cover as many as possible uncovered
interaction elements in their greedy search of maximum
interaction coverage. Bryce and Colbourn (2009) develop

an enhance DDA with support for higher interaction
strength for t-way testing(. Due to random insertion of
first value into the test case, higher strength DDA was
unable to produce a deterministic test suite results as its
predecessor DDA. Zamli et al. (2011) developed the
GTWay by merging the interaction element based on
their interaction element group to construct the test case
with aims of higher interaction coverage. Furthermore,
GTWay also provide an execution support for automatic
execution of the generated test suite.

Czerwonka developed a freeware tool named PICT
whose core algorithm is based on greedy algorithm and
similar to AETG with key differences that PICT is a
deterministic and does not produce any candidate test.
PICT had rich features such as support variable strength
generation, support constraint and seeding (Czerwonka,
2006). Hartman and Raskin (2004) developed the
combinatorial test services (CTS) package that construct
a t-way test suite using direct and recursive construction
algorithm. In solving the t-way test suite construction, the
CTS package tries several alternatives and chooses the
smallest array that is constructed. All t-way test suite with
similar input configuration always produce similar size for
each new construction due to all the algorithms employed
are deterministic. An extension of CTS known as the
IBM‟s intelligent test case handler (ITCH) is available in
Eclipse Plug-in tool (ITCH, 2010). ITCH uses a
sophisticated combinatorial algorithm based on combinat-
ion of mathematical and greedy search to construct the
test suites for t-way testing. Other tool within these
category with limited literature work but can be
downloaded at their respective web site are Test Vector
Generator (TVGII) (TVGII, 2010) and Jenny (2010). Both
Jenny and GTWay is developed using C language.

Other group of greedy algorithm is categorizes as “one-
parameter-at-a-time” strategy. These are exemplified by
IPOG (Lei et al., 2007). The IPOG strategy is generalized
from IPO (Lei and Tai, 1998). In this strategy, a t-way test
suite for the first t parameters is generated, and then in
horizontal extension phase, each test case is added with
a new parameter value at t+1 parameter that covers
maximum uncovered interaction elements. The newly
extended test case is selected and stored into new t-way
test suite. If after all test cases are extended and there
are still uncovered interaction elements, then the vertical
extension phase is required. In vertical extension, a new
test case is added into the test suite to cover for the
uncovered interaction element combination. After the
entire interaction elements are covered, the vertical
extension is completed. If next parameter t+2, exists,
then the horizontal phase and vertical phase is resume
for that parameter. The test suite generation goes on until
all parameter are covered.

A number of variants have also been developed to
improve the IPOG‟s performance. These variants
includes, IPOG-D (Lei et al., 2008), IPOG-F (Forbes et
al., 2008), IPOG-F2 (Forbes, 2008), MIPOG, G_MIPOG

Soh et al. 2343

(Younis et al., 2008) and MC-MIPOG (Younis and Zamli,
2010). IPOG-D is a deterministic strategy that combines
the IPOG strategy with a recursive D-construction to
minimize the number of interaction element that need to
be enumerated during the generation of the test suites.
The D-construction approach is a recursive procedure
that can be used to double the number of parameters in a
3-way test suite. Although IPOG-D can generate the test
suite faster than IPOG, their test size is usually bigger
than IPOG.

Both IPOG-F and IPOG-F2 are non-deterministic
strategies. Both strategies implemented a randomization
to break ties in the greedy selection during the horizontal
growth. In general, the size of test suite generated by
both strategies is competitive as compared to IPOG. As
for their execution time, they seem to be faster than
IPOG. Although both strategies can support uniform and
mixed input parameter setting, the performance gain
seem do not extend to the mixed input parameter value
and IPOG seems to do better with these situation. Unlike
IPOG-F, IPOG-F2 is implemented with a heuristic search
for horizontal growth algorithm thus permitting faster test
generation time as compare to IPOG-F.

MIPOG strategy is a deterministic strategy that implied
that each run will produce the same test suite size. Unlike
IPOG, in horizontal extension, the MIPOG strategy
optimizes the extended test case by selecting a value
that covers the maximum number of uncovered
interaction element combinations. Also, MIPOG strategy
optimization does not cover the value by searching for
uncovered interaction element that can be covered by the
same test case. This is performed by means of
exhaustive searching of uncovered interaction element
that can be combined with this test case during horizontal
extension. In vertical extension, MIPOG created a new
test case by exhaustively search for a combination of
interaction elements that covered the most uncovered t-
way combinations. This step, while improving the test
suite size, also increases the overall execution time of
MIPOG.

Both G_MIPOG and MC-MIPOG are built based on
MIPOG strategy and can parallelize the test suite
generation work. G_MIPOG is implemented on a grid
network while MC-MIPOG is run on an Intel multicore
system. Both strategies support higher order of t for test
suite generation and can produce a smaller test suite as
compare to others variant of IPOG. Other related work
and the current state of combinatorial testing are given in
Nie and Leung (2011) and Grindal et al. (2005).

THE OVERALL STRATEGY OF BOTH TS_OP AND
TS_OT

Here, we describe about two distributed strategies for
generating t-way test suite in t-way testing called Test
Suite Generator One Parameter (TS_OP) for “one-

2344 Int. J. Phys. Sci.

parameter-at-a-time” strategy and called as Test Suite
Generator One Test (TS_OT) for “one-test-at-a-time”
strategy. In both strategies, the distributed processing is
implemented using Map and Reduce mechanism running
on network of workstations using Tuple Space technology
middleware known as GigaSpaces XAP 8.0.
(GigaSpaces, 2010). Both overall strategies, TS_OP and
TS_OT will be elaborated further in the subsequently.

ONE PARAMETER AT A TIME, TS_OP STRATEGY

The examples and flowchart of the overall design
approach of TS_OP strategy is illustrated in Figure 2. In
this strategy, a master process is called TS_OP Feeder
and the worker process is called TS_OP Processor.

Initially in our overall design approach of TS_OP
strategy, the TS_OP Feeder preloads the assigned
parameter value, vi, the interaction strength, t and the
input parameter data, ParmSet into all TS_OP Processor
dedicated partition space. For the illustration examples in
Figure 2 that use a small input parameter with 4
parameters (that is, P0 P1 P2 P3) and 2 parameter values
(that is, v0 v1). The interaction strength, t used is 3.

In horizontal extension, The TS_OP Feeder generates
t-way test suite for the first t-parameters and store them
in TS. In illustration, the test suite is generated from the
first three parameters (that is, P0 P1 P2) and produces
eight test cases as shown in initial TS at master space.
Each test case in TS is individually sends to all TS_OP
Processor one by one.

The TS_OP Feeder remotely executes all worker
processes by sending a command generateIE with
current parameter, Pi to all TS_OP Processors
concurrently. Each TS_OP Processor generates all t-way
interaction element (ie) combinations between Pi and
using the assigned parameter value, vi and stores them in
their respective partition space as interaction element set,
ieSet. As shown in initial population phase, the ieSet in
each worker space is created with list of 3-way interaction
element combination. The current parameter, Pi is the P3
parameter with two parameter value. All interaction
element combination must contain parameter P3 value
and two other parameters value as shown in both ieSet.

After initial population phase, the generation of test
case phase follows. Here, the TS_OP Feeder sends a
command constructTestCase that consists one of
generated test case, τ and the current parameter, Pi to all
TS_OP Processor concomitantly to extend test case. For
test case without don‟t care value, each partition space
constructs the new test case by adding the assigned
parameter value to test case, τ. Next, the maximum
interaction coverage value is calculated for newly
extended test case.

The calculation of interaction coverage is done by
matching the interaction element covered by generated
test case against interaction element in ieSet at their

partition space. In order to obtain all the interaction
element covered by that test case, the test case is
factorize into individual interaction element data based on
their interaction element group. All individual interaction
element are match against the interaction element in their
respective partition space, the maximum interaction
coverage, maxIEC is determined by the number of
matched interaction element between interaction element
of factorise test case with interaction element in their
partition space. In the illustration in Figure 2, the maxIEC
for T10 [0 0 0 0] is 3 and the maxIEC for generated test
case at v1 worker space for T11 [0 0 0 1] is also 3.

As for test case with don‟t care value, the test case, τ
will be optimizes into τo by merging it with possible
interaction element in ieSet at their respective partitions.
Then the maximum interaction coverage is calculated as
aforementioned.

All space remoting results contain the maximum
interaction coverage, maxIEC and the selected test case,
τ’ from their respective partition are return to calling
TS_OP Feeder via a Reducer. The Reducer selects one
test case with highest interaction coverage value among
results returned by all available TS_OP Processors.

As for our illustration in Figure 2, the maxIEC for both
test cases are three. Therefore, any test case will be
randomly selected into final TS. Here test case T10 is
selected into final TS.

The TS_OP Feeder stores the selected test case, τ’ or
τo into the final test suite, TS and deleted all interaction
element combinations covered by that test case in all
partition space. Then the TS_OP Feeder iteratively sends
all test cases in TS to all TS_OP Processors and
completes the horizontal extension phase.

After all test cases in TS already delegated to all
TS_OP Processors, the horizontal extension phase is
completed, if there are still uncovered interaction element
combinations in the ieSet, then the vertical extension
phase will commence.

As shown in the illustration in Figure 2, the first test
case T1 [0 0 0] is sent to both workers space. For test
case T1, there is no don‟t care value in the test case
which result in only insertion of assigned parameter value
at P3 for both worker space. The generated test case at v0
worker space is T10 [0 0 0 0] and the generated test case
at v1 worker space is T11 [0 0 0 1].

From here, both worker spaces continue to calculate
the maximum interaction coverage covered by their
generated test case. Both test cases have same
maximum interaction coverage of three. Here, reducer
randomly selected one test case and stored in TS. The
selected test case is T10 [0 0 0 0]. As a result of this test
case selection, the three covered interaction element,
(that is, [0 0 X 0] [0 X 0 0] [X 0 0 0]) in ieSet of v0 worker
space are deleted.

The TS_OP Feeder checks the availability of
interaction element in ieSet at all partition space. If not
available, the test case generation is stopped, however

Soh et al. 2345

Received and delegate
input parameter

interaction strength, t
and assigned parameter

value

Initial Population of
generated t-way ie and

test suite, TS

Generation of test case
and calculation of

maximum interaction
coverage, maxIEC

Selection of test case
with highest maxIEC

and deletion of covered
ie

Master Space

t=3
ParmSet

P0 P1 P2P3

0 0 0 0
1 1 1 1

v0 WS

ieSet
P0 P1 P2 P3

0 0 X 0
0 1 X 0

1 0 X 0
1 1 X 0
0 X 0 0
0 X 1 0
1 X 0 0

1 X 1 0
X 0 0 0
X 0 1 0
X 1 0 0
X 1 1 0

v1 WS

ieSet
P0 P1 P2 P3

0 0 X 1
0 1 X 1

1 0 X 1
1 1 X 1
0 X 0 1
0 X 1 1
1 X 0 1

1 X 1 1
X 0 0 1
X 0 1 1
X 1 0 1
X 1 1 1

Master Space

Initial TS
P0 P1 P2

TC1 0 0 0
TC2 0 0 1

TC3 0 1 0
TC4 0 1 1
TC5 1 0 0
TC6 1 0 1
TC7 1 1 0

TC8 1 1 1

Send input parameter,
interaction strength,t and
assigned parameter value

to each worker space (WS)
(here v0 and v1

Master sends individually
all test case(TC1—TCn) to

each WS

Worker generated t-way
ie for current parameter

at each WS

Master generated initial
test suite, TS

Worker generated new TC by
inserting its assigned value
into received TC at current

parameter at each WS

Worker calculated maxIEC
for generated TC at each WS

TC have
don’t
care?

All Worker send generated
TC and maxIEC to master

Master select TC with
highest maxIEC. Update TS
and delete covered ie in all

ieSet.

All ieSet at
WS is empty

?

All TCs
send to

WS?

No

Yes

No

No

Yes

Yes
Test Suite

Generation
finish and TS is

final result

Next
parameter

exist ?

Yes

No

Worker generated
new TC by merging
the TC with possible

ie at each WS

Worker generated new TC by
merging the possible ie

between each other at each
WS

Master Space

Final TS
P0 P1 P2

P3

T1 0 0 0 0

T2 0 0 1 1
.
.
.

Tn ? ? ? ?

v0 WS

ieSet
P0 P1 P2 P3

0 0 X 0
0 1 X 0
1 0 X 0
1 1 X 0
0 X 0 0
0 X 1 0
1 X 0 0
1 X 1 0
X 0 0 0
X 0 1 0
X 1 0 0
X 1 1 0

P0 P1 P2 P3

T10 0 0 0 0
Insert 0 at P3 for

test case T10.

P0 P1 P2 P3

T20 0 0 1 0
Insert 0 at P3 for

test case T20.

P0 P1 P2 P3

Tm 0 X 1 0
Insert 0 at P3

and merge Tm
with possible ie

P0 P1 P2 P3

T10 0 0 0 0
maxIEC = 3

P0 P1 P2 P3

T20 0 0 1 0
maxIEC = 2

P0 P1 P2 P3

T 0 0 0 0
Merge possible
ies into full test

case .

v1 WS

ieSet
P0 P1 P2 P3

0 0 X 1
0 1 X 1
1 0 X 1
1 1 X 1
0 X 0 1
0 X 1 1
1 X 0 1
1 X 1 1
X 0 0 1
X 0 1 1
X 1 0 1
X 1 1 1

P0 P1 P2 P3

T11 0 0 0 1
Insert 0 at P3 for

test case T1.

P0 P1 P2 P3

T21 0 0 1 1
Insert 0 at P3 for

test case T21.

P0 P1 P2 P3

Tm 0 X 1 1
Insert 0 at P3

and merge Tm
with possible ie.

P0 P1 P2 P3

T11 0 0 0 1
maxIEC=3.

P0 P1 P2 P3

T21 0 0 1 1
maxIEC=3.

P0 P1 P2 P3

T 0 0 0 0
Merge possible
ies into full test

case .

Master Space

Selection of TS
P0 P1 P2 P3 maxIEC

T10 0 0 0 0 3
T11 0 0 0 1 3
Same weight select
any test case, if T10

selected. Update T10

into Final TS. Delete
covered ie
P0 P1 P2 P3 maxIEC
T20 0 0 1 0 2

T21 0 0 1 1 3
T21 maxIEC > T20

maxIEC. T21

selected. Update T21

into Final TS. Delete
covered ie

v0

and
v1

Figure 2. An illustration example and flow chart of TS_OP strategy.

2346 Int. J. Phys. Sci.

if there are interaction element in ieSet, the TS_OP
Feeder further checks for the availability of unsent and
not extended test case in TS, if available the test case
generation is continued and if not available the vertical
extension is started.

In vertical extension phase, The TS_OP Feeder sends
a command calculateIECMax with the maxIEC value
equal to maximum number of interaction element group
to all TS_OP Processor concurrently to merge possible
interaction element data stored in their respective
partition space into one complete test case and to
calculate the maximum interaction coverage from
generated test case. All results contain the maximum
interaction coverage; maxIEC and the selected test case,
tsm from their respective partition are returned to calling
TS_OP Feeder via a Reducer. The Reducer selected one
test case with the highest interaction coverage value
among results returned by all available TS_OP
Processor. The TS_OP Feeder stores the test case, tsm
into temporary test suite, TS’ and deletes all interaction
element combinations covered by that test case in all
partition space in order to ensure optimal solution.

The TS_OP Feeder then continues to remotely execute
all TS_OP Processor to obtain next tsm until all
interaction element combinations are covered. In order to
minimise the search work for the next tsm, the previous
maximum interaction coverage value, maxIEC is sends to
all TS_OP Processor. The previous attainable maxIEC
value is uses as the stopping criteria during generation of
the tsm. If the current maxIEC is equal or greater than
previous maxIEC, the greedy search of the interaction
element combinations is halt and the generated test case
is returns to TS_OP Feeder along with the current value
of maxIEC value. Otherwise, the greedy search is
continued until all interaction elements are tested and the
latest test case is selected and returns to the TS_OP
Feeder.

After all interaction elements are covered and ieSet is
empty in all partition spaces, the extension of the current
parameter, Pi is completed then the test case generation
work will continues to next parameter, Pi+1. The resultant
temporary test suite, TS’ is also minimises by removing
redundant tsm. The minimized TS’ is then added into the
final test suite, TS. This strategy will continue until the
last parameter, Pt is accounted for and the complete test
case is formed. Finally, the TS_OP Feeder displays the
final test suite, TS and stores the test suite into testsuite
log file.

The complete algorithm for TS_OP is given as follows:

Algorithm TS_OP(t, ParmSet)
begin
1. initialize test suite TS to be an empty set;
2. denote the parameters in ParmSet, as P1, …, and Pn;
3. send ParmSet and t to GigaSpaces;
4. assign unique values, vi to each TS_OP Processors;
 { for the first t parameters }
5. add into TS a exhaustive test case for first t parameters;

6. for parameter Pi, i =t+1, …,n do
 begin
 { horizontal extension for parameter Pi }
7. TS_OP Feeder send command generate IEs to all

 TS_OP Processors
8. TS_OP Processor receive command generate IEs and

 Pi from TS_OP Feeder through space based remoting;

9. generate t-way ie between Pi and{P1…Pt} using

 assigned parameter value and stored into in ieSet
 TS_OP Processors partition;
10. \\ let ieSet be the set of all pair combinations of values

 between Pi and each of P1, P2,…,Pi-1;

11. for each test τ = (v1, v2, …, vi-1) in test suite TS do
12. TS_OP Feeder send command construct test

 case and τ to all TS_OP Processor ;

13. TS_OP Processor receive command construct

 test case and τ from TS_OP Feeder through
 space based remoting;
14. if (τ not contains don‟t care)

15. insert assigned value (v) into τ;
16. calculate the maxIE;
17. send τ’ and maxIE to TS_OP Feeder
 via reducer;
18. else merge τ with possible interaction
 element combination in ieSet into τo ;
19. calculate the maxIE;
20. send τo and maxIE to TS_OP Feeder
 via reducer;
21. reducer choose the τ’ with highest
 maxIE;
22. add selected test case τ’ to TS;
23. delete all covered interaction element in ieSet ;
 { vertical extension for parameter Pi }
24. while (ieSet is not empty) do

25. TS_OP Feeder send command calculate IEC
 Max to all TS_OP Processor;
26. TS_OP Processor receive command
 calculate IEC Max from TS_OP Feeder
 through space based remoting
27. merge possible interaction element
 combination in ieSet into tsm ;
28. calculate the maxIE;
29. send tsm and maxIE to TS_OP Feeder
 via reducer;
30. reducer choose the tsm with highest
 maxIE;
31. add selected test case tsm to TS’;

32. delete all covered interaction element in
 ieSet ;
33. remove redundant tsm in TS’
34. add temporary TS’ to TS
 end
35. return TS;
end

ONE TEST AT A TIME, TS_OT STRATEGY

Here, the design approach of the test suite generation
strategy based on “one-test-at-a-time” strategy called
Test Suite Generation One Test (TS_OT) strategy is been
explained. The overall strategy and example of TS_OT

strategy is illustrated in Figure 3. The strategy is also
implemented using Map and Reduce mechanism on
network of workstations using Tuple Space technology
middleware known as GigaSpaces XAP 7.0
(GigaSpaces, 2010). In this strategy, a master process is
called TS_OT Feeder and the worker process is called
TS_OT Processor.

In overall design approach, the TS_OT Feeder preloads
the interaction strength, t value and the input parameter
data, ParmSet in POJO format into all TS_OT Processor
dedicated partition space. The TS_OT Feeder generates
all possible interaction element combinations and
delegate the interaction element into TS_OT Processor
partition space based on hash table based routing
mechanism. As shown in our illustration in Figure 3, for
small input parameter with 4 parameters (that is, P0 P1 P2
P3) and 2 parameter values (that is, v0 v1) with the
interaction strength, t equal to 3. Here, the TS_OT
Feeder generates all 32 interaction element combinat-
ions. For two partition space as in our examples, each
partition will receive 16 interaction elements from TS_OP
Feeder with worker 1 space obtained all interaction
elements with odd number and worker 2 space obtained
all interaction elements with even number.

The TS_OT Feeder sends a command
calculateIECMax to all TS_OT Processor concurrently to
generate the test case by merging possible interaction
element data within their respective space partition. Each
TS_OT Processor merged the interaction element
according to their interaction element group. The first
interaction element is taken from list of uncovered
interaction element fetch from their partition space. The
first interaction element is then merged with others
interaction elements according to the interaction element
group sequence to generate the new test case. If the new
test case contained no don‟t care „X‟ then the test case
generation is exited otherwise the test case generation
will continue and stopped when all the interaction
element group in the list are all tried and tested for
merging possibility with currently built test case. In our
illustration and example in Figure 3, the first interaction
element poll from ieSet1 in worker 1 space is IE1 [0 0 0
X] and try to be merged with the next interaction element
in the list which is [0 1 0 X] but unsuccessful and next
interaction element [1 0 0 X] and [1 1 0 X] but still
unsuccessful until interaction element [0 0 X 0] and
produce one complete test case of [0 0 0 0]. For worker 2
space, test case produce is [0 1 1 0].

Next, the maximum interaction coverage value is
calculated for newly generated test case in each TS_OT
Processor space partition. The calculation of interaction
coverage is done by matching the interaction element
covered against interaction element in ieSet at their
partition space. In order to obtain all the interaction
element covered by that test case, the test case is
factorize into individual interaction element data based on
their interaction element group. All individual interaction

Soh et al. 2347

element are match against the interaction element in their
respective partition space; the maximum interaction
coverage, maxIEC is determined by the number of
matched interaction element of factorize test case with
interaction element in their partition space. In our
example, the maximum interaction coverage value for
worker 1 space is 4 and worker 2 space is 4.

The current determined maxIEC value is then
compared with value of the previous maxIEC value. If the
current maxIEC is equal or greater than previous
maxIEC, then the current maxIEC value and its test case
are stored as the best solution so far. Otherwise the
previous maxIEC value and its test case are stored as
best solution.

From here, the selected maxIEC value is then
compared with the best maximum interaction coverage
from previous selected test case in final test suite, TS
labeled as previous attainable maximum interaction
coverage, pamaxIEC.

The value of previous attainable maximum interaction
coverage, pmaxIEC value is used as the stopping criteria
of current test case generation. If the current maxIEC is
equal or greater than pmaxIEC, then the current maxIEC
value and its test case are considered as the best
solution and test case generation is stopped. Here the
value of pmaxIEC for our example is 4, so both
generated test case is sent to reducer. The generated
test case returns to TS_OT Feeder along with the current
value of maxIEC value via a reducer. Otherwise, the test
case generation is continued 15 times and the highest
value of maxIEC among the 15 solution and its test case
is selected and returns to the TS_OT Feeder.

All space remoting results containing the maximum
interaction coverage; maxIEC and the selected test case,
τ from their respective partition are return to calling
TS_OT Feeder via a Reducer. The Reducer selects one
test case with highest interaction coverage value among
results returned by all available TS_OT Processor. For
cases with same maxIEC, the test case is randomly
selected. For examples as illustration in Figure 3, the test
case [0 0 0 0] with maxIEC of 4 is randomly selected and
stored in TS. The TS_OT Feeder stores the selected
result containing one test case, τ and its maximum
interaction coverage value, maxIEC into the final test
suite, TS and deleted all interaction element combinat-
ions covered by that test case in all partition space. The
TS_OT Feeder then continues to remotely execute all
workers to obtain τ and its maxIEC at their respective
partition until all interaction element combinations are
covered. The generation of test suite will stop when the
interaction element data, IESet in all space partition is
empty. Finally, the TS_OT Feeder displayed the final test
suite, TS and stored in test result log file

The complete algorithm for TS_OT is given as follows:

Algorithm TS_OT Feeder/Master (ParameterSet
ParmSet, t)

2348 Int. J. Phys. Sci.

Received and delegate
input parameter and

interaction strength, t

Initial Population of
generated t-way ie and
delegation of t-way ie

to each WS

Generation of test case
and calculation of

maximum interaction
coverage, maxIEC

Selection of test case
with highest maxIEC

and deletion of covered
ie

Master Space

t=3

ParmSet
P0 P1

P2P3

0 0 0 0

1 1 1 1

WS 1

ieSet
P0 P1

P2P3

0 0 0 X

0 1 0 X
1 0 0 X
1 1 0 X
0 0 X 0
1 0 X 0

0 0 X 1
1 0 X 1
0 X 0 0
1 X 0 0
0 X 0 1

1 X 0 1
X 0 0 0
X 1 0 0
X 0 0 1
X 1 0 1

WS 2

ieSet
P0 P1

P2P3

0 0 1 X

0 1 1 X
1 0 1 X
1 1 1 X
0 1 X 0
1 1 X 0

0 1 X 1
1 1 X 1
0 X 1 0
1 X 1 0
0 X 1 1

1 X 1 1
X 0 1 0
X 1 1 0
X 0 1 1
X 1 1 1

Master Space

All t-way ie

P0 P1P2 P3 P0 P1P2 P3

ie1 0 0 0 X ie2 0 0 1 X

ie3 0 1 0 X ie4 0 1 1 X
ie5 1 0 0 X ie6 1 0 1 X
ie7 1 1 0 X ie8 1 1 1 X
ie9 0 0 X 0 ie10 0 1 X 0
ie11 1 0 X 0 ie12 1 1 X 0
ie13 0 0 X 1 ie14 0 1 X 1
Ie15 1 0 X 1 ie16 1 1 X 1

ie17 0 X 0 0 ie18 0 X 1 0
ie19 1 X 0 0 ie20 1 X 1 0
ie21 0 X 0 1 ie22 0 X 1 1
ie23 1 X 0 1 ie24 1 X 1 1
ie25 X 0 0 0 ie26 X 0 1 0
ie27 X 1 0 0 ie28 X 1 1 0

ie29 X 0 0 1 ie30 X 0 1 1
ie31 X 1 0 1 ie32 X 1 1 1

Send input parameter
and interaction

strength, t to each
worker space (WS)

Master sends t-way ie
using hash table

routing mechanism to
each WS

Master generated all
possible t-way ie

Worker generated new
test case by merging

the possible interaction
element between each

other at each WS

Worker calculated
maximum interaction

coverage for generated
test case at each WS

All Worker send
generated test case and

maximum interaction
coverage to master

Master select test case
with highest maximum
interaction coverage.
Update TS and delete
covered ie in all ieSet.

All ieSet
at WS is
empty ?

Yes
Test Suite Generation

finish and TS is final
result

No

Master Space

Final TS
P0 P1 P2 P3

T1 0 0 0 0
T2 0 1 1 0

.

.

.

Tn ? ? ? ?

Master Space

Selection of TS
P0 P1 P2 P3 maxIEC

T11 0 0 0 0 4
T12 0 1 1 0 4

Same weight select any
test case, if T11 selected.
Update T11 into Final TS.
Delete covered ie
P0 P1 P2 P3 maxIEC

T20 0 1 0 1 3
T21 0 1 1 0 4

T21 maxIEC > T20 maxIEC.
T21 selected. Update T21

into Final TS. Delete
covered ie

WS 1

P0 P1 P2P3

0 0 0 X

0 1 0 X
1 0 0 X

1 1 0 X
0 0 X 0
1 0 X 0
0 0 X 1
1 0 X 1
0 X 0 0
1 X 0 0

0 X 0 1
1 X 0 1
X 0 0 0
X 1 0 0
X 0 0 1
X 1 0 1

P0 P1 P2 P3

T11 0 0 0 0
maxIEC = 4

P0 P1 P2 P3

T21 0 1 0 1
maxIEC = 3

P0 P1 P2 P3

T 0 0 0 0
Merge possible
ies into full test

case .

P0 P1 P2 P3

T 0 1 0 0
Merge possible
ies into full test

case .

WS 2 P0 P1 P2P3

0 0 1 X
0 1 1 X
1 0 1 X

1 1 1 X
0 1 X 0

1 1 X 0
0 1 X 1
1 1 X 1
0 X 1 0
1 X 1 0

0 X 1 1
1 X 1 1
X 0 1 0
X 1 1 0
X 0 1 1
X 1 1 1

P0 P1 P2 P3

T12 0 1 1 0
maxIEC = 4

P0 P1 P2 P3

T22 0 1 1 0
maxIEC = 4

P0 P1 P2 P3

T 0 1 1 0
Merge possible

ies into full

test case .

P0 P1 P2 P3

T 0 1 1 0
Merge possible
ies into full test

case .

Figure 3. An illustration example and flow chart of TS_OT strategy.

begin
1. initialize test suite TS to be an empty set;
2. denote the parameters in ParmSet, in an arbitrary order,
 as P1, P2, …, and Pn;
3. send ParmSet and t to all partition space;
4. generate ie and delegate by id to respective space
 partition;
5. while (IESet is not empty) do
 begin

6. send command calculate IEC Max to all TS_OT
 Processor;
7. receive command calculate IEC Max from TS_OT
 Feeder through space based remoting;
8. for (iteration Ij , j=j+1, …,15) do
9. begin

10. merge possible interaction element combination
 in IESet into complete test case, τ;
11. calculate the current maxIEC highest interaction
 coverage;
12. compare current maxIEC with previous maxIEC;
13. if (current maxIEC is higher than or equal to
 previous maxIEC)
14. stored current maxIEC and its test case , τ;
15. else stored previous maxIEC and its test case , τ;

16. compare current maxIEC with pmaxIEC;
17. if (selected current maxIEC is higher than or

 equal to previous pmaxIEC
18. send current maxIEC and its test case , τ

 to TS_OT Feeder PU via a reducer
19. else continue test case generation
20. end
21. send current highest maxIEC and its test case, τ to

 TS_OT Feeder PU via a reducer;
22. add τ test case into TS;
23. delete covered interaction element in all partition
 of their respective IESet;
 end
24. Compact or deleted redundant test case within TS;
25. display TS;

End

DISTRIBUTED TS_OP AND TS_OT STRATEGY

Based on the aforementioned overall strategies, an
application model for each TS_OP and TSOT strategy on
single machine environment is designed. The TS_OP
comprises of TS_OP Feeder PU and TS_OP Processor
PU with collocated partition space as shown in Figure 4.
The TS_OT strategy is consist of TS_OT Feeder PU and
TS_OT Processor PU as shown in Figure 5. All the
Processing Unit (PU) are wired together using a Spring
configuration file, pu.xml. The development and initial
simulation of the test generation work is done in Eclipse
IDE before been packaged and deployed into
Gigaspaces Service Grid.

The TS_OP Feeder PU is responsible to feed all data
into shared space using the InputData Loader services
and controls test suite generation using TestData Feeder
services. The TS_OP Processor PU is used to generate
the test case and calculate the interaction coverage of

Soh et al. 2349

generated test case by using IEC Processor services.

As for TS_OT strategy, the TS_OT Feeder PU is
designed to feed the data into shared space and to
controls test suite generation using TestData Feeder
services whereas the TS_OT Processor PU is designed
to generate the test case by using IMIECProcessor
services. All the services are loosely connected to all the
data in space such as t, vi, ParmSet and ieSet.

Using the aforementioned application model as our
basis, distributed TS_OP and TSOT strategies are been
designed and implemented. The first step in distributing
both strategies is to identify the number of worker
process to represent the number of partition space
needed during test suite generation. In TS_OP strategy,
the number of worker process or TS_OP Processor PU is
deduced from the highest number of parameter value
among given input parameter. The highest number of
worker process also represents the number of partition
space needed in test suite generation. In TS_OT
strategy, the number of worker process can be selected
from 1 worker to any number of workers as needed. The
maximum number of worker process or TS_OT
Processor PU is only limited to the number of available
and connected physical machine.

Here, both distributed TS_OP and TS_OT strategy are
been implemented using a partitioned topology. In
partitioned topology, the main TS_OP or TS_OT
Processor PU and its partition space is divided into
several block of Processing Unit with their dedicated
partition space. The partitioned topology enables the
storage of large volume of data by splitting the data
across several TS_OP Processor PU partition spaces on
different physical machine. Therefore, the large storage
space can prevent the combinatorial explosion problem
during test suite generation.

The second step is to identify the all distributed and
common data that reside at each partition space. The
distributed data in TS_OP strategy is each individual
parameter value from selected parameter with highest
number of parameter value. Each partition space is
assigned with one uniquely assigned input parameter
value, vi of the highest number of parameter value. This
unique value vi is used to generate the corresponding
ieSet for that partition space. Hence, the interaction
elements exist in each partition different compared to
others partition space. The distributed data in TS_OT
strategy is the interaction elements with their identificat-
ion (id) number. The interaction elements are been
routed among each partition space according to their uni-
que interaction element and identification number using
hash table routing mechanism. In both strategies, the
common data in all partition spaces are the interaction
strength, t and the input parameter, ParmSet. All data is
constructed as Plain Old Java Object (POJO) data and
stored in all the partition space.

The third step in distributing both strategies is to identify
all tasks running on both TS_OP or TS_OT Feeder PU

2350 Int. J. Phys. Sci.

Figure 4. An application model of one TS_OP Feeder PU and one TS_OP processor PU.

Figure 5. An application model of one TS_OT Feeder PU and one TS_OT processor PU.

and TS_OP or TS_OT Processor PU. All task services
running on the TS_OP or TS_OT Feeder PU are
considered as a master task whereas all tasks running on
TS_OP or TS_OT Processor PU are considered as a
distributed task. The similar master tasks that runs on
both TS_OP and TS_OT Feeder PU are:

1. Preload of the interaction strength, t, the input
parameter; ParmSet to all partition space.
2. Control of test generation and remotely execution of all
distributed task on TS_OP or TS_OT Processor PU.
3. Selection and storage of selected test case in final test
suite, TS.
4. Deletion of the interaction element covered by selected
test case in all partition space.
5. Removal of redundant test case in final test suite.
6. Display and storage of the final test suite into log file.

The master tasks services that are only running on
TS_OP Feeder PU are delegation of the unique value, vi
to all partition space, generation of the t-way test suite for
the first t parameter and removal of redundant test case
after vertical extension. The master tasks services that
are uniquely running on the TS_OT Feeder PU are
generation of all possible interaction elements and
delegation of all generated interaction elements based its
id into all partition spaces using hash table routing
mechanism.

The distributed task services are the task that is
running on TS_OP or TS_OT Processor respective
partition space and been initiated and executed by
TS_OP or TS_OT Feeder PU. The synchronous mode of
space based remoting service known as Map and
Reduce mechanism is utilized by TS_OP and TS_OT
Feeder PU to simultaneously invoke the distributed task
service on all their Processor PU. A distributed pro-
cessing is achieved while running in this mode.Four tasks
are running on TS_OP Processor PU as distributed tasks
such as:

1. Generation of the interaction element data using
assigned unique value, vi.
2. Generation of the extended test case by inserting the
assigned unique value, vi to that test case, calculation of
the maximum interaction coverage value for the test case
generated and return selected test case with maximum
interaction coverage to TS_OP Feeder PU via a Reducer.
3. Generation of the extended test case with don‟t care
by merging with possible interaction element
combinations, calculation of the maximum interaction
coverage value for the test case generated and return
selected test case with maximum interaction coverage to
TS_OP Feeder PU via a Reducer.
4. Generation of complete test case by merging between
possible interaction element combinations, calculation of
the maximum interaction coverage value for generated
test case, selection and return of test case with highest

Soh et al. 2351

value of maximum interaction coverage to TS_OP Feeder
PU via a Reducer.

The task services designed to work on TS_OT Processor
as distributed tasks are the generation of the complete
test case by merging between possible interaction
element combinations, calculation of the maximum
interaction coverage value for the test case generated,
selection of test case with highest value of maximum
interaction coverage and return selected test case with
maximum interaction coverage to TS_OT Feeder PU via
a Reducer.

Finally, the distributed TS_OP and TS_OT strategies
are implemented and deployed on a partitioned topology
using the Giga Spaces Service Grid. The Service Grid is
a set of Grid Service Container (GSC) that is managed by
a Grid Service Manager (GSM). For a single machine
environment, the TS_OT Feeder PU and the TS_OT
Processor PU with its collocated partition space run on
GSC within the same machine. For multiple machine
environments, TS_OT Feeder PU and each TS_OT.

Processor PU with their respective partition spaces are
distributed across several different physical machines in
different GSC. As an illustration for multiple machine
environments of a distributed TS_OP strategy with three
workers is shown in Figure 6. The TS_OP Feeder PU has
two collocated services, InputData Loader services and
TestData Feeder services in GSC 4 on Machine 4. The
complete algorithm for all services running in TS_OP
Feeder PU is given in Figure 7. As for all three TS_OP
Processors PU with their collocated partition spaces
running on Machines 1 to 3 respectively, the complete
algorithm for the IECProcessor service is shown in Figure
8.

Illustration for TS_OT strategy with multiple machine
environments is shown in Figure 9. The TS_OT Feeder
PU has one service, TestData Feeder service in GSC 4
on Machine 4. The complete algorithm for the services
running in TS_OT Feeder PU is explained in Figure 10.
As for all three TS_OT Processors PU with their
collocated partition spaces running on Machines 1 to 3
respectively, the complete algorithm for the
IMIECProcessor service is shown in Figure 11.

EVALUATION

Here, three group of experiments have been carried out
to access the performance and behaviour of both
developed strategies. The first group of the experiment is
done to characterize both strategies performance in term
of their test size growth and their test generation time.
The second group of experiments were done to access
the scalability of both strategies in term of speedup
gained while running on a multiple machine environ-
ments. The third group of experiments were carried out to
compare both developed strategies with existing
strategies in term of size of generated test suite.

2352 Int. J. Phys. Sci.

Figure 6. The TS_OP strategy implementation for multiple machine environments.

Algorithm TS_OP Feeder (t, ParmSet).

begin
 1. initialize test suite TS to be an empty set;
 2. denote the parameters in ParmSet, as P1, …, and Pn;
 3. send ParmSet and t to GigaSpaces;

 4. assign unique values, vi to each TS_OP Processors;
 { for the first t parameters }
 5. add into TS a exhaustive test case for first t parameters;

 6. for parameter Pi, i =t+1, …,n do

 begin
 { horizontal extension for parameter Pi }

7. send command generateIE to all TS_OP Processors
 using space based remoting and stored in ieSet;
 8. for each test τ = (v1, v2, …, vi-1) in test suite TS do

 9. send command construct test case and τ to all

 TS_OP processor using space based remoting;
10. wait for all TS_OP Processor send τ’ with maxIE;

11. reducer choose the τ’ with highest maxIE;
12. add selected test case τ’ to TS;
13. delete all covered interaction element in ieSet ;

 { vertical extension for parameter Pi }
14. while (ieSet is not empty) do

 15. send command calculateIECMax to all TS_OP

 Processor to merge possible interaction element
 combination into tsm;
16. reducer choose the tsm with highest maxIE;

17. add selected test case tsm to TS’;
 18. delete all covered interaction element in ieSet ;
 19. remove redundant tsm in TS’

 20. add temporary TS’ to TS

 end
 21. return TS;

 end

Figure 7. An algorithm of TS_OP feeder/master.

Soh et al. 2353

Algorithm TS_OP Processors

begin
 1. initialize as one dedicated partition space;
 2. read t, ParmSet from their dedicated partition space;

 3. read assigned value, vi on their partition space;
 4. for parameter Pi, i =t+1,…,n do
 { horizontal extension for parameter Pi=v }

 5. if receive command generateIE and Pi from TS_OP
 Feeder through space based remoting;

 6. generate t-way ie between Pi and{P1…Pt} using
 assigned parameter value and stored into in ieSet

 TS_OP Processors partition;
 7. let ieSet be the set of all pair combinations of values

 between Pi and each of P1, P2,…,Pi-1;
 8. if receive command construct test case and τ from
 TS_OP Feeder through space based remoting;

 9. if (τ not contains don‟t care)
 10. insert assigned value (v) into τ;
 11. calculate the maxIE;

 12. send τ’ and maxIE to TS_OP Feeder via reducer;
 13. else merge τ with possible interaction element
 combination in ieSet into τo ;

 14. calculate the maxIE;
 15. send τo and maxIE to TS_OP Feeder via reducer;
 { vertical extension for parameter Pi }

 16. if receive command calculate IEC Max from TS_OP
 Feeder through space based remoting;
 17. while (ieSet is not empty) do

 18. merge possible interaction element
 combination in ieSet into tsm ;
 19. calculate the maxIE;
 20. send tsm and maxIE to TS_OP Feeder via reducer;

 end

Figure 8. An algorithm of TS_OP processor/worker.

Figure 9. The TS_OT strategy implementation for multiple machine environments.

2354 Int. J. Phys. Sci.

Algorithm TS_OT Feeder/Master (ParameterSet ParmSet, t)

begin
1. initialize test suite TS to be an empty set;
2. denote the parameters in ParmSet, in an arbitrary order, as P1, P2, …, and Pn;

3. send ParmSet and t to all partition space;
4. generate ie and delegate by id to respective space partition;
5. while (IESet is not empty) do

 begin
6. execute a worker processor at their respective partition space to generate a test case
by merging possible interaction element find to test case, τ with highest interaction coverage;

7. wait for result of τ with maxIEC from a reducer;
8. add τ test case into TS;
9. delete covered interaction element in all partition of their respective IESet;

 end
10. Compact or deleted redundant test case within TS;
11. display TS;

 end

Figure 10. An algorithm of TS_OT Feeder/Master

Algorithm TS_OT Processors

begin

1. initialize as one dedicated partition space;
2. read t, ParmSet from dedicated partition space;
3. if receive command calculateIECMax from TS_OT Feeder through space based remoting;
4. while (πw is not empty) do

5. for (iteration Ij , j=j+1, …,15) do
6. begin
7. merge possible interaction element combination
 in IESet into complete test case, τ;
8. calculate the current maxIEC highest interaction

 coverage;
9. compare current maxIEC with previous maxIEC;
10. if (current maxIEC is higher than or equal to
 previous maxIEC)

11. stored current maxIEC and its test case , τ;
12. else stored previous maxIEC and test case , τ;
13. compare current maxIEC with pmaxIEC;

14. if (selected current maxIEC is higher than or
 equal to previous pmaxIEC
15. send current maxIEC and its test case , τ to

 TS_OT Feeder PU via a reducer
16. else continue test case generation and search
 for best solution

17. end
18. send current highest maxIEC and its test case, τ

 to TS_OT Feeder PU via a reducer;

 end

Figure 10. An Algorithm of TS_OT Feeder/Master.

Algorithm TS_OT Feeder/Master (ParameterSet ParmSet, t)

begin
1. initialize test suite TS to be an empty set;
2. denote the parameters in ParmSet, in an arbitrary order, as P1, P2, …, and Pn;

3. send ParmSet and t to all partition space;
4. generate ie and delegate by id to respective space partition;
5. while (IESet is not empty) do

 begin
6. execute a worker processor at their respective partition space to generate a test case
by merging possible interaction element find to test case, τ with highest interaction coverage;

7. wait for result of τ with maxIEC from a reducer;
8. add τ test case into TS;
9. delete covered interaction element in all partition of their respective IESet;

 end
10. Compact or deleted redundant test case within TS;
11. display TS;

 end

Figure 10. An algorithm of TS_OT Feeder/Master

Algorithm TS_OT Processors

begin

1. initialize as one dedicated partition space;
2. read t, ParmSet from dedicated partition space;
3. if receive command calculateIECMax from TS_OT Feeder through space based remoting;
4. while (πw is not empty) do

5. for (iteration Ij , j=j+1, …,15) do
6. begin
7. merge possible interaction element combination
 in IESet into complete test case, τ;
8. calculate the current maxIEC highest interaction

 coverage;
9. compare current maxIEC with previous maxIEC;
10. if (current maxIEC is higher than or equal to
 previous maxIEC)

11. stored current maxIEC and its test case , τ;
12. else stored previous maxIEC and test case , τ;
13. compare current maxIEC with pmaxIEC;

14. if (selected current maxIEC is higher than or
 equal to previous pmaxIEC
15. send current maxIEC and its test case , τ to

 TS_OT Feeder PU via a reducer
16. else continue test case generation and search
 for best solution

17. end
18. send current highest maxIEC and its test case, τ

 to TS_OT Feeder PU via a reducer;

 end

Figure 11. An algorithm of TS_OT processor worker.

Soh et al. 2355

Table 5. Fixed p=10 and t=3 with varying v from 2 to 10.

 Strategy

Parameter value, v

TS_OP TS_OT

Size Time(s) Size Time(s)

2 16 2.44 18 5.31

3 66 12.92 67 63.98

4 156 36.23 167 326.43

5 308 110.48 327 1457.86

6 523 249.78 571 4147.34

7 825 397.02 1049 10619.49

8 1205 792.39 1412 27826.58

9 1703 1504.94 1966 53818.95

10 2307 2626.19 2768 102762.78

ANALYSIS ON TEST SIZE GROWTH AND TEST
GENERATION TIME

The aim on this group of experiment is to evaluate the
characteristic of both strategies in term of test size growth
and the generation time on single machine environment.
Three types of experiments are carried out to determine
the characteristic of the test size growth and the
generation time. Here, all the results are obtained using
Windows XP, with 2.13 GHz Dual CPU, 4 GB RAM, and
JDK 1.6 installed on it. It should be noted that the time is
recorded in second.

INCREASING PARAMETER VALUE

This experiment is carried out to investigate the test size
growth and the generation time as the number of
parameter values increases from 2 to 10 with fixed
parameter of 10 and fixed interaction strength of 3. The
result of the generated test size and test suite generation
time are shown on the Table 5.

From Table 5, the test sizes are plotted against the
number of parameter values as given in Figure 12.

As illustrated in Figure 12, the generated test size using
TS_OP strategy always smaller as compare to generated
test size using TS_OT strategy. The generation time is
plotted versus number of parameter values as shown in
Figure 13. The test generation time was also faster for
TS_OP strategy as compared to TS_OT strategy for all
setting.

Referring to Figures 12 and 13, the curve fitting
analysis is applied on both plotted figures and conclude
that both test size and test generation time are
proportional quadratically with the number of values in
both strategies. Overall for varying the parameter value
from 2 to 10, the TS_OP strategy showed a better result
both in term of test size and test generation time as
compared to TS_OT strategy.

INCREASING PARAMETER

In this experiment, the test size growth and test
generation time is recorded as the number of parameters
increases with fixed parameter value and fixed interaction
strength. The input parameter consist of fixed parameter
value, v=4 and interaction strength of t=3 with 6 to 15
parameters. The result for this experiment is shown in the
Table 2. Using Table 6 data, the test size versus number
of parameters graph is plotted as shown Figure 14. Here,
TS_OP strategy always produces a smaller test size as
compared to the TS_OT strategy.

The graph of the test generation time versus number of
parameters is plotted as shown in Figure 15. Referring to
Figure 14, we conclude that the test size grows
logarithmically with increasing number of parameters in
both strategies. From Figure 15, we note that test
generation time grows quadratically with respect to
logarithmic scale of parameters for TS_OP strategy and
in TS_OT the test generation time increase more steeply
as compared to TS_OP strategy. The test generation
time for TS_OP strategy is always faster than TS_OT
strategy in all tested input parameter with varying
parameter. These results are as expected since the
TS_OP have a lesser computing complexity while
generating test case as compared to TS_OT.

In TS_OT, all parameter need to be consider while
generating test case whereas for TS_OP, initially on
portion of parameter need to be processed until full
number of parameter. Here the difference between the
TS_OP and TS_OT strategy in term of test generation is
larger as parameter is increased. This occurs due to
computing complexity for higher parameter.

INCREASING INTERACTION STRENGTH

In this computational simulation, the test size growth and
test generation time is recorded as the number of
interaction strength increases with fixed parameter and

2356 Int. J. Phys. Sci.

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10

Te
st

 s
iz

e

Parameter Value

Test Size for TS_OT

Test Size for TS_OP

Figure 12. The test size growth for fixed parameter 10 and t=3 with varying parameter
value from 2 to 10.

0

20000

40000

60000

80000

100000

120000

2 3 4 5 6 7 8 9 10

G
en

er
at

io
n

Ti
m

e(
s)

Parameter Value

Test Generation
Time for TS_OT

Test Generation
Time for TS_OP

Figure 13. The generation time for fixed parameter 10 and t=3 with varying parameter
value from 2 to 10.

Table 6. Fixed v=4 and t=3 with varying p from 6 to 15.

 Strategy

Parameter, P

TS_OP TS_OT

Size Time(s) Size Time(s)

6 99 3.97 112 5.59

7 121 7.7 126 18.09

8 137 14.4 142 56.55

9 145 21.83 155 139.62

10 156 36.23 161 358.55

11 167 39.54 179 812.34

12 175 55.53 187 1457.5

13 180 83.17 194 2769.95

14 188 117.14 204 4675.42

15 194 158.8 217 8414.11

Soh et al. 2357

0

50

100

150

200

250

6 7 8 9 10 11 12 13 14 15

Te
st

 S
iz

e

Parameter

Test Size for TS_OT

Test Size for TS_OP

Figure 14. The test size growth for fixed parameter value, v=4 and t=3 with varying
parameter from 6 to 15.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

6 7 8 9 10 11 12 13 14 15

G
e

n
e

ra
ti

o
n

 T
im

e
(s

)

Parameter

Test Generation
Time for TS_OT

Test Generation
Time for TS_OP

Figure 15. The generation time for fixed parameter value, v=4 and t=3 with varying
parameter from 6 to 15.

their parameter value. The input parameter consist of
fixed 10 parameter and fixed parameter value, v=3 with
varying interaction strength from t= 2 to 7. The result is
shown on the Table 7.

Referring to Table 7, the test size is plotted versus
differences in term of test size are quite minimal and
TS_OP is still able to generate smaller test suite size as
interaction strength as given in Figure 16. Here, the

compared to TS_OT. Similarly, the test generation time
versus interaction strength is plotted as shown in Figure
17. From Figures 16 and 17, it is evident that the test size
as well as test generation time grows exponentially as the
interaction strength increases.

In both strategies, computational complexity increased
rapidly as interaction strength is increased. However, due
to less complexity in test suite generation in TS_OP, their

2358 Int. J. Phys. Sci.

Table 7. Fixed p=10 and v=3 with varying t from 2 to 7.

Strategy

Interaction strength, t

TS_OP TS_OT

Size Time(s) Size Time(s)

2 17 1.45 17 8.94

3 66 12.92 69 46.29

4 230 176.72 233 1344.04

5 732 3017.25 747 17329.28

6 2132 29500.67 2239 185253.06

7 5751 162350.93 6274 453833.16

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7

Te
st

 S
iz

e

Interaction Strength, t

Test Size for TS_OT

Test Size for TS_OP

Figure 16. The test size growth for fixed parameter value, v=3 and parameter, p=10
with varying interaction strength from 2 to 7.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2 3 4 5 6 7

G
e

n
e

ra
ti

o
n

 T
im

e
(s

)

Interaction Strength, t

Test Generation
Time for TS_OT

Test Generation
Time for TS_OP

Figure 17. The generation time for fixed parameter value, v=3 and parameter, p=10 with
varying interaction strength from 2 to 7.

Soh et al. 2359

Table 8. Uniform input parameter with fixed p=10, t=3 and v=10 on ten different machines.

Machine

Strategy

TS_OP TS_OT TS_OP TS_OT TS_OP TS_OT

Size Time(s) Size Time(s) Size ratio Size ratio Speedup Speedup

1 2307 2626.19 2708 128110.06 0.996 0.907 1.00 1.00

2 2309 1732.28 2847 79525.88 0.996 0.954 1.52 1.61

3 2314 1537.06 3037 61738.09 0.999 1.017 1.71 2.08

4 2297 1467.53 2902 41857.83 0.992 0.972 1.79 3.06

5 2322 1323.7 2911 34435.28 1.003 0.975 1.98 3.72

6 2310 1244.83 3267 33453.11 0.997 1.094 2.11 3.83

7 2297 1236.25 3306 27921.41 0.992 1.107 2.12 4.59

8 2313 1194.36 3249 24839.53 0.999 1.088 2.20 5.16

9 2304 1231.06 3551 24627.84 0.995 1.190 2.13 5.20

10 2315 1246.62 2984 17445.19 1.000 1.000 2.11 7.34

generation time is faster compared to TS_OT strategy.

SCALABILITY ANALYSIS IN TERM OF SPEEDUP
GAINED ON DIFFERENT MACHINE ENVIRONMENT

In the second group of experimentation for the speedup
gained, the system consist of ten workstation
interconnected through a Cisco switch with each machine
running with a GigaSpaces middleware. The LAN speed
is 100 M. Firstly, the scalability analysis is carried out in
term of speedup gained while running on multiple
machines environment. Speedup is deduced from
execution time of single machine per execution time of
multiple machines. Two experiments were carried out to
determine the speedup gain from different input
parameter:

1. Uniform input parameter of fixed parameter, p=10 with
parameter value, v=10 and interaction strength of t= 3.
2. Mixed input parameter value of TCAS with interaction
strength of t=4.

Both experiments were initially carried out on single
workstation using GigaSpaces Service Grid and then on
multiple workstation for up to 10 machines.

The result for uniform input parameter of fixed
parameter, p=10 with parameter value, v=10 and
interaction strength of t= 3 is shown on the Table 8 and
for mixed input parameter value of TCAS with interaction
strength of t=4 is shown in Table 9.

Both strategies inhibited a non deterministic nature
which may result in different test size for each simulation
run. These results recorded are best representative for
the minimum number of test size of many simulations
run, around 10 to 15 runs for each input parameter
configuration setting. Referring to Tables 8 and 9, the
differences in the test suite size for both, uniform and
mixed input parameter value in TS_OP strategy is
smaller than TS_OT strategy while running on different

number of machine as indicated by the test size ratio.
This happened due to different distributed strategy, in
TS_OP strategy, the distribution of interaction element
data based on the TS_OP Processor partition space‟s
assigned parameter value and the current position of
parameter that have been added to the test case
whereas in TS_OT strategy, the distribution of interaction
element using hash table routing mechanism to each
TS_OT Processor partition space. This lead to a situation
where the TS_OP strategy can produce an initial test
case with maximum interaction coverage in both single or
multiple machine environment whereas the TS_OT
strategy can only produce an initial test case with
maximum interaction coverage in single machine
environment. Therefore, while running on multiple
machine environments, the TS_OT can produce the test
case by merging all possible interaction element in a
dedicated partition space only which would not guarantee
the production of an initial test case with maximum
interaction coverage. As we partition the interaction
element to higher number of physical machine, an initial
test case produce will have less interaction coverage,
therefore required bigger number of test case to cover all
interaction element left in their partition space.

Overall, in term of test size optimality, the distributed
strategy of TS_OP does not mortify the optimality of the
test suite size while running in multiple machine
environments. However, in TS_OT, the distribution
strategy had lead towards less optimal test suite size
when running on higher number of physical machine.

Using data from the Tables 8 and 9, we plot the
speedup versus number of machine as shown in Figures
18 and Figure 19, respectively. In TS_OP strategy, for
uniform input parameter and mixed input parameter, the
increment of speedup value between 2 and 10 machines
is almost similar as compared to the increment of
speedup value between 1 and 2 machines environment.
This happened due to high CPU and cache memory
usage while running in single machine environment. Most

2360 Int. J. Phys. Sci.

Table 9. The mixed input parameter of TCAS value with interaction strength t=4 on ten different machines.

Machine

Strategy

TS_OP TS_OT TS_OP TS_OT TS_OP TS_OT

Size Time(s) Size Time(s) Size ratio Size ratio Speedup Speedup

1 1355 5649.65 1565 112461.55 0.999 1.020 1.00 1.00

2 1349 2321.59 1590 64303.42 0.994 1.036 2.43 1.75

3 1370 2211.69 1597 36525.28 1.010 1.041 2.55 3.08

4 1366 2149.89 1597 26070.83 1.007 1.041 2.63 4.31

5 1371 2044.84 1595 22395.66 1.011 1.039 2.76 5.02

6 1365 1815.15 1624 18515.12 1.006 1.058 3.11 6.07

7 1347 1940.05 1660 14884.06 0.993 1.082 2.91 7.56

8 1349 2110.11 1565 17130.22 0.994 1.020 2.68 6.57

9 1362 1954.77 1655 12972.48 1.004 1.078 2.89 8.67

10 1356 2032.08 1534 13136.09 1.000 1.000 2.78 8.56

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 2 3 4 5 6 7 8 9 10

Sp
e

e
d

u
p

Number of Machine

TS_OP

TS_OT

Figure 18. The speedup for fixed parameter value, v=10 and parameter, p=10 with interaction
strength t=3 on 10 machines.

of the main memory is used to store the interaction
element in shared memory space during test case
generation. As we distributed the computing work to
others machine, the main memory utilization per each
machine become less. Thus permitting faster
computation in all available CPUs and resulted in shorter
time for the test case generation. However, the scalability
of TS_OP is dependent on the number of maximum
parameter value. An increment of number of physical
machine more than maximum parameter value will not be
contributed for more speedup and in some cases slow
down the test suite generation time.

As for TS_OT strategy, their distribution of interaction
element among TS_OT Processors on different physical

machine able to provide more memory space and
computing power thus producing a faster test generation
time while running in a multiple machine environment.
The increase of physical machine almost give a linear
speedup in term of test suite generation time. However,
for some cases, the speedup dropped due to network
latency but increase further on higher number of machine
count.

Overall, it showed that distribution of computing work
for test suite generation across multi machine environ-
ments always give a speedup as compared to single
machine environment in both strategies. This points out
the applicability of Tuple space technology as distributed
shared memory platform in our implementation. Here, the

Soh et al. 2361

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

Number of Machine

TS_OP

TS_OT

Figure 19. The speedup for TCAS value with interaction strength t=4 on ten different machines.

speedup gained in TS_OT strategy increased more
linearly as the number of machine is incremented as
compared to TS_OP strategy. Although the speedup
gained in TS_OP do not increases linearly as compared
to TS_OT strategy, the test generation time of TS_OP
strategy still faster than TS_OT strategy in single or
multiple machine environment settings.

COMPARISON WITH OTHER EXISTING STRATEGIES

In order to benchmark our approach, we also compare
both strategies, TS_OP and TS_OT of the study with
other well-known strategies. These strategies are
MIPOG, IPOG, IPOG-D, IPOG-F, IPOG-F2, ITCH, Jenny
TConfig, TVGII and GTWay. Here, the comparison aims
to study the generated test suite size for both strategies,
TS_OP and TS_OT against other strategies. To facilitate
the comparison, we adopt a common configuration,
TCAS module. The TCAS module is an aircraft collision
avoidance system developed by the Federal Aviation
Administration which has been used as case study in
other related works (Lei et al., 2007; Kuhn and Vadim,
2006; Calvagna and Gargantini, 2009; Younis and Zamli,
2009; Younis et al., 2008; Lei et al., 2008; Younis and
Zamli, 2010; Zamli et al., 2011). The module consist of 12
parameters consisting of two 10-valued parameters, one
four-valued parameters, two three-valued parameters
and seven two-valued parameters.

Both strategies, TS_OP and TS_OT is executed in our
environment consisting of a desktop PC with Windows
XP, 2.13 GHz Core 2 Dual CPU, 4 GB RAM. As for other
strategies such as MIPOG, IPOG, IPOG-D, IPOG-F,
IPOG-F2 ITCH, Jenny, TConfig, TVGII and GTWay, the
generated test size result of all experiment is obtained
from published result (Younis and Zamli, 2010; Zamli et

al., 2011). By adopting the same input parameters and
values, a fair comparison may be made between various
strategy implementations in term of generated test size
because the generated test suite size is not dependent
on the system environments and specifications but rather
on the algorithm of the strategy itself.

Table 10 depict the test size results obtained for the
aforementioned experiments. The darkened cells with
bold fonts indicate the best result for a specific input
parameter configuration. The second best solution for
that specific input parameter is indicated by the less
darkened cell with normal fonts. Cells marked NA (not
available) indicates that the results are unavailable due to
lengthy test generation time.

Referring to Table 10, in comparison of our t-way “one-
parameter-at-time” strategy, TS_OP to other parameter
based such as MIPOG, IPOG, IPOG-D, IPOG-F and
IPOG-F2 in term of generated test suite size, TS_OP
always produce a satisfactory and competitive results
and the strategy itself is only second to MIPOG and
always outperforms others IPOG and its variant.

As a comparison of “one-test-at-time” strategy, TS_OT
with others strategies in same group of test based such
as ITCH, Jenny, TConfig, TVGII and GTWay in term of
generated test suite size, TS_OT results is comparable or
equal to TVGII results. GTWay always produce the most
optimum results in this group of comparison and as for
TS_OT, the test result is quite similar to GTWay for a
small interaction strength of t=2 and 3. As we increased
the interaction strength further to 4, 5 and 6, Jenny
appeared to be second to GTWay and outperform others
strategies such as TS_OT, TVGII and etc.

Overall, from the results in Table 10, the MIPOG
strategy outperforms other strategies by producing the
most optimum results in most of the configurations, while
IPOG-D produce the worst results in all input configuration.

2362 Int. J. Phys. Sci.

Table 10. The comparison of TS_OP and TS_OT with others strategies for TCAS value with varying interaction strength from 2 to 6.

Strategy, t
TS_OP TS_OT MIPOG IPOG IPOG-D IPOG-F IPOG-F2 ITCH Jenny TConfig TVGII GTWay

Size

2 100 101 100 100 130 100 100 120 106 100 101 100

3 408 403 400 400 480 402 427 2388 411 472 434 402

4 1355 1565 1265 1361 2522 1352 1644 1484 1527 1476 1599 1429

5 4166 4755 4196 4219 5306 4290 5018 NA 4680 NA 4773 4286

6 11105 12673 10851 10919 14480 11234 13310 NA 11608 NA 12732 11727

For interaction strength, t=2, all strategies except IPOG-
D, TS_OT, ITCH, Jenny and TVGII produce a minimum
test size of 100. As for TS_OP strategy, an optimum test
suite size is produce for two inputs setting with interaction
strength, t=2 and 5. FAs for other input setting of t=3, 4
and 6, the MIPOG strategy outperform others strategies
in term of most optimum test size. However, the TS_OT
strategy results are not as competitive and satisfactory as
compared to TS_OP in comparison with other existing
strategies.

Conclusion

In this paper, we developed, evaluated and compared
two distributed strategy called TS_OP based on “one-
parameter-at-a-time” and TS_OT based on “one-test-at-
a-time” for t-way test suite generation on single and
multiple machine environments using Tuple space
technology.

The complexity analysis of test suite growth also
indicated that the test size growth in the TS_OP and
TS_OT strategy generally follows closely the
combinatorial theory. The test suite size of same input
parameter configuration generated by TS_OP strategy is
smaller and more optimum than the test suite size
generated by TS_OT strategy. Furthermore, the test
generation time of same input parameter configuration
using TS_OP strategy is faster than the test generation
time using TS_OT strategy.

The scalability analysis also showed that distribution of
computing work for test suite generation across multi
machine environments always give a speedup as
compare to single machine environment in both
strategies. This points out the applicability of Tuple Space
Technology as distributed shared memory platform in our
implementation. Here, the speedup gained in TS_OT
strategy increased more linearly as the number of
machine is incremented as compared to TS_OP strategy
but the test generation time of TS_OP strategy is still
faster than TS_OT strategy in single or multiple machine
environment settings.

 Comparison between our both strategies, TS_ OP and
TS_OT with existing strategies indicated that the test
suite size produced by our TS_OP strategy is satisfactory

and competitive in term of generating minimum test suite
size. In the case where TS_OP is not the best, the test
size is still within an acceptable value. As for the TS_OT
strategy, the generated test size results are not as
competitive and satisfactory as compared to TS_OP in
comparison with other existing strategies. However, in
comparison to its “one-test-at-a-time” group, TS_OT is
quite competitive to best strategy within their group for a
lower t of 2 and 3.

For future works, we would like to implement the
TS_OP and TS_OT strategy on cluster machines with
high RAM memory to minimise the network latency whilst
generating the test suite.

ACKNOWLEDGMENT

This research is partially funded by the generous grants –
“Investigating T-Way Test Data Reduction Strategy Using
Particle Swarm Optimization Technique” from Ministry of
Higher Education (MOHE), Malaysia and USM Research
University Postgraduate Research Grant Scheme on
“Distributed Strategy for Software and Hardware Test
Planning Tool using Tuple Space Technology” from IPS,
USM.

REFERENCES

Aguirre A, Borja R, Garciá C, Bracho-Rios J, Torres-Jimenez J,

Rodriguez-Tello E (2009). A New Backtracking Algorithm for
Constructing Binary Covering Arrays of Variable Strength. Advances
in Artificial Intelligence, Springer Berlin Heidelberg, 5845: 397-407.

Bryce RC, Colbourn CJ (2007). The density algorithm for pairwise
interaction testing. Software Testing, Verification Reli., 17: 159-182.

Bryce RC, Colbourn CJ (2009). A density-based greedy algorithm for
higher strength covering arrays. Software Testing, Verification
Reliability, 19: 37-53.

Burroughs K, Jain A, Erickson RL (1994). Improved quality of protocol
testing through techniques of experimental design. ICC '94,
SUPERCOMM/ICC '94, Conference Record, 'Serving Humanity
Through Communications.' IEEE Int. Conf., 742: 745-752.

Calvagna A, Gargantini A (2009). IPO-s: Incremental Generation of
Combinatorial Interaction Test Data Based on Symmetries of
Covering Arrays. In Software Testing, Verification and Validation
Workshops, ICSTW '09. International Conference. pp. 10-18.

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997). The AETG
system: an approach to testing based on combinatorial design.
Software Engineering, IEEE Transactions, 23: 437-444.

Cohen DM, Dalal SR, Parelius J, Patton GC (1996). The combinatorial

design approach to automatic test generation. Software, IEEE, 13:
83-88.

Cohen MB, Colbourn CJ, Ling ACH (2008). Constructing strength three
covering arrays with augmented annealing. Discrete Mathematics,
308: 2709-2722.

Cohen MB, Dwyer MB, Shi J (2007). Interaction testing of highly-
configurable systems in the presence of constraints. In Proceedings
of the international symposium on Software testing and analysis
ACM, London, United Kingdom. pp. 129-139.

Cohen MB, Gibbons PB, Mugridge WB, Colbourn CJ (2003).
Constructing test suites for interaction testing. In Software Eng. Proc.
25th Int. Conf., pp. 38-48.

Czerwonka J (2006). Pairwise testing in real world practical extensions
to test case generators. In Proceedings of 24th Annual Pacific
Northwest Software Quality Conference, pp. 419-430.

Forbes M, Lawrence J, Kuhn R, Yu L, Kacker R (2008). Refining the In-
Parameter-Order Strategy for Constructing Covering Arrays. J. Res.
National Instit. Standards Technol., 113: 287-297.

GigaSpaces (2010). Website for GigaSpaces.
http://www.gigaspaces.com.

Grindal M, Offutt J, Andler SF (2005). Combination testing strategies: a
survey. Software Testing, Verification Reliability, 15: 167-199.

Hartman A, Raskin L (2004). Problems and algorithms for covering
arrays. Discrete Mathematics, 284: 149-156.

ITCH (2010). IBM ITCH. 2010.
Jenny (2010). Jenny Web Page. 2010.
Kimoto S, Tsuchiya T, Kikuno T (2008). Pairwise Testing in the

Presence of Configuration Change Cost. In Secure System
Integration and Reliability Improvement, SSIRI '08. Second Int. Conf.,
pp. 32-38.

Klaib MF, Zamli J, K Z, Isa NAM, Younis MI, Abdullah R (2008). G2Way
A Backtracking Strategy for Pairwise Test Data Generation. In
Software Engineering Conference, APSEC '08. 15th Asia-Pacific, pp.
463-470.

Kuhn DR, Vadim O (2006). Pseudo-Exhaustive Testing for Software. In
Software Engineering Workshop, SEW '06. 30th Annual IEEE/NASA,
pp. 153-158.

Kuhn DR, Wallace DR, Gallo AM, Jr (2004). Software fault interactions
and implications for software testing. Software Engineering, IEEE
Transactions. 30: 418-421.

Kuhn R, Kacker R, Yu L, Hunter J (2009). Combinatorial Software
Testing. Computer, 42: 94-96.

Kuhn R, Yu L, Kacker R (2008). Practical Combinatorial Testing:
Beyond Pairwise. IT Professional, 10: 19-23.

Kuo-Chung T, Yu L (2002). A test generation strategy for pairwise
testing. Software Engineering, IEEE Transactions. 28: 109-111.

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007). IPOG: A
General Strategy for T-Way Software Testing. In Engineering of
Computer-Based Systems, ECBS '07. 14th Annual IEEE Int. Conf.
Workshops. pp. 549-556.

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2008). IPOG/IPOG-D:
efficient test generation for multi-way combinatorial testing. Software
Testing, Verification Reliability, 18: 125-148.

Lei Y, Tai KC (1998). In-Parameter-Order: A Test Generation Strategy
for Pairwise Testing. In The 3rd IEEE International Symposium on
High-Assurance Systems Eng. IEEE Computer Society.

Mandl R (1985). Orthogonal Latin squares: an application of experiment
design to compiler testing. Commun. ACM, 28: 1054-1058.

Soh et al. 2363

McCaffrey JD (2009). Generation of Pairwise Test Sets Using a Genetic

Algorithm. In Computer Software and Applications Conference,
COMPSAC '09. 33rd Annual IEEE Int., 1: 626-631.

Meagher K, Stevens B (2005). Covering arrays on graphs. J. Comb.
Theory Ser., B95: 134-151.

Nie C, Leung H (2011). A survey of combinatorial testing. ACM Comput.
Surv., 43: 1-29.

Nurmela KJ (2004). Upper bounds for covering arrays by tabu search.
Discrete Appl. Math., 138: 143-152.

Sampath S, Bryce RC, Viswanath G, Kandimalla V, Koru AG (2008).
Prioritizing User-Session-Based Test Cases for Web Applications
Testing. In Proc. Int. Conf. on Software Testing, Verification, and
Validation. IEEE Computer Society.

Schroeder PJ, Bolaki P, Gopu V (2004). Comparing the Fault Detection
Effectiveness of N-way and Random Test Suites. In Proceedings of
the International Symposium on Empirical Software Engineering
IEEE Computer Society. pp. 49-59.

Shiba T, Tsuchiya T, Kikuno T (2004). Using artificial life techniques to
generate test cases for combinatorial testing. In Computer Software
and Applications Conference, COMPSAC Proc. 28th Annual Int., 71:
72-77.

TVGII (2010). TVG Download Web Page.
Wenhua W, Yu L, Sampath S, Kacker R, Kuhn R, Lawrence J (2009).

A combinatorial approach to building navigation graphs for dynamic
web applications. In Software Maintenance, ICSM IEEE Int. Conf.,
pp. 211-220.

Williams AW (2000). Determination of Test Configurations for Pair-Wise
Interaction Coverage. In Proceedings of the IFIP TC6/WG6.1 13th
International Conference on Testing Communicating Systems: Tools
Techniques Kluwer, B.V. pp.59-74.

Williams AW, Probert RL (2001). A Measure for Component Interaction
Test Coverage. In Proceedings of the ACS/IEEE International
Conference on Computer Systems Applications. IEEE Comput Soc.,
pp. 304-311.

Younis MI, Zamli KZ (2009). ITTW: T-way minimization strategy based
on intersection of tuples. In Industrial Electronics & Applications,
ISIEA IEEE Symposium, 1: 221-226.

Younis MI, Zamli KZ (2010). MC-MIPOG: A Parallel t-Way Test
Generation Strategy for Multicore Systems. ETRI Journal, 32: 73-83.

Younis MI, Zamli K Z, Isa N (2008). A strategy for Grid based t-way test
data generation. In Distributed Framework and Applications. DFmA
First Int. Conf., pp. 73-78.

Yu-Wen T, Aldiwan WS (2000). Automating test case generation for the
new generation mission software system. In Aerospace Conf. Proc.,
IEEE, 1: 431-437.

Zamli KZ, Klaib MFJ, Younis MI, Isa NAM, Abdullah R (2011). Design
and implementation of a t-way test data generation strategy with
automated execution tool support. Information Sciences, 181: 1741-
1758.

Zamli KZ, Younis MI (2010). Interaction Testing: From Pairwise to
Variable Strength Interaction. In Mathematical/Analytical Modelling
and Computer Simulation (AMS), Fourth Asia Int. Conf., pp. 6-11.

http://www.gigaspaces.com/

