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This paper highlights a comparative study of two new distributed t-way test suite generation strategies, 
called test suite generator one parameter (TS_OP) and test suite generator one test (TS_OT). Both 
strategies adopt computational greedy algorithm and were implemented on distributed shared memory 
environment using Tuple space technology. To characterize the behavior of both strategies in term of 
test size growth and test generation time, both TS_OP and TS_OT were subjected to a few 
experimentations with varied parameter, parameter value and interaction strength. Furthermore, to 
determine their scalability performance in term of speedup gained and test size ratio, both strategies 
were subjected to scalability analysis on single machine and multiple machine environments. An 
encouraging result on speedup is obtained for both strategies thus indicating the effectiveness of using 
Tuple space technology in distributing the t-way test suite generation computing work. A comparison 
against existing strategies in terms of the generated test suite size also indicates that both strategies 
give sufficiently competitive results. Furthermore, in comparison between both strategies on test suite 
size, TS_OP gives more satisfactory and competitive results as compared to TS_OT strategy. 
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INTRODUCTION 
 
Nowadays, software is developed in a modular way; 
complete working software system is achieved by 
integrating these small modules together. In order to 
construct a quality software system, a thorough 
integration testing with lots of test cases needs to be 
tested during integrating these small modules. As for 
highly customizable and configurable software system, 
such as web application (Wenhua et al., 2009; Sampath 
et al., 2008; Cohen et al., 2007), the number of input 
parameter that needs to be tested can be enormous. In 
both cases, large numbers of test cases are needed to 
test all possible software interaction in the whole system.  
 
 
 
*Corresponding author. E-mail: zainal872@ppinang.uitm.edu.my. 

Indeed, a lot of testing work is required to ensure all 
possible software interactions between input parameters 
are tested to avoid faulty condition. Lacks of testing can 
result in an unintended or faulty interactions remain 
undetected and can cause the whole software system 
failure in future. On the other hand, exhaustive testing is 
next to impossible due to limited time and resources 
constraint (Zamli and Younis, 2010).  

In order to overcome the aforementioned issues in 
minimizing the testing works while maintaining an 
adequate testing coverage, a systematic approach known 
as t-way testing can be used (Schroeder et al., 2004). 
The t-way testing (t indicate the interaction strength) is a 
systematic sampling technique to ensure fault detection 
of faulty interaction inside a given software system by 
executing its t-way test suite. The t-way test suite is a set
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Figure 1. Mobile share trading system. 

 
 
 
of test cases that cover all possible interaction element 
combination among t input parameters by at least one of 
test cases in the test suite. The pairwise or 2-way 
interaction testing is one form of t-way interaction testing 
that is used to test all possible interaction among two 
different input parameters (Czerwonka, 2006; Bryce and 
Colbourn, 2007; Kimoto et al., 2008; Klaib et al., 2008; 
Calvagna and Gargantini, 2009). 

In recent time, the software size is growing fast from 
megabyte to terabyte due to high demand from mass 
public for new software application, add-on features and 
advance software tools. Nowadays, most of the 
significant software system is commonly made of millions 
of line code. For real, large and complex software 
system, the complexity and rapid software growth result 
in many possibility of new intertwines dependency among 
large software input parameter or component involved 
thus justifying the need to support for high interaction 
strength. Furthermore, there are a few works (Kuhn et al., 
2004, 2009, 2008) indicate the needs for higher 
interaction strength to ensure full faults detection in 
system under test (SUT).  

However, producing optimum t-way test suite for high 
interaction strength is a NP hard problem (Williams and 
Probert, 2001; Shiba et al., 2004; Kuo-Chung and Yu, 
2002) and requires significant computational power and 
memory resources. Furthermore, as the interaction 
strength increases coupled with large input parameter, 
the possible interaction element combinations are likely 
to be huge and could lead toward a combinatorial 
explosion problem. This critical problem can possibly halt 
the test suite generation due to out of memory problem.  

Nowadays, mostly available works on t-way testing 
exploits sequential algorithm, running on single or 
standalone machine and cannot be extend to work on 
multiple machine. Although useful, sequential algorithm 
can be counterproductive particularly when dealing with 
large input parameters and high interaction strength. 

Furthermore, a standalone machine appears to be 
lacking of processing power and memory space. Due to 
this limitation, the standalone computers were insufficient 
in dealing with large input parameters and high 
interaction strength.  

In order to address these issues, we opted to develop a 
distributed t-way test suite generation strategy capable of 
distributing the computing work among participating 
workstations on different physical location. Here, tuple 
space technology is utilized to provide the parallel and 
distributed processing mechanism. The tuple space 
technology provided a generative communication 
mechanism between application services by mean of 
associative matching of tuple in a shared memory space 
called tuple space. The associative matching process is 
fast, simple and support concurrent applications.  

On distributed memory system (that is, network of 
workstation), the tuple space data is usually distributed 
among the participating workstation using hashing 
system or partitioning system. The tuple space data can 
also be fully replicate to all workstation. In both scenarios, 
parallel or distributed processing can be achieved by 
assigning more applications or services to compute the 
data at each different workstation. 

In this paper, we develop, implement, evaluate and 
compare two distributed t-way test suite generation 
strategies based on “one-test-at-a-time” strategy and 
“one-parameter-at-a-time” strategy for t-way testing. Both 
strategies described in this paper are based on map and 
reduce framework using tuple space technology.  
 
 
FORMULATION OF T-WAY PROBLEM MODEL  
 
A simple customizable software system is used here as a 
model to illustrate the idea of t-way software interaction. 
Figure 1 represents the topology of an online mobile 
share trading system. 
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Table 1. Share trading system components and configurations. 
 

Input parameter 
Components or  parameter 

Internet connection Mobile device Internet service provider Bank 

Configurations or parameter value 
3G iPhone Celcom CIMB 

Wifi Galaxy S2 TM RHB 
 
 
 

Table 2. Test suite for t=4 for above share trading system. 
 

Test no. Internet connection Mobile device  Internet service provider Securities 

1 3G iPhone Celcom CIMB 

2 3G iPhone Celcom RHB 

3 3G iPhone TM CIMB 

4 3G iPhone TM RHB 

5 3G Galaxy S2 Celcom CIMB 

6 3G Galaxy S2 Celcom RHB 

7 3G Galaxy S2 TM CIMB 

8 3G Galaxy S2 TM RHB 

9 Wifi iPhone Celcom CIMB 

10 Wifi iPhone Celcom RHB 

11 Wifi iPhone TM CIMB 

12 Wifi iPhone TM RHB 

13 Wifi Galaxy S2 Celcom CIMB 

14 Wifi Galaxy S2 Celcom RHB 

15 Wifi Galaxy S2 TM CIMB 

16 Wifi Galaxy S2 TM RHB 
 
 
 

The system enable share trader to buy or sell stock 
online via stock broking bank using a mobile device such 
as smart phones, tablets etc at anytime and anyplace. 
The system may use different components or 
parameters. In this paper, the term “parameter” (or P) is 
used to describe the components of the system. In this 
example, the system consists of four parameters. The 
mobile share trader user can use smart phones such as 
iPhone and Galaxy S2 as their mobile devices. For any 
selected mobile device, the share trading platform at 
CIMB or RHB securities is assessable through internet 
connection via 3G or Wifi provided by internet service 
provider such as Celcom and TM. There are different 
configurations in any cases. The term “value” (or v) is 
used to describe the configuration of each component. 
Thus, the system in Figure 1 can be summarized as a 
four-parameter system with two values as in Table 1, to 
illustrate how t-way testing works, and hence 
demonstrate the test case reduction, for the 
aforementioned example. Here, the range of acceptable t 
is between two to maximum parameter number which is 
four. Tables 2 to 4 shows the examples of the generated 
test cases for t-way testing with varying t value of four, 
three and two respectively. t=4, here can also be refer as 
exhaustive testing, it involves explicit enumeration of all 
possible combinations of their input parameter and for 

this case the number of test case is 16 test cases (that 
is,, 2 × 2 × 2 × 2). Using t-way testing approach, for t=3, 
their test case number is reduce to only 8 test cases and 
adhere to 3-way interaction coverage. As for t=2, as 
normally called pairwise testing, their test case is further 
reduce to only 6 test cases. As a result, it is added 
advantages to utilized t-way testing to reduce the test 
case number while maintaining adequate interaction 
coverage. 
 
 
RELATED WORKS  
 
As Lei et al. (2007) briefed in his paper, there have been 
two strategies for generation of test suites either 
computational or algebraic approach. Both computational 
and algebraic approaches have their own advantages 
and disadvantages such as computational approaches 
can be applied to any input system configurations, but the 
computation can be intensive. Algebraic approaches on 
the other hand usually involved lightweight computations 
and in some cases, algebraic approaches can produce 
optimal test sets. However, algebraic approaches often 
impose restrictions on input system configurations to 
which they can be applied. 

In algebraic approaches, test suite is constructed using
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Table 3. Test suite for t=3 for above share trading system. 
 

Test no. Internet connection Mobile device  Internet service provider Securities 

1 3G iPhone Celcom CIMB 

2 3G iPhone TM RHB 

3 3G Galaxy S2 Celcom RHB 

4 3G Galaxy S2 TM CIMB 

5 Wifi iPhone Celcom RHB 

6 Wifi iPhone TM CIMB 

7 Wifi Galaxy S2 Celcom CIMB 

8 Wifi Galaxy S2 TM RHB 

 
 
 

Table 4. Test suite for t=2 for above Share Trading System. 

 

Test no. Internet connection Mobile device  Internet service provider Securities 

1 3G iPhone Celcom CIMB 

2 3G Galaxy S2 TM RHB 

3 Wifi iPhone TM CIMB 

4 Wifi Galaxy S2 Celcom RHB 

5 Wifi Galaxy S2 Celcom CIMB 

6 3G iPhone TM RHB 

 
 
 

pre-defined rules using mathematical function such as 
Latin square (Mandl, 1985), orthogonal array (Burroughs 
et al., 1994) and graph theory (Meagher and Stevens, 
2005) to produce a t-way test suite. Other algebraic 
approaches are based on the idea of recursive 
construction based on orthogonal arrays, which allows 
larger test sets to be constructed from smaller ones such 
as TConfig (Williams, 2000; Aguirre et al., 2009). 

Unlike algebraic approaches, computational 
approaches often rely on generating all possible 
interaction elements and search the entire interaction 
element combinations to generate the test suite until all 
interaction elements are covered. There are a few search 
techniques that can be utilized such as greedy algorithm 
or artificial intelligence technique. Artificial intelligent 
technique usually start from a pre-existing test suite and 
then apply a series of transformations using a fitness 
function to determine the test suite until a complete test 
suites is reached that covers all the combinations. 
Strategies that adopted artificial tracking techniques such 
as GAPTS (McCaffrey, 2009), Tabu Search (Nurmela, 
2004), Ant Colony Algorithm (ACA) (Shiba et al., 2004), 
Genetic Algorithm (GA) (Shiba et al., 2004), Simulated 
Annealing (SA) (Cohen et al., 2003), and augmented 
annealing (Cohen et al., 2008) are proposed in the 
literatures. Briefly, these strategies start from some 
known test set. Then, a series of transformations were 
applied (starting from the known test set) until an 
optimum set is reached to cover all the interaction 

elements. Unlike AETG and IPOG, which build a test set 
from scratch, artificial intelligence search strategies can 
predict the known test set in advance. As such, these 
search techniques can produce smaller test sets than 
AETG and IPOG, but they typically take longer time to 
complete. In addition, they can only support small 
parameters and values, with low interaction strength. SA, 
Tabu Search, ACA and GA reported result with 
interaction strength up to 3-way coverage only. 

For greedy algorithm, there are two categories of 
greedy algorithm for test suite generation known as “one-
test-at-a-time” strategy which build test suite one test 
case at a time until all interaction elements are covered 
and “one-parameter-at-a-time” strategy which extend the 
test case by one parameter at a time until all parameter 
and interaction elements are covered. Typical “one-test-
at-a-time” is exemplified by Automatic Efficient Test 
Generator (AETG) which iteratively builds a complete test 
case   using   greedy   search technique until all the 
interaction element combinations are covered (Cohen et 
al., 1997, 1996), TCG (Yu-Wen and Aldiwan, 2000), DDA 
(Bryce and Colbourn, 2007).  Because AETG uses 
random search, the generated test case is highly non 
deterministic.  

Contradictorily, both TCG and DDA produce a deter-
ministic test suite results due to fixed rule in generating a 
test case that cover as many as possible uncovered 
interaction elements in their greedy search of maximum 
interaction coverage. Bryce and Colbourn (2009) develop  



 
 
 
 
an enhance DDA with support for higher interaction 
strength for t-way testing( . Due to random insertion of 
first value into the test case, higher strength DDA was 
unable to produce a deterministic test suite results as its 
predecessor DDA. Zamli et al. (2011) developed the 
GTWay by merging the interaction element based on 
their interaction element group to construct the test case 
with aims of higher interaction coverage. Furthermore, 
GTWay also provide an execution support for automatic 
execution of the generated test suite. 

Czerwonka developed a freeware tool named PICT 
whose core algorithm is based on greedy algorithm and 
similar to AETG with key differences that PICT is a 
deterministic and does not produce any candidate test. 
PICT had rich features such as support variable strength 
generation, support constraint and seeding (Czerwonka, 
2006). Hartman and Raskin (2004) developed the 
combinatorial test services (CTS) package that construct 
a t-way test suite using direct and recursive construction 
algorithm. In solving the t-way test suite construction, the 
CTS package tries several alternatives and chooses the 
smallest array that is constructed. All t-way test suite with 
similar input configuration always produce similar size for 
each new construction due to all the algorithms employed 
are deterministic. An extension of CTS known as the 
IBM‟s intelligent test case handler (ITCH) is available in 
Eclipse Plug-in tool (ITCH, 2010). ITCH uses a 
sophisticated combinatorial algorithm based on combinat-
ion of mathematical and greedy search to construct the 
test suites for t-way testing. Other tool within these 
category with limited literature work but can be 
downloaded at their respective web site are Test Vector 
Generator (TVGII) (TVGII, 2010) and Jenny (2010). Both 
Jenny and GTWay is developed using C language. 

Other group of greedy algorithm is categorizes as “one-
parameter-at-a-time” strategy. These are exemplified by 
IPOG (Lei et al., 2007). The IPOG strategy is generalized 
from IPO (Lei and Tai, 1998). In this strategy, a t-way test 
suite for the first t parameters is generated, and then in 
horizontal extension phase, each test case is added with 
a new parameter value at t+1 parameter that covers 
maximum uncovered interaction elements. The newly 
extended test case is selected and stored into new t-way 
test suite. If after all test cases are extended and there 
are still uncovered interaction elements, then the vertical 
extension phase is required. In vertical extension, a new 
test case is added into the test suite to cover for the 
uncovered interaction element combination. After the 
entire interaction elements are covered, the vertical 
extension is completed. If next parameter t+2, exists, 
then the horizontal phase and vertical phase is resume 
for that parameter. The test suite generation goes on until 
all parameter are covered. 

A number of variants have also been developed to 
improve the IPOG‟s performance. These variants 
includes, IPOG-D (Lei et al., 2008), IPOG-F (Forbes et 
al., 2008), IPOG-F2  (Forbes, 2008),  MIPOG,  G_MIPOG  
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(Younis et al., 2008) and MC-MIPOG (Younis and Zamli, 
2010). IPOG-D is a deterministic strategy that combines 
the IPOG strategy with a recursive D-construction to 
minimize the number of interaction element that need to 
be enumerated during the generation of the test suites. 
The D-construction approach is a recursive procedure 
that can be used to double the number of parameters in a 
3-way test suite. Although IPOG-D can generate the test 
suite faster than IPOG, their test size is usually bigger 
than IPOG. 

Both IPOG-F and IPOG-F2 are non-deterministic 
strategies. Both strategies implemented a randomization 
to break ties in the greedy selection during the horizontal 
growth. In general, the size of test suite generated by 
both strategies is competitive as compared to IPOG. As 
for their execution time, they seem to be faster than 
IPOG. Although both strategies can support uniform and 
mixed input parameter setting, the performance gain 
seem do not extend to the mixed input parameter value 
and IPOG seems to do better with these situation. Unlike 
IPOG-F, IPOG-F2 is implemented with a heuristic search 
for horizontal growth algorithm thus permitting faster test 
generation time as compare to IPOG-F.  

MIPOG strategy is a deterministic strategy that implied 
that each run will produce the same test suite size. Unlike 
IPOG, in horizontal extension, the MIPOG strategy 
optimizes the extended test case by selecting a value 
that covers the maximum number of uncovered 
interaction element combinations. Also, MIPOG strategy 
optimization does not cover the value by searching for 
uncovered interaction element that can be covered by the 
same test case. This is performed by means of 
exhaustive searching of uncovered interaction element 
that can be combined with this test case during horizontal 
extension. In vertical extension, MIPOG created a new 
test case by exhaustively search for a combination of 
interaction elements that covered the most uncovered t-
way combinations. This step, while improving the test 
suite size, also increases the overall execution time of 
MIPOG.  

Both G_MIPOG and MC-MIPOG are built based on 
MIPOG strategy and can parallelize the test suite 
generation work. G_MIPOG is implemented on a grid 
network while MC-MIPOG is run on an Intel multicore 
system. Both strategies support higher order of t for test 
suite generation and can produce a smaller test suite as 
compare to others variant of IPOG. Other related work 
and the current state of combinatorial testing are given in 
Nie and Leung (2011) and Grindal et al. (2005).  
 
 
THE OVERALL STRATEGY OF BOTH TS_OP AND 
TS_OT 
 
Here, we describe about two distributed strategies for 
generating t-way test suite in t-way testing called Test 
Suite   Generator   One   Parameter   (TS_OP)   for  “one- 
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parameter-at-a-time” strategy and called as Test Suite 
Generator One Test (TS_OT) for “one-test-at-a-time” 
strategy. In both strategies, the distributed processing is 
implemented using Map and Reduce mechanism running 
on network of workstations using Tuple Space technology 
middleware known as GigaSpaces XAP 8.0. 
(GigaSpaces, 2010). Both overall strategies, TS_OP and 
TS_OT will be elaborated further in the subsequently. 
 
 
ONE PARAMETER AT A TIME, TS_OP STRATEGY 
 
The examples and flowchart of the overall design 
approach of TS_OP strategy is illustrated in Figure 2. In 
this strategy, a master process is called TS_OP Feeder 
and the worker process is called TS_OP Processor. 

Initially in our overall design approach of TS_OP 
strategy, the TS_OP Feeder preloads the assigned 
parameter value, vi, the interaction strength, t and the 
input parameter data, ParmSet into all TS_OP Processor 
dedicated partition space. For the illustration examples in 
Figure 2 that use a small input parameter with 4 
parameters (that is, P0 P1 P2 P3) and 2 parameter values 
(that is, v0 v1). The interaction strength, t used is 3.  

In horizontal extension, The TS_OP Feeder generates 
t-way test suite for the first t-parameters and store them 
in TS. In illustration, the test suite is generated from the 
first three parameters (that is, P0 P1 P2) and produces 
eight test cases as shown in initial TS at master space. 
Each test case in TS is individually sends to all TS_OP 
Processor one by one.  

The TS_OP Feeder remotely executes all worker 
processes by sending a command generateIE with 
current parameter, Pi to all TS_OP Processors 
concurrently. Each TS_OP Processor generates all t-way 
interaction element (ie) combinations between Pi and 
using the assigned parameter value, vi and stores them in 
their respective partition space as interaction element set, 
ieSet. As shown in initial population phase, the ieSet in 
each worker space is created with list of 3-way interaction 
element combination. The current parameter, Pi is the P3 
parameter with two parameter value. All interaction 
element combination must contain parameter P3 value 
and two other parameters value as shown in both ieSet. 

After initial population phase, the generation of test 
case phase follows. Here, the TS_OP Feeder sends a 
command constructTestCase that consists one of 
generated test case, τ and the current parameter, Pi to all 
TS_OP Processor concomitantly to extend test case. For 
test case without don‟t care value, each partition space 
constructs the new test case by adding the assigned 
parameter value to test case, τ. Next, the maximum 
interaction coverage value is calculated for newly 
extended test case.  

The calculation of interaction coverage is done by 
matching the interaction element covered by generated 
test case  against  interaction  element  in  ieSet  at  their  

 
 
 
 
partition space. In order to obtain all the interaction 
element covered by that test case, the test case is 
factorize into individual interaction element data based on 
their interaction element group. All individual interaction 
element are match against the interaction element in their 
respective partition space, the maximum interaction 
coverage, maxIEC is determined by the number of 
matched interaction element between interaction element 
of factorise test case with interaction element in their 
partition space. In the illustration in Figure 2, the maxIEC 
for T10 [0 0 0 0] is 3 and the maxIEC for generated test 
case at v1 worker space for T11 [0 0 0 1] is also 3.  

As for test case with don‟t care value, the test case, τ 
will be optimizes into τo by merging it with possible 
interaction element in ieSet at their respective partitions. 
Then the maximum interaction coverage is calculated as 
aforementioned.  

All space remoting results contain the maximum 
interaction coverage, maxIEC and the selected test case, 
τ’ from their respective partition are return to calling 
TS_OP Feeder via a Reducer. The Reducer selects one 
test case with highest interaction coverage value among 
results returned by all available TS_OP Processors.  

As for our illustration in Figure 2, the maxIEC for both 
test cases are three. Therefore, any test case will be 
randomly selected into final TS. Here test case T10 is 
selected into final TS.  

The TS_OP Feeder stores the selected test case, τ’ or 
τo into the final test suite, TS and deleted all interaction 
element combinations covered by that test case in all 
partition space. Then the TS_OP Feeder iteratively sends 
all test cases in TS to all TS_OP Processors and 
completes the horizontal extension phase. 

After all test cases in TS already delegated to all 
TS_OP Processors, the horizontal extension phase is 
completed, if there are still uncovered interaction element 
combinations in the ieSet, then the vertical extension 
phase will commence.  

As shown in the illustration in Figure 2, the first test 
case T1 [0 0 0] is sent to both workers space. For test 
case T1, there is no don‟t care value in the test case 
which result in only insertion of assigned parameter value 
at P3 for both worker space. The generated test case at v0 
worker space is T10 [0 0 0 0] and the generated test case 
at v1 worker space is T11 [0 0 0 1]. 

From here, both worker spaces continue to calculate 
the maximum interaction coverage covered by their 
generated test case. Both test cases have same 
maximum interaction coverage of three. Here, reducer 
randomly selected one test case and stored in TS. The 
selected test case is T10 [0 0 0 0]. As a result of this test 
case selection, the three covered interaction element, 
(that is, [0 0 X 0] [0 X 0 0] [X 0 0 0]) in ieSet of v0 worker 
space are deleted.  

The TS_OP Feeder checks the availability of 
interaction element in ieSet at all partition space. If not 
available, the test  case  generation  is  stopped, however
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Received and delegate 
input parameter 

interaction strength, t 
and assigned parameter 

value

Initial Population of 
generated t-way ie and 

test suite, TS

Generation of test case 
and calculation of 

maximum interaction 
coverage, maxIEC

Selection of test case 
with highest maxIEC

and deletion of covered 
ie

Master Space  

t=3
ParmSet

P0 P1 P2P3

0  0  0  0
1  1  1  1

v0 WS  

ieSet
P0 P1 P2 P3

0  0  X  0
0  1  X  0

1  0  X  0
1  1  X  0
0  X  0  0
0  X  1  0
1  X  0  0

1  X  1  0
X  0  0  0
X  0  1  0
X  1  0  0
X  1  1  0

v1 WS  

ieSet
P0 P1 P2 P3

0  0  X  1
0  1  X  1

1  0  X  1
1  1  X  1
0  X  0  1
0  X  1  1
1  X  0  1

1  X  1  1
X  0  0  1
X  0  1  1
X  1  0  1
X  1  1  1

Master Space

Initial TS
P0 P1 P2

TC1 0  0  0
TC2 0  0  1

TC3 0  1  0
TC4 0  1  1
TC5 1  0  0
TC6 1  0  1
TC7 1  1  0

TC8 1  1  1

Send input parameter, 
interaction strength,t and 
assigned parameter value 

to each worker space (WS) 
(here v0 and v1

Master sends individually 
all test case(TC1—TCn) to 

each WS

Worker generated t-way 
ie for current parameter 

at each WS

Master generated initial 
test suite, TS

Worker generated new TC by 
inserting its assigned value 
into received TC at current 

parameter at each  WS

Worker calculated maxIEC 
for generated TC at each WS

TC have 
don’t 
care?

All Worker send generated 
TC and maxIEC to master

Master select TC with 
highest maxIEC. Update TS 
and delete covered ie in all 

ieSet.

All ieSet at 
WS is empty 

?

All TCs 
send to 

WS?

No  

Yes 

No  

No  

Yes  

Yes  
Test Suite 

Generation 
finish and TS is 

final result 

Next 
parameter

exist ?

Yes  

No  

Worker generated 
new TC by merging 
the TC with possible 

ie at each WS

Worker generated new TC by 
merging the possible ie

between each other at each 
WS

Master Space

Final TS
P0 P1 P2 

P3

T1  0  0  0  0

T2  0  0  1  1
.
.
.

Tn ?  ?   ?  ?

v0 WS  

ieSet
P0 P1 P2 P3

0  0  X  0
0  1  X  0
1  0  X  0
1  1  X  0
0  X  0  0
0  X  1  0
1  X  0  0
1  X  1  0
X  0  0  0
X  0  1  0
X  1  0  0
X  1  1  0

P0 P1 P2 P3

T10 0   0   0   0 
Insert 0 at P3 for 

test case T10.

P0 P1 P2 P3

T20 0   0  1   0 
Insert 0 at P3 for 

test case T20.

P0 P1 P2 P3

Tm   0   X   1   0 
Insert 0 at P3 

and merge Tm 
with possible ie

P0 P1 P2 P3

T10 0   0   0   0  
maxIEC = 3

P0 P1 P2 P3

T20 0   0   1   0  
maxIEC = 2

P0 P1 P2 P3

T    0   0   0   0 
Merge possible 
ies into full test 

case .

v1 WS  

ieSet
P0 P1 P2 P3

0  0  X  1
0  1  X  1
1  0  X  1
1  1  X  1
0  X  0  1
0  X  1  1
1  X  0  1
1  X  1  1
X  0  0  1
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Figure 2. An illustration example and flow chart of TS_OP strategy. 
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if there are interaction element in ieSet, the TS_OP 
Feeder further checks for the availability of unsent and 
not extended test case in TS, if available the test case 
generation is continued and if not available the vertical 
extension is started.  

In vertical extension phase, The TS_OP Feeder sends 
a command calculateIECMax with the maxIEC value 
equal to maximum number of interaction element group 
to all TS_OP Processor concurrently to merge possible 
interaction element data stored in their respective 
partition space into one complete test case and to 
calculate the maximum interaction coverage from 
generated test case. All results contain the maximum 
interaction coverage; maxIEC and the selected test case, 
tsm from their respective partition are returned to calling 
TS_OP Feeder via a Reducer. The Reducer selected one 
test case with the highest interaction coverage value 
among results returned by all available TS_OP 
Processor. The TS_OP Feeder stores the test case, tsm 
into temporary test suite, TS’ and deletes all interaction 
element combinations covered by that test case in all 
partition space in order to ensure optimal solution.  

The TS_OP Feeder then continues to remotely execute 
all TS_OP Processor to obtain next tsm until all 
interaction element combinations are covered. In order to 
minimise the search work for the next tsm, the previous 
maximum interaction coverage value, maxIEC is sends to 
all TS_OP Processor. The previous attainable maxIEC 
value is uses as the stopping criteria during generation of 
the tsm. If the current maxIEC is equal or greater than 
previous maxIEC, the greedy search of the interaction 
element combinations is halt and the generated test case 
is returns to TS_OP Feeder along with the current value 
of maxIEC value. Otherwise, the greedy search is 
continued until all interaction elements are tested and the 
latest test case is selected and returns to the TS_OP 
Feeder. 

After all interaction elements are covered and ieSet is 
empty in all partition spaces, the extension of the current 
parameter, Pi is completed then the test case generation 
work will continues to next parameter, Pi+1. The resultant 
temporary test suite, TS’ is also minimises by removing 
redundant tsm. The minimized TS’ is then added into the 
final test suite, TS.  This strategy will continue until the 
last parameter, Pt is accounted for and the complete test 
case is formed. Finally, the TS_OP Feeder displays the 
final test suite, TS and stores the test suite into testsuite 
log file.  

The complete algorithm for TS_OP is given as follows: 
 

Algorithm TS_OP( t, ParmSet) 
begin 
1. initialize test suite TS to be an empty set; 
2. denote the parameters in ParmSet, as P1, …, and Pn; 
3. send ParmSet and t to GigaSpaces; 
4. assign unique values, vi to each TS_OP Processors;  
         { for the first t parameters } 
5. add into TS a exhaustive test case for first t parameters; 

 
 
 
 
6. for parameter Pi, i =t+1, …,n do 
      begin 
            { horizontal extension for parameter Pi } 
7. TS_OP Feeder send command generate IEs to all      

            TS_OP Processors 
8. TS_OP Processor receive command generate IEs and      

            Pi from TS_OP Feeder through space based remoting; 

9.            generate t-way ie between Pi and{P1…Pt} using     

                  assigned parameter value and stored into in ieSet  
               TS_OP Processors partition;   
10.  \\   let ieSet be the set of all pair combinations of values    

             between Pi and each  of P1,  P2,…,Pi-1; 

11.  for each test τ = (v1, v2, …, vi-1) in test suite TS do 
12.            TS_OP Feeder send command construct test   

                       case and τ  to all TS_OP Processor ; 

13.            TS_OP Processor receive command construct  

                       test case and τ from TS_OP Feeder through  
                       space based remoting; 
14.                    if    (τ  not contains don‟t care) 

15.                              insert assigned value (v) into τ; 
16.                              calculate the maxIE;  
17.                              send τ’ and maxIE to TS_OP Feeder  
                                        via reducer; 
18.                    else    merge τ with possible interaction  
                                         element combination in ieSet into τo ; 
19.                              calculate the maxIE;  
20.                              send τo and maxIE to TS_OP Feeder  
                                         via reducer; 
21.                              reducer choose the τ’ with highest  
                                        maxIE; 
22.              add selected test case  τ’ to TS;  
23.              delete all covered interaction element in ieSet ; 
             { vertical extension for parameter Pi } 
24.       while (ieSet is not empty) do  

25.                   TS_OP Feeder send command calculate IEC  
                             Max to all TS_OP Processor; 
26.                   TS_OP Processor receive command 
                             calculate IEC Max from TS_OP Feeder     
                              through space based remoting 
27.                          merge possible interaction element  
                                    combination in ieSet into tsm ; 
28.                          calculate the maxIE;  
29.                          send tsm and maxIE to TS_OP Feeder   
                                    via reducer; 
30.                          reducer choose the tsm with highest   
                                    maxIE; 
31.                          add selected test case  tsm to TS’;  

32.                    delete all covered interaction element in  
                               ieSet ; 
33.                    remove redundant tsm in TS’ 
34.                    add temporary TS’ to TS 
        end 
35. return TS; 
end 

 
 
ONE TEST AT A TIME, TS_OT STRATEGY  
 
Here, the design approach of the test suite generation 
strategy based on “one-test-at-a-time” strategy called 
Test Suite Generation One Test (TS_OT) strategy is been 
explained. The overall strategy  and  example  of  TS_OT  



 
 
 
 
strategy is illustrated in Figure 3. The strategy is also 
implemented using Map and Reduce mechanism on 
network of workstations using Tuple Space technology 
middleware known as GigaSpaces XAP 7.0 
(GigaSpaces, 2010). In this strategy, a master process is 
called TS_OT Feeder and the worker process is called 
TS_OT Processor.  

In overall design approach, the TS_OT Feeder preloads 
the interaction strength, t value and the input parameter 
data, ParmSet in POJO format into all TS_OT Processor 
dedicated partition space. The TS_OT Feeder generates 
all possible interaction element combinations and 
delegate the interaction element into TS_OT Processor 
partition space based on hash table based routing 
mechanism. As shown in our illustration in Figure 3, for 
small input parameter with 4 parameters (that is, P0 P1 P2 
P3) and 2 parameter values (that is, v0 v1) with the 
interaction strength, t equal to 3. Here, the TS_OT 
Feeder generates all 32 interaction element combinat-
ions. For two partition space as in our examples, each 
partition will receive 16 interaction elements from TS_OP 
Feeder with worker 1 space obtained all interaction 
elements with odd number and worker 2 space obtained 
all interaction elements with even number. 

The TS_OT Feeder sends a command 
calculateIECMax to all TS_OT Processor concurrently to 
generate the test case by merging possible interaction 
element data within their respective space partition. Each 
TS_OT Processor merged the interaction element 
according to their interaction element group. The first 
interaction element is taken from list of uncovered 
interaction element fetch from their partition space. The 
first interaction element is then merged with others 
interaction elements according to the interaction element 
group sequence to generate the new test case. If the new 
test case contained no don‟t care „X‟ then the test case 
generation is exited otherwise the test case generation 
will continue and stopped when all the interaction 
element group in the list are all tried and tested for 
merging possibility with currently built test case. In our 
illustration and example in Figure 3, the first interaction 
element poll from ieSet1 in worker 1 space is IE1 [0 0 0 
X] and try to be merged with the next interaction element 
in the list which is [0 1 0 X] but unsuccessful and next 
interaction element [1 0 0 X] and [1 1 0 X] but still 
unsuccessful until interaction element [0 0 X 0] and 
produce one complete test case of [0 0 0 0]. For worker 2 
space, test case produce is [0 1 1 0]. 

Next, the maximum interaction coverage value is 
calculated for newly generated test case in each TS_OT 
Processor space partition. The calculation of interaction 
coverage is done by matching the interaction element 
covered against interaction element in ieSet at their 
partition space. In order to obtain all the interaction 
element covered by that test case, the test case is 
factorize into individual interaction element data based on 
their interaction element group.  All  individual  interaction  
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element are match against the interaction element in their 
respective partition space; the maximum interaction 
coverage, maxIEC is determined by the number of 
matched interaction element of factorize test case with 
interaction element in their partition space. In our 
example, the maximum interaction coverage value for 
worker 1 space is 4 and worker 2 space is 4.  

The current determined maxIEC value is then 
compared with value of the previous maxIEC value. If the 
current maxIEC is equal or greater than previous 
maxIEC, then the current maxIEC value and its test case 
are stored as the best solution so far. Otherwise the 
previous maxIEC value and its test case are stored as 
best solution.  

From here, the selected maxIEC value is then 
compared with the best maximum interaction coverage 
from previous selected test case in final test suite, TS 
labeled as previous attainable maximum interaction 
coverage, pamaxIEC.  

The value of previous attainable maximum interaction 
coverage, pmaxIEC value is used as the stopping criteria 
of current test case generation. If the current maxIEC is 
equal or greater than pmaxIEC, then the current maxIEC 
value and its test case are considered as the best 
solution and test case generation is stopped. Here the 
value of pmaxIEC for our example is 4, so both 
generated test case is sent to reducer. The generated 
test case returns to TS_OT Feeder along with the current 
value of maxIEC value via a reducer. Otherwise, the test 
case generation is continued 15 times and the highest 
value of maxIEC among the 15 solution and its test case 
is selected and returns to the TS_OT Feeder. 

All space remoting results containing the maximum 
interaction coverage; maxIEC and the selected test case, 
τ from their respective partition are return to calling 
TS_OT Feeder via a Reducer. The Reducer selects one 
test case with highest interaction coverage value among 
results returned by all available TS_OT Processor. For 
cases with same maxIEC, the test case is randomly 
selected. For examples as illustration in Figure 3, the test 
case [0 0 0 0] with maxIEC of 4 is randomly selected and 
stored in TS. The TS_OT Feeder stores the selected 
result containing one test case, τ and its maximum 
interaction coverage value, maxIEC into the final test 
suite, TS and deleted all interaction element combinat-
ions covered by that test case in all partition space. The 
TS_OT Feeder then continues to remotely execute all 
workers to obtain τ and its maxIEC at their respective 
partition until all interaction element combinations are 
covered. The generation of test suite will stop when the 
interaction element data, IESet in all space partition is 
empty. Finally, the TS_OT Feeder displayed the final test 
suite, TS and stored in test result log file 

The complete algorithm for TS_OT is given as follows: 
 
Algorithm TS_OT Feeder/Master (ParameterSet 
ParmSet, t) 
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Figure 3. An illustration example and flow chart of TS_OT strategy. 



 
 
 
 
begin 
1. initialize test suite TS to be an empty set; 
2. denote the parameters in ParmSet, in an arbitrary order,  
            as P1, P2, …, and Pn; 
3. send ParmSet and t to all partition space; 
4. generate ie and delegate by id to respective space  
            partition; 
5. while (IESet is not empty) do 
        begin 

6.         send command calculate IEC Max to all TS_OT  
                    Processor; 
7.         receive command calculate IEC Max from TS_OT  
                   Feeder through space based remoting; 
8.         for (iteration  Ij , j=j+1, …,15) do 
9.            begin 

10.              merge possible interaction element combination  
                        in IESet into complete test case, τ;   
11.             calculate the current maxIEC highest interaction  
                       coverage; 
12.             compare current maxIEC with previous maxIEC; 
13.                 if (current maxIEC is higher than or equal to  
                           previous maxIEC) 
14.                       stored current maxIEC and its test case , τ;   
15.             else stored previous maxIEC and its test case , τ;  

16.             compare current maxIEC with pmaxIEC; 
17.                if ( selected current maxIEC is higher than or  

                          equal to previous pmaxIEC 
18.                       send current maxIEC and its test case , τ  

                                 to TS_OT Feeder PU via a reducer 
19.                else continue test case generation   
20.            end 
21.             send current highest maxIEC and its test case, τ to  

                 TS_OT Feeder PU via a reducer; 
22.             add τ test case into TS; 
23.             delete covered interaction element in all partition  
                        of their respective IESet; 
            end 
24. Compact or deleted redundant test case within TS; 
25. display TS; 

End 
 
 
DISTRIBUTED TS_OP AND TS_OT STRATEGY 

 
Based on the aforementioned overall strategies, an 
application model for each TS_OP and TSOT strategy on 
single machine environment is designed. The TS_OP 
comprises of TS_OP Feeder PU and TS_OP Processor 
PU with collocated partition space as shown in Figure 4. 
The TS_OT strategy is consist of TS_OT Feeder PU and 
TS_OT Processor PU as shown in Figure 5. All the 
Processing Unit (PU) are wired together using a Spring 
configuration file, pu.xml. The development and initial 
simulation of the test generation work is done in Eclipse 
IDE before been packaged and deployed into 
Gigaspaces Service Grid. 

The TS_OP Feeder PU is responsible to feed all data 
into shared space using the InputData Loader services 
and controls test suite generation using TestData Feeder 
services. The TS_OP Processor PU is used to generate 
the test case and  calculate  the  interaction  coverage  of  
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generated test case by using IEC Processor services. 

As for TS_OT strategy, the TS_OT Feeder PU is 
designed to feed the data into shared space and to 
controls test suite generation using TestData Feeder 
services whereas the TS_OT Processor PU is designed 
to generate the test case by using IMIECProcessor 
services. All the services are loosely connected to all the 
data in space such as t, vi, ParmSet and ieSet.  

Using the aforementioned application model as our 
basis, distributed TS_OP and TSOT strategies are been 
designed and implemented. The first step in distributing 
both strategies is to identify the number of worker 
process to represent the number of partition space 
needed during test suite generation. In TS_OP strategy, 
the number of worker process or TS_OP Processor PU is 
deduced from the highest number of parameter value 
among given input parameter. The highest number of 
worker process also represents the number of partition 
space needed in test suite generation. In TS_OT 
strategy, the number of worker process can be selected 
from 1 worker to any number of workers as needed. The 
maximum number of worker process or TS_OT 
Processor PU is only limited to the number of available 
and connected physical machine. 

Here, both distributed TS_OP and TS_OT strategy are 
been implemented using a partitioned topology. In 
partitioned topology, the main TS_OP or TS_OT 
Processor PU and its partition space is divided into 
several block of Processing Unit with their dedicated 
partition space. The partitioned topology enables the 
storage of large volume of data by splitting the data 
across several TS_OP Processor PU partition spaces on 
different physical machine. Therefore, the large storage 
space can prevent the combinatorial explosion problem 
during test suite generation. 

The second step is to identify the all distributed and 
common data that reside at each partition space. The 
distributed data in TS_OP strategy is each individual 
parameter value from selected parameter with highest 
number of parameter value. Each partition space is 
assigned with one uniquely assigned input parameter 
value, vi of the highest number of parameter value. This 
unique value vi is used to generate the corresponding 
ieSet for that partition space. Hence, the interaction 
elements exist in each partition different compared to 
others partition space. The distributed data in TS_OT 
strategy is the interaction elements with their identificat-
ion (id) number. The interaction elements are been 
routed among each partition space according to their uni-
que interaction element and identification number using 
hash table routing mechanism. In both strategies, the 
common data in all partition spaces are the interaction 
strength, t and the input parameter, ParmSet. All data is 
constructed as Plain Old Java Object (POJO) data and 
stored in all the partition space. 

The third step in distributing both strategies is to identify 
all tasks running on both TS_OP  or  TS_OT  Feeder  PU
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Figure 4. An application model of one TS_OP Feeder PU and one TS_OP processor PU. 

 
 
 

 
 

Figure 5. An application model of one TS_OT Feeder PU and one TS_OT processor PU. 



 
 
 
 
and TS_OP or TS_OT Processor PU. All task services 
running on the TS_OP or TS_OT Feeder PU are 
considered as a master task whereas all tasks running on 
TS_OP or TS_OT Processor PU are considered as a 
distributed task. The similar master tasks that runs on 
both TS_OP and TS_OT Feeder PU are: 

 
1. Preload of the interaction strength, t, the input 
parameter; ParmSet to all partition space. 
2. Control of test generation and remotely execution of all 
distributed task on TS_OP or TS_OT Processor PU. 
3. Selection and storage of selected test case in final test 
suite, TS. 
4. Deletion of the interaction element covered by selected 
test case in all partition space. 
5. Removal of redundant test case in final test suite. 
6. Display and storage of the final test suite into log file. 

 
The master tasks services that are only running on 
TS_OP Feeder PU are delegation of the unique value, vi 
to all partition space, generation of the t-way test suite for 
the first t parameter and removal of redundant test case 
after vertical extension.  The master tasks services that 
are uniquely running on the TS_OT Feeder PU are 
generation of all possible interaction elements and 
delegation of all generated interaction elements based its 
id into all partition spaces using hash table routing 
mechanism. 

The distributed task services are the task that is 
running on TS_OP or TS_OT Processor respective 
partition space and been initiated and executed by 
TS_OP or TS_OT Feeder PU. The synchronous mode of 
space based remoting service known as Map and 
Reduce mechanism is utilized by TS_OP and TS_OT 
Feeder PU to simultaneously invoke the distributed task 
service on all their Processor PU. A distributed pro-
cessing is achieved while running in this mode.Four tasks 
are running on TS_OP Processor PU as distributed tasks 
such as: 

 
1. Generation of the interaction element data using 
assigned unique value, vi. 
2. Generation of the extended test case by inserting the 
assigned unique value, vi to that test case, calculation of 
the maximum interaction coverage value for the test case 
generated and return selected test case with maximum 
interaction coverage to TS_OP Feeder PU via a Reducer. 
3. Generation of the extended test case with don‟t care 
by merging with possible interaction element 
combinations, calculation of the maximum interaction 
coverage value for the test case generated and return 
selected test case with maximum interaction coverage to 
TS_OP Feeder PU via a Reducer. 
4. Generation of complete test case by merging between 
possible interaction element combinations, calculation of 
the maximum interaction coverage value for generated 
test case, selection and return of  test  case  with  highest  

Soh et al.          2351 
 
 
 
value of maximum interaction coverage to TS_OP Feeder 
PU via a Reducer. 
 
The task services designed to work on TS_OT Processor 
as distributed tasks are the generation of the complete 
test case by merging between possible interaction 
element combinations, calculation of the maximum 
interaction coverage value for the test case generated, 
selection of test case with highest value of maximum 
interaction coverage and return selected test case with 
maximum interaction coverage to TS_OT Feeder PU via 
a Reducer.  

Finally, the distributed TS_OP and TS_OT strategies 
are implemented and deployed on a partitioned topology 
using the Giga Spaces Service Grid. The Service Grid is 
a set of Grid Service Container (GSC) that is managed by 
a Grid Service Manager (GSM). For a single machine 
environment, the TS_OT Feeder PU and the TS_OT 
Processor PU with its collocated partition space run on 
GSC within the same machine. For multiple machine 
environments, TS_OT Feeder PU and each TS_OT. 

Processor PU with their respective partition spaces are 
distributed across several different physical machines in 
different GSC. As an illustration for multiple machine 
environments of a distributed TS_OP strategy with three 
workers is shown in Figure 6. The TS_OP Feeder PU has 
two collocated services, InputData Loader services and 
TestData Feeder services in GSC 4 on Machine 4. The 
complete algorithm for all services running in TS_OP 
Feeder PU is given in Figure 7. As for all three TS_OP 
Processors PU with their collocated partition spaces 
running on Machines 1 to 3 respectively, the complete 
algorithm for the IECProcessor service is shown in Figure 
8.  

Illustration for TS_OT strategy with multiple machine 
environments is shown in Figure 9. The TS_OT Feeder 
PU has one service, TestData Feeder service in GSC 4 
on Machine 4. The complete algorithm for the services 
running in TS_OT Feeder PU is explained in Figure 10. 
As for all three TS_OT Processors PU with their 
collocated partition spaces running on Machines 1 to 3 
respectively, the complete algorithm for the 
IMIECProcessor service is shown in Figure 11. 
 
 
EVALUATION 
 

Here, three group of experiments have been carried out 
to access the performance and behaviour of both 
developed strategies. The first group of the experiment is 
done to characterize both strategies performance in term 
of their test size growth and their test generation time. 
The second group of experiments were done to access 
the scalability of both strategies in term of speedup 
gained while running on a multiple machine environ-
ments. The third group of experiments were carried out to 
compare both developed strategies with existing 
strategies in term of size of generated test suite.  
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Figure 6. The TS_OP strategy implementation for multiple machine environments. 

 
 
 

Algorithm TS_OP Feeder (t, ParmSet). 

begin 
     1. initialize test suite TS to be an empty set; 
     2. denote the parameters in ParmSet, as P1, …, and Pn; 
     3. send ParmSet and t to GigaSpaces; 

     4. assign unique values, vi to each TS_OP Processors;  
        { for the first t parameters } 
     5. add into TS a exhaustive test case for first t parameters; 

     6. for  parameter Pi, i =t+1, …,n do 

     begin 
            { horizontal extension for parameter Pi } 

7.         send command generateIE to all TS_OP Processors 
 using space based remoting and stored in ieSet;      
 8.            for each test τ = (v1, v2, …, vi-1) in test suite TS do 

 9.                send command construct test case and τ  to all 

                    TS_OP processor using space based remoting;  
10.                  wait for all TS_OP Processor send τ’ with maxIE; 

11.                reducer choose the τ’ with highest maxIE; 
12.                add selected test case  τ’ to TS;  
13.                delete all covered interaction element in ieSet ; 

              { vertical extension for parameter Pi } 
14.           while (ieSet is not empty) do  

    15.              send command calculateIECMax to all TS_OP 

                          Processor to merge possible interaction element 
                       combination into tsm; 
16.               reducer choose the tsm with highest maxIE; 

17.               add selected test case  tsm to TS’;  
    18.               delete all covered interaction element in ieSet ; 
    19.        remove redundant tsm in TS’ 

    20.        add temporary TS’ to TS 

           end 
     21.  return TS; 

     end  
 

Figure 7. An algorithm of TS_OP feeder/master. 
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Algorithm  TS_OP Processors 

begin 
     1. initialize as one dedicated partition space; 
     2. read t, ParmSet from their dedicated partition space;  

     3. read assigned value, vi on their partition space; 
     4. for  parameter Pi, i =t+1,…,n do 
         { horizontal extension for parameter Pi=v } 

  5.      if receive command generateIE and Pi from TS_OP  
              Feeder through space based remoting; 

      6.         generate t-way ie between Pi and{P1…Pt} using  
   assigned parameter value and stored into in ieSet   

   TS_OP Processors partition;   
  7.            let ieSet be the set of all pair combinations of values 

   between Pi and each  of P1,  P2,…,Pi-1; 
  8.      if receive command construct test case and τ from 
               TS_OP Feeder through space based remoting; 

      9.          if (τ  not contains don‟t care) 
    10.              insert assigned value (v) into τ; 
    11.              calculate the maxIE;  

    12.              send τ’ and maxIE to TS_OP Feeder via reducer; 
    13.      else  merge τ with possible interaction element 
                        combination in ieSet into τo ; 

    14.               calculate the maxIE;  
    15.                   send τo and maxIE to TS_OP Feeder via reducer; 
                    { vertical extension for parameter Pi } 

    16.      if receive command calculate IEC Max from TS_OP  
                   Feeder through space based remoting; 
    17.          while (ieSet is not empty) do  

    18.                merge possible interaction element  
                         combination in ieSet into tsm ; 
    19.                calculate the maxIE;  
    20.                send tsm and maxIE to TS_OP Feeder via reducer; 

     end  

 
 

 
Figure 8. An algorithm of TS_OP processor/worker. 

 
 
 

 
 

Figure 9. The TS_OT strategy implementation for multiple machine environments. 
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Algorithm TS_OT Feeder/Master ( ParameterSet ParmSet, t) 

begin 
1. initialize test suite TS to be an empty set; 
2. denote the parameters in ParmSet, in an arbitrary order, as P1, P2, …, and Pn; 

3. send ParmSet and t to all partition space; 
4. generate ie and delegate by id to respective space partition; 
5. while (IESet is not empty) do 

        begin 
6. execute a worker processor at their respective partition space to generate a test case  
by merging possible interaction element find to test case, τ  with highest interaction coverage;  

7. wait for result of τ with maxIEC  from a reducer; 
8.        add τ test case into TS; 
9. delete covered interaction element in all partition of their respective IESet; 

                       end 
10. Compact or deleted redundant test case within TS; 
11. display TS; 

                   end 
 
Figure 10. An algorithm of TS_OT Feeder/Master 

 
Algorithm  TS_OT Processors 

begin           

1. initialize as one dedicated partition space; 
2. read t, ParmSet from dedicated partition space;  
3.  if receive command calculateIECMax from TS_OT Feeder through space based remoting; 
4.       while (πw is not empty) do 

5.         for (iteration  Ij , j=j+1, …,15) do 
6.            begin 
7.              merge possible interaction element combination     
             in IESet into complete test case, τ;   
8.              calculate the current maxIEC highest interaction      

           coverage; 
9.              compare current maxIEC with previous maxIEC; 
10.                 if (current maxIEC is higher than or equal to  
                    previous maxIEC) 

11.                       stored current maxIEC and its test case , τ;   
12.                else  stored previous maxIEC and test case , τ;  
13.              compare current maxIEC with pmaxIEC; 

14.                if ( selected current maxIEC is higher than or  
                   equal to previous pmaxIEC 
15.                       send current maxIEC and its test case , τ to  

                    TS_OT Feeder PU via a reducer 
16.                else continue test case generation  and search  
                     for best  solution  

17.             end 
18.             send current highest maxIEC and its test case, τ  

           to TS_OT Feeder PU via a reducer; 

     end  

 
 

Figure 10. An Algorithm of TS_OT Feeder/Master. 
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7. wait for result of τ with maxIEC  from a reducer; 
8.        add τ test case into TS; 
9. delete covered interaction element in all partition of their respective IESet; 
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Algorithm  TS_OT Processors 

begin           

1. initialize as one dedicated partition space; 
2. read t, ParmSet from dedicated partition space;  
3.  if receive command calculateIECMax from TS_OT Feeder through space based remoting; 
4.       while (πw is not empty) do 

5.         for (iteration  Ij , j=j+1, …,15) do 
6.            begin 
7.              merge possible interaction element combination     
             in IESet into complete test case, τ;   
8.              calculate the current maxIEC highest interaction      

           coverage; 
9.              compare current maxIEC with previous maxIEC; 
10.                 if (current maxIEC is higher than or equal to  
                    previous maxIEC) 

11.                       stored current maxIEC and its test case , τ;   
12.                else  stored previous maxIEC and test case , τ;  
13.              compare current maxIEC with pmaxIEC; 

14.                if ( selected current maxIEC is higher than or  
                   equal to previous pmaxIEC 
15.                       send current maxIEC and its test case , τ to  

                    TS_OT Feeder PU via a reducer 
16.                else continue test case generation  and search  
                     for best  solution  

17.             end 
18.             send current highest maxIEC and its test case, τ  

           to TS_OT Feeder PU via a reducer; 

     end   
 

Figure 11. An algorithm of TS_OT processor worker. 
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Table 5. Fixed p=10 and t=3 with varying v from 2 to 10. 
 

                  Strategy 

Parameter value, v 

TS_OP  TS_OT 

Size Time(s)  Size Time(s) 

2 16 2.44  18 5.31 

3 66 12.92  67 63.98 

4 156 36.23  167 326.43 

5 308 110.48  327 1457.86 

6 523 249.78  571 4147.34 

7 825 397.02  1049 10619.49 

8 1205 792.39  1412 27826.58 

9 1703 1504.94  1966 53818.95 

10 2307 2626.19  2768 102762.78 

 
 
 
 
ANALYSIS ON TEST SIZE GROWTH AND TEST 
GENERATION TIME 

 
The aim on this group of experiment is to evaluate the 
characteristic of both strategies in term of test size growth 
and the generation time on single machine environment. 
Three types of experiments are carried out to determine 
the characteristic of the test size growth and the 
generation time. Here, all the results are obtained using 
Windows XP, with 2.13 GHz Dual CPU, 4 GB RAM, and 
JDK 1.6 installed on it. It should be noted that the time is 
recorded in second. 

 
 
INCREASING PARAMETER VALUE  

 
This experiment is carried out to investigate the test size 
growth and the generation time as the number of 
parameter values increases from 2 to 10 with fixed 
parameter of 10 and fixed interaction strength of 3. The 
result of the generated test size and test suite generation 
time are shown on the Table 5.  

From Table 5, the test sizes are plotted against the 
number of parameter values as given in Figure 12. 

As illustrated in Figure 12, the generated test size using 
TS_OP strategy always smaller as compare to generated 
test size using TS_OT strategy. The generation time is 
plotted versus number of parameter values as shown in 
Figure 13. The test generation time was also faster for 
TS_OP strategy as compared to TS_OT strategy for all 
setting.  

Referring to Figures 12 and 13, the curve fitting 
analysis is applied on both plotted figures and conclude 
that both test size and test generation time are 
proportional quadratically with the number of values in 
both strategies. Overall for varying the parameter value 
from 2 to 10, the TS_OP strategy showed a better result 
both in term of test size and test generation time as 
compared to TS_OT strategy. 

INCREASING PARAMETER  
 
In this experiment, the test size growth and test 
generation time is recorded as the number of parameters 
increases with fixed parameter value and fixed interaction 
strength. The input parameter consist of fixed parameter 
value, v=4 and interaction strength of t=3 with 6 to 15 
parameters. The result for this experiment is shown in the 
Table 2. Using Table 6 data, the test size versus number 
of parameters graph is plotted as shown Figure 14. Here, 
TS_OP strategy always produces a smaller test size as 
compared to the TS_OT strategy. 

The graph of the test generation time versus number of 
parameters is plotted as shown in Figure 15. Referring to 
Figure 14, we conclude that the test size grows 
logarithmically with increasing number of parameters in 
both strategies.  From Figure 15, we note that test 
generation time grows quadratically with respect to 
logarithmic scale of parameters for TS_OP strategy and 
in TS_OT the test generation time increase more steeply 
as compared to TS_OP strategy. The test generation 
time for TS_OP strategy is always faster than TS_OT 
strategy in all tested input parameter with varying 
parameter. These results are as expected since the 
TS_OP have a lesser computing complexity while 
generating test case as compared to TS_OT. 

In TS_OT, all parameter need to be consider while 
generating test case whereas for TS_OP, initially on 
portion of parameter need to be processed until full 
number of parameter. Here the difference between the 
TS_OP and TS_OT strategy in term of test generation is 
larger as parameter is increased. This occurs due to 
computing complexity for higher parameter. 

 
 
INCREASING INTERACTION STRENGTH  
 
In this computational simulation, the test size growth and 
test generation time is recorded as the number of 
interaction strength increases with fixed parameter and
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Figure 12. The test size growth for fixed parameter 10 and t=3 with varying parameter 
value from 2 to 10. 
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Figure 13. The generation time for fixed parameter 10 and t=3 with varying parameter 
value from 2 to 10. 

 
 
 

Table 6. Fixed v=4 and t=3 with varying p from 6 to 15. 
 

                    Strategy 

Parameter, P 

TS_OP  TS_OT 

Size Time(s)  Size Time(s) 

6 99 3.97  112 5.59 

7 121 7.7  126 18.09 

8 137 14.4  142 56.55 

9 145 21.83  155 139.62 

10 156 36.23  161 358.55 

11 167 39.54  179 812.34 

12 175 55.53  187 1457.5 

13 180 83.17  194 2769.95 

14 188 117.14  204 4675.42 

15 194 158.8  217 8414.11 
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Figure 14. The test size growth for fixed parameter value, v=4 and t=3 with varying 
parameter from 6 to 15. 
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Figure 15. The generation time for fixed parameter value, v=4 and t=3 with varying 
parameter from 6 to 15. 

 
 
 
their parameter value. The input parameter consist of 
fixed 10 parameter and fixed parameter value, v=3 with 
varying interaction strength from t= 2 to 7. The result is 
shown on the Table 7. 

Referring to Table 7, the test size is plotted versus 
differences in term of test size are quite minimal and 
TS_OP is still able to generate smaller test suite size as 
interaction strength as given in Figure 16. Here, the 

compared to TS_OT. Similarly, the test generation time 
versus interaction strength is plotted as shown in Figure 
17. From Figures 16 and 17, it is evident that the test size 
as well as test generation time grows exponentially as the 
interaction strength increases.  

In both strategies, computational complexity increased 
rapidly as interaction strength is increased. However, due 
to less complexity in test suite generation in TS_OP, their  



2358          Int. J. Phys. Sci. 
 
 
 

Table 7. Fixed p=10 and v=3 with varying t from 2 to 7. 
 

Strategy 

Interaction strength, t 

TS_OP  TS_OT 

Size Time(s)  Size Time(s) 

2 17 1.45  17 8.94 

3 66 12.92  69 46.29 

4 230 176.72  233 1344.04 

5 732 3017.25  747 17329.28 

6 2132 29500.67  2239 185253.06 

7 5751 162350.93  6274 453833.16 
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Figure 16. The test size growth for fixed parameter value, v=3 and parameter, p=10 
with varying interaction strength from 2 to 7. 
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Figure 17. The generation time for fixed parameter value, v=3 and parameter, p=10 with 
varying interaction strength from 2 to 7. 
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Table 8. Uniform input parameter with fixed p=10, t=3 and v=10 on ten different machines. 
 

Machine 

Strategy 

TS_OP  TS_OT  TS_OP TS_OT  TS_OP TS_OT 

Size Time(s)  Size Time(s)  Size ratio Size ratio  Speedup Speedup 

1 2307 2626.19  2708 128110.06  0.996 0.907  1.00 1.00 

2 2309 1732.28  2847 79525.88  0.996 0.954  1.52 1.61 

3 2314 1537.06  3037 61738.09  0.999 1.017  1.71 2.08 

4 2297 1467.53  2902 41857.83  0.992 0.972  1.79 3.06 

5 2322 1323.7  2911 34435.28  1.003 0.975  1.98 3.72 

6 2310 1244.83  3267 33453.11  0.997 1.094  2.11 3.83 

7 2297 1236.25  3306 27921.41  0.992 1.107  2.12 4.59 

8 2313 1194.36  3249 24839.53  0.999 1.088  2.20 5.16 

9 2304 1231.06  3551 24627.84  0.995 1.190  2.13 5.20 

10 2315 1246.62  2984 17445.19  1.000 1.000  2.11 7.34 

 
 
 
generation time is faster compared to TS_OT strategy. 
 
 
SCALABILITY ANALYSIS IN TERM OF SPEEDUP 
GAINED ON DIFFERENT MACHINE ENVIRONMENT 
 
In the second group of experimentation for the speedup 
gained, the system consist of ten workstation 
interconnected through a Cisco switch with each machine 
running with a GigaSpaces middleware. The LAN speed 
is 100 M. Firstly, the scalability analysis is carried out in 
term of speedup gained while running on multiple 
machines environment. Speedup is deduced from 
execution time of single machine per execution time of 
multiple machines. Two experiments were carried out to 
determine the speedup gain from different input 
parameter: 
 
1. Uniform input parameter of fixed parameter, p=10 with 
parameter value, v=10 and interaction strength of t= 3. 
2. Mixed input parameter value of TCAS with interaction 
strength of t=4.  

Both experiments were initially carried out on single 
workstation using GigaSpaces Service Grid and then on 
multiple workstation for up to 10 machines.  

The result for uniform input parameter of fixed 
parameter, p=10 with parameter value, v=10 and 
interaction strength of t= 3 is shown on the Table 8 and 
for mixed input parameter value of TCAS with interaction 
strength of t=4 is shown in Table 9.  

Both strategies inhibited a non deterministic nature 
which may result in different test size for each simulation 
run. These results recorded are best representative for 
the minimum number of test size of many simulations 
run, around 10 to 15 runs for each input parameter 
configuration setting. Referring to Tables 8 and 9, the 
differences in the test suite size for both, uniform and 
mixed input parameter value in TS_OP strategy is 
smaller than TS_OT strategy while running on different 

number of machine as indicated by the test size ratio. 
This happened due to different distributed strategy, in 
TS_OP strategy, the distribution of interaction element 
data based on the TS_OP Processor partition space‟s 
assigned parameter value and the current position of 
parameter that have been added to the test case 
whereas in TS_OT strategy, the distribution of interaction 
element using hash table routing mechanism to each 
TS_OT Processor partition space. This lead to a situation 
where the TS_OP strategy can produce an initial test 
case with maximum interaction coverage in both single or 
multiple machine environment whereas the TS_OT 
strategy can only produce an initial test case with 
maximum interaction coverage in single machine 
environment. Therefore, while running on multiple 
machine environments, the TS_OT can produce the test 
case by merging all possible interaction element in a 
dedicated partition space only which would not guarantee 
the   production   of   an   initial   test case with maximum 
interaction coverage. As we partition the interaction 
element to higher number of physical machine, an initial 
test case produce will have less interaction coverage, 
therefore required bigger number of test case to cover all 
interaction element left in their partition space.    

Overall, in term of test size optimality, the distributed 
strategy of TS_OP does not mortify the optimality of the 
test suite size while running in multiple machine 
environments. However, in TS_OT, the distribution 
strategy had lead towards less optimal test suite size 
when running on higher number of physical machine.  

Using data from the Tables 8 and 9, we plot the 
speedup versus number of machine as shown in Figures 
18 and Figure 19, respectively. In TS_OP strategy, for 
uniform input parameter and mixed input parameter, the 
increment of speedup value between 2 and 10 machines 
is almost similar as compared to the increment of 
speedup value between 1 and 2 machines environment. 
This happened due to high CPU and cache memory 
usage while running in single machine environment. Most 
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Table 9. The mixed input parameter of TCAS value with interaction strength t=4 on ten different machines. 
 

Machine 

Strategy 

TS_OP  TS_OT TS_OP TS_OT  TS_OP TS_OT 

Size Time(s)  Size Time(s) Size ratio Size ratio  Speedup Speedup 

1 1355 5649.65  1565 112461.55 0.999 1.020  1.00 1.00 

2 1349 2321.59  1590 64303.42 0.994 1.036  2.43 1.75 

3 1370 2211.69  1597 36525.28 1.010 1.041  2.55 3.08 

4 1366 2149.89  1597 26070.83 1.007 1.041  2.63 4.31 

5 1371 2044.84  1595 22395.66 1.011 1.039  2.76 5.02 

6 1365 1815.15  1624 18515.12 1.006 1.058  3.11 6.07 

7 1347 1940.05  1660 14884.06 0.993 1.082  2.91 7.56 

8 1349 2110.11  1565 17130.22 0.994 1.020  2.68 6.57 

9 1362 1954.77  1655 12972.48 1.004 1.078  2.89 8.67 

10 1356 2032.08  1534 13136.09 1.000 1.000  2.78 8.56 
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Figure 18. The speedup for fixed parameter value, v=10 and parameter, p=10 with interaction 
strength t=3 on 10 machines. 

 
 
 
of the main memory is used to store the interaction 
element in shared memory space during test case 
generation. As we distributed the computing work to 
others machine, the main memory utilization per each 
machine become less. Thus permitting faster 
computation in all available CPUs and resulted in shorter 
time for the test case generation. However, the scalability 
of TS_OP is dependent on the number of maximum 
parameter value. An increment of number of physical 
machine more than maximum parameter value will not be 
contributed for more speedup and in some cases slow 
down the test suite generation time. 

As for TS_OT strategy, their distribution of interaction 
element among TS_OT Processors on different physical 

machine able to provide more memory space and 
computing power thus producing a faster test generation 
time while running in a multiple machine environment. 
The increase of physical machine almost give a linear 
speedup in term of test suite generation time. However, 
for some cases, the speedup dropped due to network 
latency but increase further on higher number of machine 
count.  

Overall, it showed that distribution of computing work 
for test suite generation across multi machine environ-
ments always give a speedup as compared to single 
machine environment in both strategies. This points out 
the applicability of Tuple space technology as distributed 
shared memory platform in our implementation. Here, the  
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Figure 19. The speedup for TCAS value with interaction strength t=4 on ten different machines. 

 
 
 
speedup gained in TS_OT strategy increased more 
linearly as the number of machine is incremented as 
compared to TS_OP strategy. Although the speedup 
gained in TS_OP do not increases linearly as compared 
to TS_OT strategy, the test generation time of TS_OP 
strategy still faster than TS_OT strategy in single or 
multiple machine environment settings.  
 
 
COMPARISON WITH OTHER EXISTING STRATEGIES 
 
In order to benchmark our approach, we also compare 
both strategies, TS_OP and TS_OT of the study with 
other well-known strategies. These strategies are 
MIPOG, IPOG, IPOG-D, IPOG-F, IPOG-F2, ITCH, Jenny 
TConfig, TVGII and GTWay. Here, the comparison aims 
to study the generated test suite size for both strategies, 
TS_OP and TS_OT against other strategies.  To facilitate 
the comparison, we adopt a common configuration, 
TCAS module. The TCAS module is an aircraft collision 
avoidance system developed by the Federal Aviation 
Administration which has been used as case study in 
other related works (Lei et al., 2007; Kuhn and Vadim, 
2006; Calvagna and Gargantini, 2009; Younis and Zamli, 
2009; Younis et al., 2008; Lei et al., 2008; Younis and 
Zamli, 2010; Zamli et al., 2011). The module consist of 12 
parameters consisting of two 10-valued parameters, one 
four-valued parameters, two three-valued parameters 
and seven two-valued parameters. 

Both strategies, TS_OP and TS_OT is executed in our 
environment consisting of a desktop PC with Windows 
XP, 2.13 GHz Core 2 Dual CPU, 4 GB  RAM. As for other 
strategies such as MIPOG, IPOG, IPOG-D, IPOG-F, 
IPOG-F2 ITCH, Jenny, TConfig, TVGII and GTWay, the 
generated test size result of all experiment is obtained 
from published result (Younis and Zamli, 2010; Zamli et 

al., 2011). By adopting the same input parameters and 
values, a fair comparison may be made between various 
strategy implementations in term of generated test size 
because the generated test suite size is not dependent 
on the system environments and specifications but rather 
on the algorithm of the strategy itself. 

Table 10 depict the test size results obtained for the 
aforementioned experiments. The darkened cells with 
bold fonts indicate the best result for a specific input 
parameter configuration. The second best solution for 
that specific input parameter is indicated by the less 
darkened cell with normal fonts. Cells marked NA (not 
available) indicates that the results are unavailable due to 
lengthy test generation time.  

Referring to Table 10, in comparison of our t-way “one-
parameter-at-time” strategy, TS_OP to other parameter 
based such as MIPOG, IPOG, IPOG-D, IPOG-F and 
IPOG-F2 in term of generated test suite size, TS_OP 
always produce a satisfactory and competitive results 
and the strategy itself is only second to MIPOG and 
always outperforms others IPOG and its variant. 

As a comparison of “one-test-at-time” strategy, TS_OT 
with others strategies in same group of test based such 
as ITCH, Jenny, TConfig, TVGII and GTWay in term of 
generated test suite size, TS_OT results is comparable or 
equal to TVGII results.  GTWay always produce the most 
optimum results in this group of comparison and as for 
TS_OT, the test result is quite similar to GTWay for a 
small interaction strength of t=2 and 3. As we increased 
the interaction strength further to 4, 5 and 6, Jenny 
appeared to be second to GTWay and outperform others 
strategies such as TS_OT, TVGII and etc. 

Overall, from the results in Table 10, the MIPOG 
strategy outperforms other strategies by producing the 
most optimum results in most of the configurations, while 
IPOG-D produce the worst results in all input configuration.
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Table 10. The comparison of TS_OP and TS_OT with others strategies for TCAS value with varying interaction strength from 2 to 6. 
 

Strategy, t 
TS_OP TS_OT MIPOG IPOG IPOG-D IPOG-F IPOG-F2 ITCH Jenny TConfig TVGII GTWay 

Size 

2 100 101 100 100 130 100 100 120 106 100 101 100 

3 408 403 400 400 480 402 427 2388 411 472 434 402 

4 1355 1565 1265 1361 2522 1352 1644 1484 1527 1476 1599 1429 

5 4166 4755 4196 4219 5306 4290 5018 NA 4680 NA 4773 4286 

6 11105 12673 10851 10919 14480 11234 13310 NA 11608 NA 12732 11727 

 
 
 
For interaction strength, t=2, all strategies except IPOG-
D, TS_OT, ITCH, Jenny and TVGII produce a minimum 
test size of 100. As for TS_OP strategy, an optimum test 
suite size is produce for two inputs setting with interaction 
strength, t=2 and 5. FAs for other input setting of t=3, 4 
and 6, the MIPOG strategy outperform others strategies 
in term of most optimum test size. However, the TS_OT 
strategy results are not as competitive and satisfactory as 
compared to TS_OP in comparison with other existing 
strategies.   
 
 

Conclusion 
 

In this paper, we developed, evaluated and compared 
two distributed strategy called TS_OP based on “one-
parameter-at-a-time” and TS_OT based on “one-test-at-
a-time” for t-way test suite generation on single and 
multiple machine environments using Tuple space 
technology.  

The complexity analysis of test suite growth also 
indicated that the test size growth in the TS_OP and 
TS_OT strategy generally follows closely the 
combinatorial theory. The test suite size of same input 
parameter configuration generated by TS_OP strategy is 
smaller and more optimum than the test suite size 
generated by TS_OT strategy. Furthermore, the test 
generation time of same input parameter configuration 
using TS_OP strategy is faster than the test generation 
time using TS_OT strategy.   

The scalability analysis also showed that distribution of 
computing work for test suite generation across multi 
machine environments always give a speedup as 
compare to single machine environment in both 
strategies. This points out the applicability of Tuple Space 
Technology as distributed shared memory platform in our 
implementation. Here, the speedup gained in TS_OT 
strategy increased more linearly as the number of 
machine is incremented as compared to TS_OP strategy 
but the test generation time of TS_OP strategy is still 
faster than TS_OT strategy in single or multiple machine 
environment settings.  

 Comparison between our both strategies, TS_ OP and 
TS_OT with existing strategies indicated that the test 
suite size produced by our TS_OP strategy is satisfactory 

and competitive in term of generating minimum test suite 
size. In the case where TS_OP is not the best, the test 
size is still within an acceptable value. As for the TS_OT 
strategy, the generated test size results are not as 
competitive and satisfactory as compared to TS_OP in 
comparison with other existing strategies. However, in 
comparison to its “one-test-at-a-time” group, TS_OT is 
quite competitive to best strategy within their group for a 
lower t of 2 and 3.     

For future works, we would like to implement the 
TS_OP and TS_OT strategy on cluster machines with 
high RAM memory to minimise the network latency whilst 
generating the test suite. 
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