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An academic methodology based for experimental evaluation of materials treatment is presented. The 
study is centered in an educational research emphasis about microstructure evaluation and heat 
treatments in steels samples machined according to ASTM E8 specifications. The uses of 
metallographic techniques and hardness/tensile tests for analyzing experimental variations due to 
structural changes are included. Different thermal treatments were applied on AISI-SAE 1018 steel 
specimens by raising the temperature until it reached the austenization state. Images were obtained 
with a Nikon NIS Elements computer programming, in order to observe the microstructure and identify 
the phases involved in each of the thermal treatments. For the hardness analysis, the round indenter of 
1/16 in of Tungsten Carbide with a preload of 100 kg was used. A grain diameter of 3 to 4 µm was 
observed in both annealed and normalized sample, so it is assumed that the cold rolled or reference 
sample had a normalized condition. Both 41 and 67% in elongation and area reduction percentages, 
respectively, in the normalized samples were observed. The results allow identifying the correlation 
between microstructures and mechanical properties, providing an engineering educational approach 
for metallographic analysis and heat treatment schemes focused on the grain size interpretation, 
resilience and stress-strain curves. The described methodology provides an academic reference for the 
didactic evaluation of the main techniques associated with the treatment of materials for physics and 
mechanical engineering training.  
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INTRODUCTION 
 
Since the beginning of civilization, materials have been 
used by humanity to improve their standard of living, 
being it the substances that make up any structure or 
product (Daunton et al., 2012; Whitesides and Wong, 
2006). Engineers design most products and the 

processes required for their manufacture are invoiced, so 
students of engineering must get acquainted with the 
internal structure and properties of the materials, as well 
as the techniques of thermal treatments, stress tests, 
hardness and  metallographic  analysis  (Selfridge,  1985;  



 
 
 
 
Williams and Starke, 2003; Parkinson, 1995). The 
engineer should be able to select the most suitable for 
each application and be able to develop the best 
processing methods. 

Considering the role of the engineer training to meet 
such needs, important studies have been conducted to 
identify strategies and reflections that promote a more 
solid formation in the area of design (Atman et al., 2007; 
Schaefer et al., 2008; Szykman et al., 2000; Dym et al., 
2005), as well as in the implementation of the scheme 
and learning project-based (Dutson et al., 1997; Mills and 
Treagust, 2003). 

The thermal treatments constitute procedures to 
improve materials properties or achieve characteristics 
for specific purposes (Calik, 2009; Kuśtrowski et al., 
2005; Fadare et al., 2011; Daramola et al., 2010; He et 
al., 2010) and these in turn, depend on the structure and 
the type of material in a piece, which is achieved with the 
precise handling of temperature and cooling rate. A 
recent study about the impact of intercritical annealing 
temperature and microstructure, including optical 
microscopy and point count method using stereology to 
evaluate martensite volume fraction, can be consulted in 
the report of Ikpeseni et al. (2015). Also, a description 
about the main heat treatment problems can be found in 
ASM Handbook, chapter 1 (ASM Handbook, 2014). 

Other properties associated with the materials, such as 
the structural characteristics and it’s relation to the 
physical, mechanical and chemical properties are usually 
evaluated through metallography studies (Stobrawa et 
al., 2007; Cwjna and Roskosz, 2001; Frade-Drumond et 
al., 2014; Castillo and Marin, 1985; Dobrzański et al., 
2007; González et al., 2015; Wojnar, 2016); grain size, 
distribution of contraction cavities and manufacturing 
processes, which affect the mechanical properties of the 
material, are commonly feasible determined from such 
techniques (De-Cooman and Speer, 2011; Dieter and 
Bacon, 1986). 

Finally, a third aspect considered in the preparation of 
this report, is related to the choice of steel 1018, which is 
a sweet and low carbon steel widely known for its good 
combination of strength, ductility and hardness. Several 
contributions associated with mechanical properties and 
heat treatments have been reported for steel 1018 
(Suzuki and Mcevily, 1979; Jayaraman et al., 1997; 
Topçu and Ubeyli, 2009; Doong and Tan, 1989; Clough 
et al., 2003; Akkurt et al., 1996). Being the most common 
steel of cold-rolled steel, it is a very useful product due to 
its typical characteristics of good mechanical strength 
and good ductility. In general terms, this metal has 
excellent weldability and better machinability than most 
carbon steels. Similarly, its alloy with  tin  (Noguez  et  al.,  
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2002) allows the strengthening of its mechanical 
properties, especially with respect to ductility.  

The mechanical properties of 1018 steel, such as its 
hardness (126 HB), creep yield (370 MPa), maximum 
effort (440 MPa), modulus of elasticity (205 GPa) and 
machinability (76%), among other, make it ideal for a 
wide range of components such as pins, rods, shafts, 
gears and sprockets. While it is true that other steels can 
exceed their mechanical properties, the 1018 has the 
advantage of easier, machine-made production, 
presenting a low cost in the market. 

The main objective of this report is to describe a 
methodology with educational research reference for the 
didactic evaluation of the main techniques for treatment 
of materials. Experimental work was realized with 
participation of student of investigative exercise, research 
assistantships and linkage projects as other learning 
modalities. 

As part of the experience in academic training, it has 
been perceived that the study of heat treatments and 
properties of materials usually presents a certain level of 
difficulty in the students' learning, mainly due to the 
number of standards (ASTM, ASM), techniques and 
criteria in which is based. In this sense, the methodology 
provides a reference for the academic evaluation of the 
main techniques associated with the treatment of 
materials. The report includes experimental evaluations 
that allow identifying microstructure, mechanical 
properties, hardness and thermal treatments in samples 
machined according to the heat treater's guide (Harry, 
1995). 

 
 
MATERIALS AND METHODS 

 
Sample preparation begins with cutting the specimen 1 "in diameter 
and 1" in length. Subsequently, the sample is tilled with silicon 
carbide abrasive paper (sandpaper) number 80, 160, 240, 400, 
600, 1000, and 2000, using water as lubricant and a flat surface as 
carrier. It should be noted that in each change of abrasive paper, 
the sample is rotated 90° so that the stripes generated are 
perpendicular to those generated by the new abrasive paper. After 
the AISI-SAE samples have been tilled, the polished process was 
applied, which consists of the elimination of all the stripes 
generated by the abrasive papers, using abrasive powder "alumina" 
of 3 microns and water as lubricant. Subsequently, the 
microstructure is cleaned and revealed by chemical attack with 5% 
Nital (5 ml nitric acid, 95 ml alcohol). Samples were cleaned with 
ethyl alcohol to remove residues and stains in the sample as 
indicated by ASTM standard (ASTM E3, 2017).  

Different heat treatments were applied to AISI-SAE 1018 steel 
specimens (Chemical Composition: 0.15 to 0.20% C; 0.60 to 0.90 
Mn; 0.04% P; 0.05% S) with a C401 H-PM3E Cress furnace. The 
temperature was raised at intervals of 250 to 930°C (Austenization 
temperature), according to Szykman et al. (2000) and Harry (1995).  
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Figure 1. AISI-SAE 1018 steel attacked with 2% Nital in samples with metallographic processes (100x). The phases for 
control (a), annealing (b), normalized (c), and hardiness (d) are shown. The lines marked in the images highlight the 
lengths and perimeter of the grains; the arrows identify the phases found in each of the samples. 

 
 
 
Subsequently, the specimens were removed and the specific 
treatment was preceded. In the hardening treatment, they are 
immersed in water at room temperature for a sudden cooling; for 
the treatment of normalizing, the test tube is taken and left 
outdoors. The annealing process was realized placing the sample 
in the oven with a uniform cooling ramp until it reached the ambient 
temperature. 

For the metallographic analysis, the polished samples were 
attacked with Nital 2% for 10 s in order to reveal the microstructure. 
Subsequently, the samples were cleaned with alcohol and 
observed in the metallographic microscope. The images were 
obtained with the help of the Nikon NIS Elements computer 
program (Laboratory Imaging, s.r.o., Za Drahou 171/17, cz-102 00 
Praha 10, version 4.10.03). Images with different scales were 
obtained in order to observe the microstructure and identify the 
phases involved in each of the thermal treatments, according to 
ASTM E112 (ASTM E112, 2013) and ASM (Vander-Voort et al., 
2004). 

In order to perform the stress test on the different test specimens 
previously machined and according to the specifications of the 
American Society for Testing Materials ASTM (ASTM E8, 2016), 
these were subjected to annealing, normalizing and hardening heat 
treatments. The diameter and length of the calibrated area were 
dimensioned, as indicated by the standard protocols. Once the 
specimen was centered and held, TrapeziumX computer program 
(Materials Testing Software TRAPEZIUM LITE X 349-02788E) pre-
loaded in the system, as well as the diameter and initial length for 
the development of the test were selected. The loading and 
displacement positions were tared and the test was performed in 
accordance with ASTM recommendations. 

The metallographic treated samples were mounted and fixed in a  

CV-600A "SPI" durometer for Rockwell A, B, C and F tests to figure 
perform the Rockwell B hardness test. For all sample analysis, 1/16 
(1.59 mm) tungsten carbide round indenter was used. With 100 kg 
preload, as indicated by standards (ASTM E8, 2016; DIN-EN-ISO-
6508, 2006; ASTM E18, 2017), the load was applied, obtaining the 
hardness reading on the cover of the durometer. Data were 
recorded and compared with the hardness range tables, according 
to literature (ASTM E1140, 2012). Once thermally treated samples 
were both prepared and conditioned, they were evaluated under 
ASTM E3 and ASTM E112 considerations. 
 
 
RESULTS AND DISCUSSION 
 

Figure 1 show the phases presented in AISI-SAE 1018 
steel without heat treatment and with treatment at 100x. 
A metal matrix of ferrite (light zone) and perlite (dark 
zone) for reference sample (cold rolled or control sample) 
can be observed (Figure 1a). The microstructure resulting 
from the heat treatment of annealing is observed in 
Figure 1b; that is, a metal matrix of ferrite and perlite in 
the steel. Figure 1c describes the microstructure of 
annealing; this contains martensite and ferrite grains; 
while Figure 1d shows the effect of the normalized, where 
a metal matrix of ferrite can be seen, as well as in the 
limits of grain, perlite. It should be noted that the 
formation of 100% martensite is only possible in very thin 
sections, as well as  with  a  rapid  cooling.  On  the  other
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Figure 2. The stress-strain curves obtained from the tensile stress tests. 

 
 
 
hand, diameter of the order of 3 to 4 µm can be observed 
in both the annealed samples (Figure 1b) and normalized 
(Figures 1d), associated to grain size ASTM 5 to 6 
(ASTM E112, 2013), whereby the control sample is 
assumed to have a condition of normalized. The lines 
marked in the photographs of Figure 1 highlight the 
lengths and perimeter of the grains. The arrows identify 
the phases found in each of the samples.  

With respect to the stress test, the comparison of the 
four stress-strain curves corresponding to each of the 
thermal treatments performed and the reference sample 
are recorded in the Figure 2, where it can be seen that 
the ζ-ε curves corresponding to those tempered 
specimens show higher yield strength and lower 
elongation percentage. Similarly, the tenacity (area under 
the ζ-ε curve) was higher in the normalized sample. The 
resilience (area under the curve ζ-ε in the elastic zone 
delimited by the dotted line) was higher in the control 
sample. The annealed sample presented greater stress 
at rupture and the plastic zone was higher in the 
normalized sample; such plastic zone is delimited 

between the dotted line and the break point in each of the 
curves.  

The values of lengths, diameters, areas, stresses, 
Young's modulus, percentages of area reduction, 
elongation, as well as the resilience and average values 
of the hardness test obtained from measurements in the 
tensile and hardness tests were recorded in Table 1. 
Based on the results, it can be observed that in the 
normalized sample, the percentage of elongation was 
67.75% and the area reduction was 79.3%, which 
indicate a greater tenacity. Also, the Young's modulus of 
277.6 kPa turned out to be higher than the other 
thermally treated samples.  

The annealing sample showed a higher maximum 
stress than the other samples with 444 kPa treatment. 
For the temperate sample, the maximum stress values 
were higher with respect to the rest of the samples, both 
in yield and in rupture, whose values correspond to 
326.24 and 91.86 kPa, respectively. Likewise, the 
calculated resilience was the highest among the heat 
treated samples with a 223.52 kJ/m

2
. 
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Table 1. Results obtained from the stress-strain curve and the hardness tests. 
 

Parameter Normalizing Annealing Hardness Sample 

lo (mm) 41.80 40.51 41.91 40.64 

lf (mm) 70.12 57.27 48.99 43.84 

øo (mm) 6.24 6.22 6.14 6.29 

øf (mm) 2.84 3.04 3.63 1.47 

Ao (mm
2
) 30.58 30.38 29.60 31.07 

Af (mm
2
) 6.33 7.25 10.34 1.69 

Rupture strength (kN) 1.37 2.93 4.22 5.54 

E (kPa) 277.59 262.14 250.98 300.18 

Strain of yield (kPa) 134.24 290.14 326.24 468.91 

Strain at 0,2% 137.20 292.79 317.55 464.51 

ζmáx (kPa) 374.71 444.09 400.65 475.50 

Strain to rupture (kPa) 25.10 62.26 91.86 114.75 

% of elongation 67.75 41.37 16.9 7.87 

% of area reduction 79.3 76.13 65.06 94.56 

Resilience (kJ/m
2
) 33.92 151.53 223.52 504.37 

Average HRB (100 kg, 1/16) 11.8 17.8 73.8 14.6 
 

Ao, Initial cross-sectional area; Af, Final area of the cross-section area at the surface of the fracture; ζ, Effort; ε, Unitary deformation; E, 
Young's Module; δ, Elongation; Ø, Diameter; P, Force/Load; lo, Initial length of the calibrated zone; lf, Final length of the calibrated zone; 
ἑ, Strain speed; ANSI, American National Standards Institute; SAE, Society of Automotive Engineers; ASTM, American Society for 
Testing Materials; ASM, American Society for Metals; HRB, Hardness Rockwell B; ISO, International Organization for Standardization.

  
 

 
The tempering heat treatment at 930°C for 1 h and with 

sudden cooling, allows the steel to present more defined 
characteristics as the greater Modulus of Elasticity, 
greater ultimate strength, and a greater yielding stress 
due to the martensite phase (Figure 1d), corresponding 
to the tempering, values that are congruent with the 
hardness values. This normalized thermal treatment, but 
with cooled in the open air, allowed an increase in the 
ductility and, consequently, its deformation was greater 
and the yielding effort was low; that is to say, it had less 
elastic deformation and increased plastic deformation. 
Given the characteristics obtained in each of the thermal 
treatments made of steel, it can be concluded that the 
reference sample has a normalized condition. Based on 
the circumstances foreseen in the study, the mechanical 
properties of the AISI-SAE 1018 steel can be correlated 
with the values of tension; hardness and microstructure 
differ with respect to the applied heat treatment. 
 
 
Conclusion 
 
The periodic curricula updating at different levels of 
education is an evidence of the national effort to improve 
the skills of engineering graduates. Although the 
development of traditional courses at different 
engineering areas continues to be one of the main tools 
to ensure the preparation of engineers, the 
implementation of other teaching modalities such as 
investigative exercise, research assistantships and 
linkage projects implemented through methodology under 

study, promote a more direct approach of the student 
with the technology, motivating their level of participation 
and professional strengthening. 

The mechanic engineering field is centered on a 
significant number of international norms and regulations 
associated with testing and evaluations of materials 
properties, so that students are called to review a number 
of manuals that allow them to take advantage of 
equipment and resources. Therefore, the student of 
engineering requires the consultation of sources that aid 
mediates between articles of very specialized essays, 
theoretical courses and manuals of considerable extent, 
as well as extracurricular activities that allow him/her to 
develop other competencies associated with the 
management of techniques and its interpretations. 

The study was centered in an educational research 
emphasis about the material microstructure as well as of 
the heat treatments in samples machined according to 
ASTM E8 specifications. The experimental process was 
developed within the laboratory practice programs for 
physical and mechanical engineering students of a 
prestigious university at the pacific. 

The methodology provides a reference for the 
academic evaluation of the main techniques associated 
with the treatment of materials. The results obtained and 
the experimental schemes developed describe the 
correlation between the microstructure and the 
mechanical properties as a fundamental tool for the 
comprehension of the treatment of materials in diverse 
areas of engineering. For the steel AISI-SAE 1018, it was 
determined that the heat  treatment  makes  possible  the 



 
 
 
 
change in the mechanical properties of the material, 
which can be observed in the tests of tension and 
hardness, as well as metallographic analysis.  

The report is an academic reference respect to the 
experimental mechanical engineering training in an 
institution of higher education studies at USA-Mexico 
border. 
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