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Relay network was introduced to realize high-data rate transmission and high capacity with limited 
transmit power. However, channel state information (CSI) is needed due to the requirement from 
coherent data detection and the self-data removal at terminals in the two-way relay networks (TWRN). 
Traditional linear probing techniques are able to acquire the accurate CSI by using enough training 
sequence. However, they may lead to low bandwidth efficiency due to that the implicit assumption of a 
rich underlying multipath. However, in many cases, the multipath channel has a sparse structure. 
Unlike the previous methods, we propose a compressed channel estimation method which exploit the 
sparse structure in multipath TWRN and hence provide significant improvements in MSE performance 
when compared with conventional LS-based linear channel probing strategies in the TWRN. Simulation 
results confirm performance of the proposed method. 
 
Key words: Two-way relay networks (TWRN), channel state information (CSI), compressive sensing, sparse 
multipath channel, compressed channel estimation. 

 
 
INTRODUCTION 
 
Relay communications have been drawing great attention 
in recent years. In this paper, two-way relay network 

(TWRN) is investigated, where two terminals, 
1T  and 

2T , 

exchange information based on the assistance of a relay 
R  via amplify-and-forward (AF). TWRN have been 
intensively studied due to their capability of enhancing 
the transmission capacity and providing the spatial 
diversity for single-antenna wireless transceivers by 
employing the relay nodes as “virtual” antennas (Gao et 
al., 2008). A major difficulty is how to effectively recover 
the data transmitted over an unknown frequency-
selective fading channel. Because of demodulation and 
coherence detection of each terminal, not only needs to 
know the channel state information (CSI) from relay to 
itself but also the CSI from the other terminal to relay.  

Training-based linear channel estimation methods were 
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proposed in Gao et al. (2009) for the TWRN. The authors 
considered optimal training sequence design and linear 
probing methods based on the implicit assumption of a 
rich underlying multipath environment. In other words, 
training-based methods proposed in these works are 
mainly composed of linear reconstruction techniques 
such as least square (LS), minimum mean square error 
(MMSE), and linear maximum signal-noise ratio (LMSNR), 
thus reducing the problem of channel estimation to that of 
designing optimal training sequences. In recent years, 
numerous channel measurements have shown that the 
multipath channels tend to exhibit cluster or sparse 
structures in which majority of the channel taps end up 
being either zero or below the noise floor (Yan et al., 
2007; Gui et al., 2011).  

However, traditional training-based linear methods 
that utilize linear reconstruction strategies at the receiver 
seem incapable of exploiting the potential sparse 
multipath channels, thereby leading to overutilization of 
the key communication  resources, such  as  energy  and
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Figure 1. Two-way relay network. 

 
 
 
bandwidth.  In other words, exploiting this channel 
sparsity will improve bandwidth efficiency. In this paper, 
we first introduce a sparse channel estimation technique 
with CoSaMP algorithm (Needell and Tropp, 2009) for 
TWRN. And we present a theoretical analysis on 
compressed channel estimation method and then 
confirmed it by computer simulations. 
 
 
SYSTEM MODEL  
 
Consider a two-way relay network (TWRN) where the two 

terminal users, 
1T  and 

2T , exchange information by the 

assistance of an relay is shown in Figure 1. And it works 
under amplify-and-forward (AF) protocol. The signal 
exchange in TWRN is divided into two phases: 
transmitting period and broadcasting period. The relay 
and two terminals are assumed to have one antenna 

each. Let channel impulse responses 
ih  ( 1,2i ) be the 

deterministic (but unknown) iK -sparse impulse 

responses of the frequency-selective fading channels 
between terminals and relay. Assuming that the channel 

vector 
ih  is comprised of 

iL   ( 1,2i ) paths. The 

multipath impulse response, ( )ih , can be expressed as 

(Adachi et al., 2009): 
 

1

,

0

( ) ( )
iL

i i l l

l

hh ,  1,2i .                                       (1) 

 

Due to the ,  1,2i ih   are sparse multipath channels, it 

should be noted that ,i iK L , that is to say, on these 

kind of channels which were supported by few significant 
channel taps, while most of channel taps are approximate 
to zero or under the noise floor. A example of sparse 
multipath channel is shown in Figure 2. They are 
assumed to be zero-mean circularly symmetric complex 

Gaussian random variables with variance 
2

ih . The 

average transmission powers of 
1T , 

2T  and relay are 
1P , 

2P  and rP , respectively. For the time being, we assume 

perfect synchronization among three terminals.  

At the first time slot, two terminals 
1T  and 

2T  send out 

data symbols CN

id ( 1,2i ), the power constraints of 

the transmission is
2

2
E{ }i iPd , 1,2i , where E[ ]  is the 

ensemble average operation. The received signal 
1CN L

ry  at the relay R  can be expressed: 

 

1 1 2 2 ,r ry H d H d n                                                     (2) 

 
where 

1H and 
2H  are two circulant matrices with first 

columns of 1 1 ( )[ , ]T T

N Lh 0  and 2 1 ( )[ , ]T T

N Lh 0 , respectively; 

CN

rn is a complex Gaussian noise with zero mean and 

covariance matrix 
2{ }H

r r r NE n n I .  

To minimize the computational burden at R , which 
broadcasts the scaled version of this superposition signal, 
that is, R  works under the amplify-and-forward (AF) 
protocol. The received signal in Equation (2) is then 
amplified by a relay factor: 
 

1 2

2 2 2

1 2

,r

n

P

P Ph h
                                             (3) 

 
and then is broadcasted. Without loss of generality, we 

will only consider the channel estimation problem at 
1T , 

while the discussion for 
2T  can be made 

correspondingly. The received signal at 
1T  can be written 

as: 
 

1 1 1

1 1 1 1 2 2 2 ,

ry H y n

H H d H H d n
                                    (4) 

 

where 2 1 1rn H n n , 1 CN
n is a complex Gaussian 

noise with zero mean and covariance matrix 
22 2

2 2 1{ } ( )H

n Nn n H I . According to the System 

model (4), the maximum likelihood data detection (MLD) 

is done at the terminal 
1T  as: 
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Figure 2. An example of sparse multipath channel. 
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Observing Equation (5) we find that the exact knowledge 

of 
1H  and 

2H  are not required for ML data detection. 

Instead, the self- and the cross-products of the circulant 

channel matrices, that is, 
1 1H H  and 

1 2H H , are those only 

needed. Hence, these channel matrices can be directly 
estimated at  

1T . Comparing to the channel estimation at 

R , which the estimators 1H  and 2H  feed back the 

estimates to 
1T , there exist some advantages (Gao et al., 

2009), that is, estimation error and spectrum efficiency. 
However, channel estimation According to circulant 
matrix theory, , 1,2 i iH can be decomposed as:  

, 1,2, H

i i iH W Ξ W                                          (6) 

 

where ,0 , , 1Diag[ ,..., ,..., ] CN N

i i i k i NH H HΞ  is diagonal 

matrix about frequency-domain channel coefficients, and 
1 2

, 0
( ) , 0,..., 1

L j kl K

i k il
H h l e k N , and W  is the 

unitary discrete Fourier transform matrix with:  
 

21
, , 0,..., 1. mn j kl Ne m n N

N
W                               (7) 

 
Therefore, Equation (4) can be rewritten as: 
 

1 1 1 1 1 2 2 2.H H
y W ΞΞ Wd W ΞΞ Wd n            (8) 

 
Based on the discrete fourier transform (DFT), with a 

condition of (2 1)L N ， we observe that 1

H

iW ΞΞ W , 

1,2i  are the decomposition of a circulant matrix which 

are constructed from a convolution impulse response 

vector 
1 1( )h h h  and 

1 2( )g h h , respectively. The 

channel   length   of   h   or  g
  
 is   (2 1)L .  If  the  (8)  is  



 

 
 
 
 

pre-multiplied by W , then the received signal at terminal 

user 
1T  is given by: 

 

1 2Diag( ) Diag( ) ,y Wd Fh Wd Fg n                        (9) 

 

where F  is the first (2 1)L  columns of NW and 

1 1rn Ξ Wn Wn  denote complex Gaussian random 

noise vector with zero mean and covariance matrix of 
22 2

1{ } ( )H

n Nnn Ξ I . To be the convenient for 

compressive channel sensing, we rewritten (8) as simply 
system model: 
 

1 2 ,y D h D g n                                                (10) 

 

where Diag( ) , 1,2 i i iD Wd F denote transformed data 

symbols. After discussing the system model, we consider 
the signal self-interference removal and detection at the 
terminal 

1T . 

 
 
COMPRESSED CHANNEL ESTIMATION 
 
From Equation (6), it can be understood that the exact 
knowledge of channel vectors 

1h  and 
2h  are not 

required for self-information removal and coherent 

detection. Only composite channel estimators b̂  and 

ĉ are necessary. Suppose that 
1x  and 

2x   are training 

sequences which are independent of data 
id  ( 1,2i ). 

Hence, training-based sparse channel model and 
received signal can be given by: 
 

1 2 ,try x b x c n                       (11) 

 
According to the random matrix theorem (Gray, 2006), 
circulant matrices have convolutional structure inherent to 
linear systems identification problems. Thus, system 
model (7) can be rewritten using linear matrix-vector 
product form as: 
 

1 2 ,try X b X c n Xθ n                         (12) 

 

where
(4 2)

1 2, CN L
X X X


 and 4 2[ , ] CT T T L

θ b c  . 

Define 2 2N N L  where 
1,2iX are (2 1)N L partial 

circulant channel matrix whose first row and first column 

can written as 2 2[ (0), ]T

i Lx 0  and 2 2[ , ]T T

i Lx 0  , respectively.  

For compressed channel estimation in the AF-TWRN, 
we employ totally separated training period and data 
transmission period. Hence, we will only consider 
training-based channel estimation problem in this part. 
According  to  Equation   12,   the   detail   of  the  sparse  
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channel estimation can be implemented by CoSaMP 
(Needell and Tropp, 2009) as follows: 
 

(i) Input: 
1X , 

2X , S  and y , that are training sequences 

transmitted from 
1T  and 

2T , the number of dominant 

channel taps of θ , observation vector y  at 
1T . The 

superimposed training sequence 
1 2,X X X  is combined 

with 
1X  and 

2X which satisfy RIP with overwhelming 

probability.  

(ii) Output: Channel estimator θ̂  which includes b̂  and ĉ . 

Initialize the number of nonzero taps: 0 . 

Initialize the residual: 0r y . 

 
While stopping criterion { : 4  100}i i S i³ =  is not satisfied, 

Do 

Channel identification: i

iQ = X r , select supp( ,2 )
i

i

P iQ S . 

Update the channel dominant taps: 1

i

i i i

P . 

Channel estimation with LS: †ˆ
i

iθ X y . 

Prune non-dominant channel coefficients: ˆsupp( , )i i

D Sθ  

and 
( )

ˆ 0i c
D

iθ . 

Update the estimation residual: ˆ( )i i
D D

i i

ry y X θ  

End while 
 

(iii) Remark: The channel estimates  θ̂  by the proposed 

estimation method, and then separate the θ̂  into b̂  and ĉ . 

supp( ,2 )
i

i

Q iQ S  means to that it select the maximum 

2S  dominant channel coefficients in 
iQ . c  denotes the 

complementary set of . 
 
 

SIMULATION RESULTS 
 

In this study, the mean square error (MSE) performance 
of the proposed method with CoSaMP algorithm (Needell 
and Tropp, 2009) is evaluated by simulations.  

For the purpose of comparison, the MSE performance 
of other existing algorithms such as LS channel estimator 
and lower bound (the positions of dominant taps are 
perfect known) will also be evaluated as for reference. 
The simulation parameters are given in Table 1. We 

always fix 
1 2 rP P P P  and SNR is defined as 2

nP . 

At first, MSE performances of channel estimators are 
plotted as a function of signal-to-noise (SNR) in Figures 3 
and 4, with the training sequence length 40,60,80M , as 

a parameter. The proposed method has a small gap to 
lower bound but has better than LS-based linear channel 
estimation. By increasing the more training sequence the 
better MSE performance can be obtained.  Secondly, we 
have evaluated the  complexity  ratio  between  proposed  
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Table 1. Simulation parameters. 
 

channel estimation 
Linear estimation method LS 

Compressed channel estimation CoSaMP 

Channel fading Frequency-selective block fading 

Channel length  ( 1h , 2h ) 16 1,2iL i  

Channel length ( b , c ) (2 1) 31iL  

Taps coefficients Random Gaussian independent variables 

SNR (dB) 0~30 

Training signal  Random Toeplitz structure 

Length of training signal M = 40,60,80 

Monte Carlo M = 1000 trails 
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Figure 3. MSE performance of (b) versus SNR. 

 
 
 

method and LS-base channel estimation. It can be seen 
that the computational complexity (CC) of proposed 
method is about 3.5 times higher than the LS-based 
channel estimation as shown in Figure 5. Therefore, the 
proposed method can achieve better channel estimation 
than LS based method at the cost of increased 
computational complexity. 

CONCLUSIONS 
 
In this paper, we proposed a compressed channel 
estimation method to address the problem in this paper.  
Both the theoretic analysis and computer simulations 
have confirmed performance of the proposed method. 
Furthermore, the computational complexity of our 
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Figure 4. MSE performance of (c) versus SNR.  
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Figure 5. Computational complexity comparion (CCC). 
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proposed algorithm has a low complexity that of the LS- 
based channel estimation. According to the above 
studies, we conclude that the proposed method 
combined the robust to noise and efficient to complexity. 
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