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This paper tackles university course timetabling problems (UCTP) to find a (near) optimal solution 
(timetable) while satisfying hard constraints (essential requirements) and minimizing as much as 
possible the violations of the soft constrains (desirable requirements). In this study, we apply three 
algorithms, that is, Great Deluge, Simulated Annealing and Hill Climbing where the Round Robin 
algorithm is used as control strategy in choosing the algorithm to be employed at the current stage. 
The performance of the approach is tested with over two sets of benchmark datasets, that is, 
enrolment-based course timetabling and curriculum-based course timetabling (UD1) in comparison with 
a set of state-of-the-art methods from the literature. The experimental results show that the proposed 
approach is able to produce competitive results for the test UCTPs.  
 
Key words: University course timetabling problem, round robin, great deluge, simulated annealing, hill climbing 
algorithm. 

 
 
INTRODUCTION 
 
In university course timetabling problems (UCTP), a set 
of courses are scheduled into a given number of rooms 
and timeslots across a period of time. This usually takes 
place within a week and the resultant timetable replicated 
for as many weeks as the courses run. Also, students 
and teachers are assigned to courses so that the 
teaching delivery activities can take place. The course 
timetabling problem is subject to a variety of hard and 
soft constraints. Hard constraints need to be satisfied in 
order to produce a feasible solution. In contrast, 
violations of soft constraints are possible but must be 
minimized in order to achieve the best possible quality of 
the solution. 
Over the past four decades, researchers have proposed 

various approaches to solve university course timetabling 
problems by using  single-based  methods,  metaheuristic 
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methods (e.g. tabu search (Glover 1997), simulated 
annealing, and great deluge), population-based methods 
(e.g. genetic  algorithms and ant colony optimization), 
and hybrid/hyper-heuristic approaches, etc. Interested 
readers are referred to Lewis (2008) for a comprehensive 
survey of the university timetabling approaches in recent 
years and (Ross and Corne 1995) for a comparison 
between a genetic algorithms, simulated annealing and 
stochastic hill climbing. The following provides an 
overview of techniques which have been used to find 
solutions to various formulations of the course timetabling 
problem in the past. Socha et al. (2002) employed a local 
search and ant based algorithms, tested on the eleven 
problems produced by Paechter’s

1
 course timetabling test 

instance generator (these instances are used to evaluate 
the method described in this paper). Burke et al. (2003a) 
introduced a tabu-search hyper-heuristic which was also 
tested on a nurse rostering problem. 
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The great deluge algorithm was employed by Burke et al. 
(2003b). Di Gaspero and Schaerf (2003) applied a multi-
neighbourhood search approach, tested on the same 
instances. Lewis and Paechter (2004) designed several 
crossover operators, tested on a further twenty instances 
generated by Paechter’s generator, used in the first 
competition in 2002 
(http://www.idsia.ch/Files/ttcomp2002).  

Kostuch and Socha (2004) investigated a statistical 
model in predicting the difficulty of timetabling problems 
particularly on the competition datasets. Kate et al. 
(2003) considered the discrete Hopfield neural networks 
for solving school timetabling problems. Kostuch (2005) 
presented a three phase approach employing simulated 
annealing and achieving 13 of the best results from the 
20 competition instances. A variable neighbourhood 
search with a fixed tabu list was employed by Abdullah et 
al. (2005). Asmuni et al. (2005) applied a fuzzy multiple 
heuristic ordering on the eleven standard benchmark 
datasets.  

Abdullah et al. (2007) developed an iterative 
improvement algorithm with composite neighbourhood 
structures and later combined this algorithm with a 
mutation operator. McMullan (2007) applied a two-
phased approach utilizing an adaptive construction 
heuristic and an extended version of the Great Deluge 
algorithm. Abdullah and Turabieh (2008) employed a 
genetic and local search approach on the eleven 
benchmark course data sets. Landa-Silva and Obit 
(2008) employed a non linear great deluge on the same 
instances.  

A great deluge with kempe chain neighbourhood 
structure was employed by Abdullah et al. (2010b) to 
solve university course timetabling. A gap between theory 
and practice in the area of university timetabling by 
McCollum (2007) and other related papers on Enrolment-
Based course timetabling problem are Burke et al. 
(2007), McCollum et al. (2010), Chiarandini et al. (2006) 
Lu and Hao (2008), and Dimopoulou and Miliotis (2004). 

Müller (2008) applied a constraint-based solver 
approach to the curriculum-based course timetabling 
problems in the 2nd International Timetabling 
Competition (Track 1 and 3) as introduced by Di Gaspero 
et al. (2007) and achieved first place in this competition. 
Lu and Hao (2010) applied a hybrid heuristic algorithm 
called adaptive tabu search to the same instances.  

Burke et al. (2009) introduced a new solver based on a 
hybrid meta-heuristic to tackle scheduling problems. They 
applied it first on the 2nd International Timetabling 
Competition (Track 3) and was able to achieve good 
solutions within a practical timeframe. Sadaf and 
Shengxiang (2010) proposed a hybrid approach to solve 
post enrolment course timetabling problem in two 
phases. First phase a genetic algorithm applied to guide 
the search as it uses a data structure to store useful 
information from previous good individuals.  Local  search 
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algorithms are used to enhance the individuals and tabu 
search algorithm applied on the best solution obtained 
from the first phase to improve the optimality of the 
solution. Other papers that tackle curriculum-based 
course timetabling problems can be found (Clark et al., 
2008; De Cesco et al., 2008; Geiger, 2008; Lach and 
Lubbecke, 2008).  
 
 
PROBLEM DESCRIPTION 

 
In this work, two sets of problems are considered, that is, 
enrolment-based course timetabling problem and curriculum-based 
course timetabling problem. The description of the problem is 
discussed as follows. 
 
 
Enrolment-based course timetabling problem  
 
The problem description that is employed for the first problem here 
is adapted from the description presented in Socha et al. (2002) 
who present the following hard and soft constraints: 
 
HC1. No student can be assigned to more than one course at the 
same time. 
HC2. The room should satisfy the features required by the course. 
HC3. The number of students attending the course should be less 
than or equal to the capacity of the room. 
HC4. Not more than one course is allowed to be assigned to a 
timeslot in each room. 
 
Soft constraints that are equally penalized are as follows: 
 
SC1. A student has a course scheduled in the last timeslot of the 
day. 
SC2. A student has more than 2 consecutive courses. 
SC3. A student has a single course in a day. 
 
The problem has: 
 
1. A set of n courses, E = {e0, e1,…,en-1} 
2. 45 timeslots, T = {t0, t1,…,t44}  
3. A set of m rooms, R = {r0, r1,…,rm-1}  
4. A set of q room features, F = {f0,…, fq-1}  
5. A set of v students S = {s0, s1,…,sv-1}. 
 
The objective of this problem is to satisfy the hard constraints and 
to minimise the violation of the soft constraints.  

The formula represents the objective function for this problem is 
given as below: 
 

 
 
 
Curriculum-based course timetabling problem 

 
This problem is taken from the international timetabling competition 
(ITC2007) that consists of the weekly scheduling of lectures for 
several university courses within a given number of rooms and time 
periods, where conflicts between courses are set according to the 
curricula of the university. The problem consists of the following 
basic entities: 
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Days, timeslots and periods 
 
The timetable consists of a number of teaching days in the week, 
usually 5 or 6 days according to the university system. Each day is 
split into a fixed number of timeslots, the same for all days. A period 
is the combination of day and timeslot. The total number of 
scheduling periods is the product of the number of days and 
number of timeslots. 
 
 
Courses and teachers 
 
Each course consists of a fixed number of lectures to be scheduled 
in distinct periods, attended by a given number of students, and 
taught by a teacher. For each course, there is a minimum spread (in 
terms of days) for the lectures of the course, and there are some 
periods in which the course cannot be scheduled. 
 
 
Rooms 
 
Each room has a capacity (number of available seats) and location 
(an integer value representing a separate building). Some rooms 
are not suitable for some courses due to a lack of required 
equipment. 
 
 
Curricula 
 
A curriculum is any pair of courses that have common students. 
Conflicts between courses and other soft constraints are built 
according to the curricula published by the university. 

The aim is to assign of all lectures of each course to a period (a 
pair composed of a day and a timeslot) and a room in order to 
achieve a solution, taking into account hard and soft constraints 
violations. All details, updates and news about the problem can be 
obtained via the website (http://tabu.diegm.uniud.it/ctt/index.php). 

The following hard and soft constraints are presented: 
 
Hard constraints: 

 
1. Lectures: All lectures of a course must be scheduled, and they 
must be assigned to distinct periods. 
2. Conflicts: Lectures of courses in the same curriculum or taught 
by the same teacher must all be scheduled in different periods. 
3. Room occupancy: Two lectures cannot take place in the same 
room in the same period. 
4. Availability: The teacher of the course must be available to teach 
that course at a given period; otherwise no lecture of the course 
can be scheduled at that period. 
 
Soft constraints: 
 
1. Room capacity. The number of students attending the course 
should be less than or equal to the capacity of the room. 
2. Minimum working days: The lectures of each course must be 
spread into the given minimum number of days.  
3. Isolated lectures: Lectures belonging to a curriculum should be in 
consecutive periods. 
3. Room stability: All lectures of a course should be given in the 
same room. 
 
 
THE PROPOSED ALGORITHM 
 
The search algorithm consists of two stages. The first stage, that is,  

 
 
 
 
a constructive stage is concerned to produce an initial solution 
where a least saturation degree heuristic and largest degree 
heuristic are used to generate initial solutions for enrolment-based 
and curriculum-based course timetabling problems, respectively. 
The second stage, that is, an improvement stage aims to optimise 
the quality of the generated timetables by minimising the violations 
of the soft constraint violations. 
 
 
Constructive heuristic  
 

Enrolment-based course timetabling problem (EBCTT) 
 
In this problem, a least saturation degree heuristic is used to 
generate initial solution starting with an empty timetable (McMullan, 
2007). Firstly, the events with fewer rooms available and more likely 
to be difficult to schedule will be attempted to be scheduled first, 
without taking into consideration the violation of any soft 
constraints. If a feasible solution is found, the algorithm terminates. 
Otherwise, neighbourhood moves (coded as N1 and N2) are applied 
with an aim to achieve feasibility. N1 is applied for a certain number 
of iterations (set to 500, from experimentation). If a feasible solution 
is met, then the algorithm stops. Otherwise, the algorithm continues 
by applying N2 neighbourhood move for a certain number of 
iterations. Across all instances tested, solutions were made feasible 
before the improvement algorithm was applied. The description of 
the neighbourhood moves can be found in “Neighbourhood moves” 
in this paper. 
 
 
Curriculum-based course timetabling problem (CBCTT) 
 

In this problem, a larger degree heuristic is employed that starts 
with an empty timetable (Gaspero and Schaerf, 2004). The degree 
of an event is a count of the number of other events which conflict, 
in the sense that students are enrolled in both events. This heuristic 
orders events in terms of those with the highest degree first (Landa-
Silva and Obit, 2008). The events with highest degree of conflict will 
be attempted first without taking into consideration the violation of 
any soft constraints, until the hard constraints are met. All events 
are scheduled by randomly selecting the timeslot and the room that 
satisfies the hard constraints. Some events cannot be scheduled to 
a specific room; in this case, they will be inserted in any randomly 
selected room. If all hard constraints are met, then the feasible 
solution is found and the algorithm terminates. Otherwise, 
neighbourhood moves as the one applied for the enrolment-based 
course timetabling problem is executed. 
 
 
IMPROVEMENT ALGORITHM 
 
During the optimisation process, the neighbourhood moves are 
applied in all three algorithms, that is, Hill Climbing, Great Deluge 
and Simulated Annealing. Hard constraints are never violated 
during the timetabling process. The general pseudo code of the 
improvement algorithm is given in Figure 1.  

The RR algorithm is employed to control the applying of the three 
algorithms, which are ordered in sequence. In this work, the 
algorithms are ordered as ALG1 (Hill Climbing), ALG2 (Great 
Deluge) and ALG3 (Simulated Annealing). A time quantum is 
assigned for each algorithm in equal portions, in a circular order. 
The algorithm is dispatched in a FIFO manner at a given quantum 
denoted as q_time which is set to 15 min as we did experiment with 
several time quantum, namely, 5, 10, 15, 20, 30 min. Finally we 
choose a fixed value (q_time = 15 min) is used for medium and 
large   data   sets,   and  10 s  for  small  datasets  (for  the  case  of
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Set the initial solution Sol by employing a constructive 
heuristic; 
Calculate initial cost function f(Sol); 
Set best solution Solbest ← Sol; 
Set quantum time, q_time; 
Set initial value to counter_qtime; 
 

 do while (not termination criteria) 
        Set a sequence algorithms in a queue which is ordered 
as   
        ALGi where i ∈ {1,…,K} and K = 3; 
         do while (q_time not met ) 
         Select an algorithm ALGi in the queue where i ∈ 
{1,…,K}; 
   A:  Apply ALGi on current solution, Sol to generate new  
         solution, Sol*; 
         if there is an improvement on the quality of the solution 
then 
            update Solbest, Sol; 
            repeat label A 
        else 
            reset ALGi parameters;  
            insert ALGi into the queue; 
            counter_qtime = q_time;  
 
Figure 1. The pseudo code for the improvement algorithm. 

 
 
 

Table 1. Parameter setting of the algorithm. 
 

Parameter 
Hill climbing Great Deluge Simulated annealing 

EBCTT CBCTT EBCTT CBCTT EBCTT CBCTT 

Number of  liter 10000 - 10000 - 10000 ـ 

Execution time (Seconds) - 600 600 ـ 600 ـ 

Initial temp. - 1000 1000 ـ ــ ـ 

Final temp. - 0.5 0.5 ـ ــ ـ 

Optimalrate - ـ ـ 0 0 ـ 

 
 
 
enrolment-based course timetabling problem. Details of the 
datasets are shown in Table 1). In this paper, all parameters used 
are based on a number of preliminary experiments. After the 
completion of the time quantum of a current algorithm, the 
preemption is given to the next algorithm to wait in a queue, and the 
next algorithm will start with best solution (Solbest). The pre-empted 
algorithm is then placed at the back of the queue, and its 
parameters are reset. The parameters involved in the great deluge 
algorithm are the estimated quality (coded as Optimalrate) and time 
to spend (coded as NumOfIteGD) as in Figure 2. When the 
algorithm ALGi is unable to generate a better solution during the 
given quantum time, the algorithm will be added into  the  queue.  In 

the next iteration (Figure 1), the first algorithm in the queue will be 
used to generate a new solution. Table 1 shows the parameter 
setting (which is based on preliminary experiments) used in this 
work for different sets of data tested here.  
 
 
Hill climbing algorithm   
 

In the hill climbing algorithm, the generated initial solution Sol is 
assigned as a current solution (denoted as SolHill) and best solution  
(denoted as SolbestHill). In each of the iteration, two neighborhood 
structures are employed  on  SolHill  to  generate  two  new  solutions 
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   Initialization  
 

   SolGD ← Sol; 
   SolbestGD ← Sol; 
    f(SolGD) ← f(Sol); 
    f(SolbestGD)← f(Sol) 
   Set optimal rate of final solution, Optimalrate;  
   Set number of iterations, NumOfIteGD;  
   Set initial level: Level ← f(SolGD);  
   Set decreasing rate ∆B= ((f(SolGD)–
Optimalrate)/(NumOfIteGD);  
   Set iteration ← 0;  
   Set not_improving_counter ← 0, not_improving_ 
length_GDA; 

 

Improvement  
 

Do while (not termination criteria) 

    Apply neighbourhood structure Ni where i ∈ {1,2} on 
    SolGD,TempSolGDi; 
    Calculate cost function f(TempSolGDi); 
    Find the best solution among TempSolGDi where i ∈ 

{1,2} call   
    new solution SolGD*; 
    if (f(SolGD*) < f(SolbestGD))  
        SolGD ← SolGD*;  
        SolbestGD ← SolGD*;  
        not_improving_counter ← 0;  
        level = level - ∆B;  
    else  
        if (f(SolGD*)≤ level)  
            SolGD ← SolGD*;  
            not_improving_counter ← 0;  
        else  
         not_improving_counter++;  
         if (not_improving_counter == 

not_improving_length_GDA)  
                level= level + random(0,3);  

 
Figure  2. The pseudo code for the Great Deluge. 

 
 
 
and the best is selected among of them, called TempSolHill. The 
f(TempSolHill) is compared to the f(SolbestHil). TempSolHill will be 
accepted when it does not worsen the overall solution value (that is, 
the sum of violated soft constraints). Then the current and best 
solutions within the hill climbing algorithm operations are updated 

(SolbestHill ← TempSolHill, SolHill ← TempSolHill). The process is 
repeated until the termination criterion is met, then the best solution 
obtained from the hill climbing algorithm (denoted as SolbestHill) is 
returned. 

 
 
Great Deluge algorithm    

 
Great Deluge algorithm uses a bound level that is imposed on the 
overall value of the current solution that the algorithm is working 
with as the generated solution is only accepted when the value of 
the solution after applying the neighbourhood does not exceed the 
level (McMullan, 2007). Figure 2 shows the pseudo code for great 
deluge algorithm. Here SolGD and SolbestGD are set to be Sol. 
The level starts at value (level = f(SolGD)), where SolGD is the 
current solution of great deluge algorithm where SolbestGD is the 
overall value of the best solution so far. The level is decreased after 
each iteration by ∆B (∆B = ((f(SolGD) –
Optimalrate)/(NumOfIteGD)), where Optimalrate is the estimated 
quality of the final solution that a user requires. 

Two of the neighbourhoods are applied to SolGD to obtain 
TempSolGDi. The best solution among TempSolGDi is identified, 
called, SolGD*. The f(SolGD*) is compared to the f(SolbestGD). If  it 

 
 
 
 

SolSA ← Sol; 
SolbestSA ← Sol 
f(SolSA) ← f(Sol); 
f(SolbestSA)← f(Sol) 
Set initial temperature T0 
Set final temperature Tf; 
Set decreasing rate α = (log (T0) - log (Tf)/Iter_max);  
Set not_improving_counter ← 0 
Set not_improving_ length_SA; 
 
do while (not termination criteria)     

 Define a neighbourhood Ni where i ∈ {1, 2} on SolSA to  
 generate TempSolSAi; 

    Calculate cost function f(TempSolSAi); 
    Find the best solution among TempSolSAi where i ∈ {1, 2}  
    call new solution SolSA*; 
        if (f(SolSA*) < f(SolbestSA))  
           SolSA ← SolSA*;  
           SolbestSA ← SolSA*;  
       else  
           not_improving_counter++;  
           if (not_improving_counter == not_improving_length_SA) 
              Generate a random number, RandNum in [0, 1]; 
              Calculate the acceptance propability of SolSA*,   
              Paccept(SolSA*) 
               if (RandNum < Paccept(SolSA*)) // Paccept(SolSA*) is a  
                  function to calculate the acceptance  probability of  
                  SolSA* 
                     SolSA ← SolSA*; 
               End if 
         end if 
         temp ←  temp/(1+ α); 
 end do; 
 return SolbestSA; 

  
 
Figure  3. The pseudo code for the simulated annealing. 

 
 
 
is better, then the current and best solutions are updated. 
Otherwise, f(SolGD*) will be compared against the level. If the 
quality of SolGD* is less than the level, the current solution, SolGD 
will be updates as SolGD*. Otherwise, the level will be increased 
with a certain number (which is set in between 1 and 3 in this 
experiment) in order to allow some flexibility in accepting worse 
solution. The process is repeated until the termination criterion is 
met. 
 
 
Simulated annealing algorithm 
 
Simulated annealing algorithm uses a temperature, temp. Here the 
current solution (SolSA) and the best solution (SolbestSA) are set 
as Sol. The same parameters as those employed in Abdullah et al. 
(2010) are used where the initial temperature T0 is equal to 1000; 
the final temperature Tf is equal to 0.5. Two neighbourhoods 
outlined in this paper are applied to SolSA to obtain TempSolSAi 
and choose the best among TempSolSAi called, SolSA*. A 
generated solution is accepted when it is not worsening the overall 
value of the current solution. Otherwise the worse solution is 
accepted with a probability as in Abdullah et al. (2010).  
 

    
 
Let f(SolSA) is the value of the current solution and f(SolSA*) is the 
value of the new solution after a number of non improvement 
(worse solution). Figure 3 shows the pseudo code for the simulated 
annealing. 



 

 

Abdullah et al.        1457 
 
 
 

Table 2. The parameter values for the course timetabling problem categories. 
 

Category Small Medium Large 

Number of courses 100 400 400 

Number of rooms 5 10 10 

Number of features 5 5 10 

Number of students 80 200 400 

Maximum courses per student 20 20 20 

Maximum student per courses  20 50 100 

Approximation features per room 3 3 5 

Percentage feature use 70 80 90 

 
 
 

Table 3. Results comparison. 

 

Data set Our best method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Small1 0* 2 0* 6 0* 0* 0* 3 0* 0* 0* 

Small2  0* 4 0* 7 0* 0* 0* 4 0* 0* 0* 

Small3 0* 2 0* 3 0* 0* 0* 6 0* 0* 0* 

Small4 0* 0* 0* 3 0* 0* 0* 6 0* 0* 0* 

Small5 0* 4 0* 4 0* 0 0* 0* 0* 0* 0* 

Medium1 117 226 242 372 317 221 80* 140 96 93 124 

Medium2 108 215 161 419 313 147 105 130 96 98* 117 

Medium3 135* 231 265 359 357 246 139 189 135 149 190 

Medium4 75* 200 181 348 247 165 88 112 79 103 132 

Medium5 160 195 151 171 292 130 88 141 87 98 73* 

Large 589 1012 - 1068 - 529 730 876 683 680 424* 
 

*The best results. 
 
 
 

At every iteration, temp is decreased by α, where α is defined as 
(log (T0) – log (Tf)/Iter_max) where Iter_max is the maximum 
number of iterations. The process is repeated until the termination 
criterion is met. The pseudo code for the simulated annealing 
algorithm shows in Figure 3. Based on our preliminary experiments, 
the counter of not improving solutions (not_improving_length_SA) is 
set to 20. 

 
 
Neighbourhood moves 
 

Two neighbourhood moves are employed in this approach as 
follows: 

 
N1: Choose a single course at random and move to a feasible 
timeslot that can generate the lowest penalty cost. 
N2: Select two courses at random from the same room (the room is 
randomly selected) and swap timeslots. 
 
 
EXPERIMENTAL RESULTS 

 
The algorithm is coded using Matlab under Windows XP 
and performed on the Intel 2.33 GHz computer and 
tested on enrolment-based benchmark  datasets  and  on 

curriculum-based course timetabling problems. For each 
benchmark data set, the algorithm was run with 11 test-
runs to obtain an average value. 
 
 

Enrolment-based course timetabling problem 
 

We evaluate our proposed approach on the instances 
taken from Socha et al. (2002), and  
http://iridia.ulb.ac.be/~msampels/tt.data/. These 
benchmark course timetabling problems was proposed 
by the meta-heuristics network that need to schedule 100 
to 400 courses into 45 timeslots that corresponds to 5 
days of 9 h each, whilst satisfying room features and 
room capacity constraints. They are divided into three 
categories: Small, medium and large. We deal with 11 
instances: 5 small, 5 medium and 1 large. The 
characteristics which define the categories are given in 
Table 2. 

The best results for 200000 iterations and out of 11 
runs obtained are presented. Table 3 shows the 
comparison of the approach in this paper with other 
available   approaches   in  the  literature.  These  include
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Figure 4. Box plots of the penalty costs for small, medium and large datasets. 

 
 
 
genetic algorithm and local search by M1-Abdullah and 
Turabieh (2008), randomised iterative improvement 
algorithm by M2-Abdullah et al. (2007), graph hyper 
heuristic by M3-Burke et al. (2007), variable 
neighbourhood search with tabu by M4-Abdullah et al. 
(2005), hybrid evolutionary approach by M5-Abdullah et 
al. (2007), extended great deluge by M6-McMullan 
(2007), non linear great deluge by M7-Landa-Silva and 
Obit (2008), electromagnetism-like mechanism approach 
by M8-Turabieh et al. (2009), Dual simulated annealing 
by M9-Abdullah et al. (2010), and  M10-Harmony search 
by Al-Betar et al.(2010). It can be seen that our approach 
is able to produce competitive results. From Table 3 it 
can be seen our approach has competitive results and 
better results on mediums 3 and 4. 

Figure 4 shows the box plots of the penalty cost when 
solving small, medium and large instances. The results 
for the large dataset are less dispersed compared to 
medium and small (where small instance shows a worse 
dispersed case in these experiments). 
 
 
Curriculum-based course timetabling problem 
 
Table 4  shows  the  main  features  of  these  instances, 

including: courses (C), total lectures (L), rooms (R), 
periods permday (PpD), days (D), curricula (Cu), min and 
max lectures per day per curriculum (MML). 

Here, same neighbourhood moves are applied on all 
datasets presented in Table 4. Table 5 shows the 
comparison between the best results obtained by our 
algorithm with the best known results from the literature. 
It can be clearly seen that the best results obtained by 
our approach are competitive to the previously best 
known results and able to obtain best result on the 
comp05, comp21,  DDS2 ,  DDS3 ,  DDS4 ,  DDS5 ,  
DDS6,and Test1-Test4 datasets. 

Figure 5 shows the convergence of the penalty cost for 
comp21 and Test1 datasets at every iteration. The x-axis 
represents the number of iterations, while y-axis 
represents the penalty cost. The trend of both graphs are 
similar which indicate that the algorithm behaves similar 
even though the features of the datasets maybe different. 

It can be seen from the figures that the penalty cost can 
be quickly reduced at the beginning of the search (shown 
as a steep slope) which increases the diversity and gives 
a greater chance to find better solutions. Later, the graph 
looks stagnant as the evolution continue. It means that 
the searching process is nearly converged whilst the 
possibility of finding improved solutions becomes smaller.
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Table 4. Description of the instances. 
 

Instance C L R PpD D Cu MML 

Comp01 30 160 6 6 5 14 2-5 

Comp02 82 283 16 5 5 70 2-4 

Comp03 72 251 16 5 5 68 2-4 

Comp04 79 286 18 5 5 57 2-4 

Comp05 54 152 9 6 6 139 2-4 

Comp06 108 361 18 5 5 70 2-4 

Comp07 131 434 20 5 5 77 2-4 

Comp08 86 324 18 5 5 61 2-4 

Comp09 76 279 18 5 5 75 2-4 

Comp10 115 370 18 5 5 67 2-4 

Comp11 30 162 5 9 5 13 2-6 

Comp12 88 218 11 6 6 150 2-4 

Comp13 82 308 19 5 5 66 2-3 

Comp14 85 275 17 5 5 60 2-4 

Comp15 72 251 16 5 5 68 2-4 

Comp16 108 366 20 5 5 71 2-4 

Comp17 99 339 17 5 5 70 2-4 

Comp18 47 138 9 6 6 52 2-3 

Comp19 74 277 16 5 5 66 2-4 

Comp20 121 390 19 5 5 78 2-4 

Comp21 94 327 18 5 5 78 2-4 

Dds1 210 900 21 15 5 99 3-7 

Dds2 82 146 11 11 6 11 3-6 

Dds3 50 206 8 11 5 9 3-6 

Dds4 217 972 31 10 5 105 3-6 

Dds5 109 560 18 12 6 44 3-6 

Dds6 107 324 17 5 5 62 2-4 

Dds7 49 254 9 10 6 37 3-6 

 
 
 

Table 5. Best results and comparison with other algorithms. 
 

Dataset Our method M1 M2 M3 M4 M5 M6 M7 M8 

Comp01 5* 5* 13 5* 5* 9 5* 5* 5* 

Comp02 43* 43* 43 75 34 103 108 50 60 

Comp03 77 72 76 93 70* 101 115 82 81 

Comp04 38 35* 38 45 38 55 67 35 39 

Comp05 311* 298 314 326 298 370 408 312 321 

Comp06 44 41* 41 62 47 112 94 69 45 

Comp07 19 14* 19 38 19 97 56 42 21 

Comp08 44 39* 43 50 43 72 75 40 41 

Comp09 108 103* 102 119 99 132 153 110 102 

Comp10 13 16 14 27 16 74 66 9 17 

Comp11 0 0 0 0 0 1 0* 0* 0* 

Comp12 339 331 405 358 320* 393 430 351 349 

Comp13 69 66 68 77 65 97 101 68 73 

Comp14 60 53 54 59 52* 87 88 59 59 

Comp15 76 84 - 87 69* 119 128 82 82 

Comp16 48 34 - 47 38 84 81 40 49 
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Table 5. Contd. 
 

Comp17 91 83 - 86 80* 152 124 102 81 

Comp18 84 83 - 71 67* 110 116 68 79 

Comp19 71 62 - 74 59 111 107 75 67 

Comp20 42 27 - 54 35 144 88 61 30 

Comp21 103* 103 - 117 105 169 174 123 110 

Dds1 143 - 132* 1024 - - - - 158 

Dds2 0 - 0* 0 - - - - 0* 

Dds3 0 - 0* 0 - - - - 0* 

Dds4 24 - 68 233 - - - - 28 

Dds5 0 - 0* 0 - - - - 0* 

Dds6 4 - 4* 11 - - - - 4* 

Dds7 0 - 0* 0 - - - - 0* 

Test1 227* - - 234 - - - - - 

Test2 16* - - 17 - - - - - 

Test3 83* - - 86 - - - - - 

Test4 89* - - 132 - - - - - 
 

M1: A constraint-based solver by Müller (2009); M2: Integer programming by Lach and Lübbecke (2010); M3: The dynamic tabu 
search by Cesco et al. (2008); M4: Adaptive tabu search by Lü and Hao (2010); M5: A repair-based timetable solver by Clark et al. 
(2008); M6: Threshold accepting met-heuristic by Geiger (2010); M7: Incorporating tabu search and iterated local search by Atsuta et 
al. (2008); M8: Great Deluge approach with Kempe Chain by Shaker and Abdullah (2009); *The best results. 

 
 
 

 
 
Figure 5.   Convergences of comp21 and test 1 datasets. 



 

 

 
 
 
 
CONCLUSION AND FUTURE WORK 
 

This paper presents hill climbing, great deluge and 
simulated annealing algorithms applied to the course 
timetabling problem. The round robin algorithm is 
employed on these algorithms to control the selection of 
the algorithms given a slice time or quantum. In order to 
test the performance of our approach, experiments are 
carried out based on course timetabling problems and 
compared with state-of-the-art methods from the 
literature. Preliminary comparisons indicate that our 
approach is competitive with other approaches in the 
literature and able to produce two best known solutions 
on mediums 3 and 4 dataset and best known result on 
the comp05, comp21,  DDS2, DDS3, DDS4, DDS5, 
DDS6, and Test1-Test4 datasets. In future work, efforts 
will be made to establish and compare in relation to 
previously reported literature. We believe that the 
proposed approach can be adapted with new problems, 
thus the Track 2 of ICT2007 will be the subject of future 
work. 
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