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This study aims to investigate comparison of radiation attenuation property of harzburgite mineral 
calculated by Monte Carlo (MCNP) and Artificial Neural Network (ANN). Slab sample modeled in MCNP 
with 1, 2 and 4 cm thickness was irradiated with parallel beam of monoenergetic particles. Incoming 
and outgoing particle fluxes were computed with F1 tally. Beer-Lambert equation was used to obtain 
mass attenuation coefficients for photon energies between 40 keV and 20 MeV. Optimum ANN model 
was obtained after trying different structures in terms of iterations and hidden layer numbers. For ANN 
calculation, parameters considered in the study are dose, thickness and mass attenuation coefficient. 
Dose and thickness are used as inputs to ANN for the estimation of mass attenuation coefficient. Model 
results are evaluated using root mean square errors (RMSE) and determination coefficient (R2) 
statistics. The estimates of selected ANN model were compared with MCNP results. Based on the 
comparison results, ANN was found good in prediction of mass attenuation coefficient for shielding 
material. Relationship between observed MCNP values and ANN estimates is noticeable with a high 
determination coefficient (R2) of 1 and has a root mean square error (RMSE) of 0.0033. 
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INTRODUCTION 
 
Many types of radiation, such as neutron and x-ray or 
photon, cause ionization of the media with which they 
interact, through a complicated mechanism involving the 
emission of energetic secondary charged particles. The 
ionizing ability of these types of radiation is the reason for 
the importance of studying shields. A shield is physical 
entity interposed between a source of ionizing radiation 
and an object to be protected, such that the radiation 
level at the position of the object will be reduced. The 
object to be protected is most often a human being, but it 
can be anything that is sensitive to ionizing radiation 
(Abdel-Aziz et al., 1995). 

There are many types of radiation and different ways 
and methods and materials to be protected from them 
have been used. For instant, to be protected from cosmic 
radiation containing many types of radiation with widely 
varying energies or radiation like ultraviolet A, B and C 
from the sun, lotion and sun glasses is used. But they 
can’t be used for walls of the nuclear power plant and 
radiotherapy rooms to stop radiation. 

Many materials have been used for  this  purpose.  One  

of these materials has been concrete. Concrete is consi-
dered to be an excellent and versatile shielding material; 
it is widely used for shielding nuclear power plants, 
particle accelerators, research reactors, laboratory hot 
cells and medical facilities. Concrete is a relatively inex-
pensive material, it can be easily handled and cast into 
complex shapes. It contains a mixture of various light and 
heavy elements and a capability for attenuation of photon 
and neutrons. By varying its composition and density and 
thickness the shielding characteristics of concrete may be 
adapted to a wide range of uses (Kaplan, 1989). 

As well radiation shielding, to measure or test linear 
attenuation coefficient (µ) and then total mass attenuation 
coefficients (µ/�) of material has importance. The linear 
attenuation coefficient is the probability of a photon 
interacting a particular way with a given material, per unit 
path length this coefficient is of great importance in 
matters concerning radiation shielding and its dimension. 
The mass attenuation coefficient (µ/�) is a measure of the 
average number of interactions between incident photons 
and  matter  that  occur  in  a  given  mass-per  unit   area 
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Figure 1. Schematic view of setup and collimations first method. 

 
 
 
thickness of the substance under investigation and direct 
measure the effectiveness of a shielding (Wood, 1982). 

Accepted three methods have been used for it. First 
one is physical test method. In this method, as shown in 
Figure. 1 the radioactive sources are shielded by the pin 
hole lead collimators to obtain a narrow beam. This form 
of narrow-beam experimental arrangement is called as 
good geometry. Also the detector is shielded by a lead 
collimator. The source-sample and sample-detector 
distance is set. Besides, the test room must be well-
shielded. 

In this method, there are some noted difficulties follows; 
1) Sources and detector is collimated to obtain a narrow 
beam. 2) If monoenergetic photons are considered for 
application, monoenergetic photons can’t always be 
produced. 3) The facilities to fulfill this test cannot be 
common. 4) For this method, we must have a sample 
produced, in case of getting insufficient result from test, 
go back and produce material again. It seems as waste 
of time, energy and materials. 5) And importantly, the 
measurement can be repeated a few times, this seems 
problem in point of improving the statistical error. 

Second one is biological method. In this method, 
biological objects (rat, blood, tissue etc.) are used. In the 
study of Gencel (Gencel et al., in press), rats were 
housed in concrete-protected cages and then irradiated 
(Figure 2). Thus, protective effect of shielding material is 
determined by dependent on effect of radiation on rat 
tissue. This method also seems hard since it needs 
interdisciplinary cooperation. 
The third one is simulation. The simulation has advan-
tage on first and second methods in point of difficulties 
mentioned above. Monte Carlo, XCOM, MERCSF-N and 
some other simulation programs have been used. But, 
Monte Carlo and XCOM are very famous of them and 
used and accepted all around the world. 

The calculation of the mass attenuation coefficients  for 

 
 
Figure 2. Experimental setup of concrete-
protected cage for second method. 

 
 
 
different building materials have been performed with a 
computer program developed by Berger and Hubbel 
called XCOM (Berger and Hubbel, 1987). 

Artificial Neural Networks (ANN) can supply meaningful 
answers even when the data to be processed include 
errors or are incomplete and can process information 
extremely rapidly when applied to solve engineering 
problems (Topcu and Saridemir, 2007; Lippman, 1987). 
Therefore, ANN have been used for many applications in 
various areas like environmental, biological, social, 
computer, earth, energy, civil and material sciences engi-
neering. However, very little study has been conducted 
about ANN for radiation shielding of materials. In this 
study, we aimed to investigate usage of ANN for this 
purpose by comparison with Monte Carlo. 
 
 
MATERIALS AND SIMULATION 
 
Monte Carlo method 
 
The Monte Carlo method is a numerical solution to a problem that 
models objects interacting with other objects or their environment 
based upon  simple  object-object  or  object  environment  relation-  
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Figure 3. Experimental geometry modeled with Monte Carlo. 

 
 
 
ships. There are many examples of the use of the Monte Carlo me-
thod that can be drawn from social science, traffic flow, population 
growth, finance, genetics, quantum chemistry, radiation sciences, 
radiotherapy, and radiation dosimetry. But, these works will concen-
trate on the simulation of photons being transported in condensed 
materials (Bielajew, 2001).  

In order to decide whether a Monte Carlo method should be 
applied to a given problem, it is reasonable to see how it compares 
with other available methods. In the case of integration, alternative 
numerical techniques have been the subject of extensive studies for 
centuries, and the widespread use of computers has led to 
considerable practical experience in this field (James, 1980). 

There is no need to argue about MCNP for this application. The 
literature is very rich in works dealing mass attenuation coefficients 
of materials. This method modeling interaction radiation with matter 
calculates particle energy, position, direction, travel and appropriate 
probability distributions and thus tries to estimate energy loss in 
each interaction and at the end it calculate absorbed radiation 
doses in the matter described in volume. 

With Monte Carlo code (Briesmeister, 2000), a point source in an 
empty space was modeled and the photons were transported from 
the source to a detector. Between detector and source the material 
shielding was put. Source-sample and sample-detector distance 
was 20 cm as seen in Figure 3. 

The density (�) and photon energy are the main parameters that 
affect the mass attenuation calculations.  

A shield material (rho, �, = 4 g/cm3) with slab geometry modeled  
in MCNP was irradiated with monoenergetic parallel beam coming 
the source. Particle fluxes were calculated with F1 tally of MCNP for 
energies between 40 keV and 20 MeV for harzburgite mineral. And 
then the  attenuation  coefficients  were  measured  by  using  Beer- 

Lambert’s law: 
 

µχ−= eII 0                                                                                 (1) 

 
Where x is the thickness of the sample under study, I0 is the 
number of counts representing the intensity of incident gamma-ray 
photons, at a specific energy, without attenuation and I is the 
gamma-ray counts that penetrated the absorber with attenuation in 
the sample. More conveniently, a coefficient that is density 
independent is the mass attenuation coefficient, defined as µ/� 
(cm2/g).  
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In this study, harzburgite as absorber material was used. Harz-
burgite is a green colored and fine-grained igneous rock consisting 
of olivine (mostly 70 - 90%), pyroxene with low-calcium (little10 - 
30%) and chromite (minor 1 - 2%) minerals. Harzburgite is the 
dominant rock of the upper part (30-200 km) of the Earth's mantle. 
Harzburgites are commonly derived from the upper mantle by 
partial melting of mantle peridotites (Blatt et al., 1996). Polarize 
microscope view is presented in Figure 4. Elemental composition of 
harzburgite mineral used is given in Table 1. 
 
 
Artificial Neural Networks (ANN) 
 
Artificial neural networks  (ANN)  are  a  functional  abstraction  of  the 
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Figure 4. The microscopical views from the harzburgite showing porphyroclastic texture. Olivine (A) and orthopyroxene 
(B) porphyroclasts are observed as corroded along their boundaries within anhedral olivine. Olivines included by chrome 
spinel and orthopyroxene.  

 
 
 

Table 1. Elemental composition of harzburgite. 
 

Element O Mg Al Si P Ca Cr Mn Fe Ni 
Weight (%) 44.4 26.4 0.418 20.8 0.013 0.529 0.288 0.093 6.0 0.223 

 
 
 

 
 
Figure 5. A simple neuron model. 

 
 
 
biological neutral structures of the central nervous system (Anderson, 
1983; Gunaydın and Dogan, 2004; Arbib, 1995; Anderson, 1995), 
though much of the biological detail is neglected (Lippman, 1987). 
The first studies on ANN are supposed to have started in 1943. 
McCulloch and Pitts defined artificial neurons for the first time and 
developed a cell model as in Figure 5 (Topcu and Saridemir, 2007). 
After this earliest and most basic model, many complex neural net 
applications and mechanisms have been shown up. As a result of 
these studies and developments in computer technology, use of ANN 
has become more efficient in 1980s (Topcu and Saridemir, 2007; 
Anderson, 1995). 

ANN is massively parallel systems composed of many processing 
elements connected by links of variable weights (Lippman, 1987). A 
weight is assigned to each connection which can be adjusted in such 
a manner when a set of inputs is given to the network, the associated 
connections will  produce  a  desired  output  (Topcu  and  Saridemir,  

2007). Of the many ANN paradigms, the multi-layer back propagation 
network (MLP) has been by far the most popular learning algorithms 
(Lippman, 1987). Among various architectures and paradigms, the 
back propagation networks being used in performing higher level of 
human task such as diagnosis, classification, decision-making, plan-
ning and scheduling (Sohabhon and Spethen, 1999). The network 
consists of layers of parallel processing elements, called neurons, 
with each layer being fully connected to the proceeding by inter-
connection strengths, or weights (W). Figure 6 illustrates a three-layer 
neural network consisting of layers i, j, and k, with the interconnection 
weights Wij and Wjk between layers of neurons. The process of deter-
mining ANN weights is called learning or training and is similar to 
the calibration of a mathematical model. The ANN are trained with a 
training set of input and known output data. At the beginning of 
training, the weights are initialized, either with a set of random 
values  or  based  on  some  previous  experience.  Initial  estimated  
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Figure 6. Plot of observed MCNP and predicted µ/� by ANN. 

 
 
 
weight values are progressively corrected during a training process 
that compares predicted outputs to known outputs, and back propa-
gates any errors (from right to left in Figure 6) to determine the 
appropriate weight adjustments necessary to minimize the errors. At 
this stage, the ANN is considered trained. 

The Levenberg-Marquardt training algorithm (Marquardt, 1963; 
Hagan and Menhaj, 1994) was used here for adjusting the weights. 
The adaptive learning rates were used for the purpose of faster 
training speed and solving local minima problem. For each epoch, if 
performance decreases toward the goal, then the learning rate is 
increased by the factor learning increment. If performance increases, 
the learning rate is adjusted by the factor learning decrement. The 
numbers of hidden layer neurons were found using simple trial-error 
method. 
 
 
Application of ANN and results 
 
A program code including neural networks toolbox, were 
written in MATLAB language for the ANN simulation. 
Different ANN architectures were tried using this code 
and the appropriate model structure was determined. 

A difficult task with ANN involves choosing parameters 
such as the number of hidden nodes, the learning rate, 
and the initial weights. Determining an appropriate archi-
tecture of a neural network for a particular problem is an 
important issue, since the network topology directly 
affects its computational complexity and its generalization 
capability. The optimum network geometry is obtained 
utilizing a trial-and-error approach in which ANN are 
trained with one hidden layer. It should be noted that one 
hidden layer could approximate any continuous function, 
provided that sufficient connection weights are used 
(Hornik et al., 1989). Here, the hidden layer node number 
of ANN model was determined after trying various 
network structures since there is no theory yet to tell how 
many hidden units are needed to approximate any given 
function. In the training stage, the same initial weights 
were used for each ANN networks. The sigmoid active-
tion function was used for the  hidden  and  output  nodes 

(Kocabas et al., 2008, 2009). 
The parameters considered in the study are the dose, 

thickness and mass attenuation coefficient (µ/�). The 
parameters the dose and thickness are used as inputs to 
the ANN for the estimation of mass attenuation coef-
ficient. Of the 99 experimental data sets, the 60 data are 
used to train the ANN and the remaining data are used 
for validation. The remaining 39 data sets are randomly 
selected among the whole data. The model results are 
evaluated using root mean square errors (RMSE) and 
determination coefficient (R2) statistics. These are 
defined as, 
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RMSE measure residual errors give a global idea of the 
difference between the observed and modeled values. 
And R2 provides the variability measure of the data 

reproduced in the model. MCNP)/( ρµ  is the average 

of  iMCNP ,)/( ρµ . 

Before applying the ANN to the data, the training input 
and output values were normalized using the equation: 
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Where minx  and  maxx   denote  the  minimum  and  maxi- 
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Table 2. The RMSE statistics obtained after different trials. 
 

Iteration Number 
RMSE 

50 100 150 200 250 300 
1 0.0438 0.0437 0.0437 0.0436 0.0436 0.0436 
2 0.0437 0.0437 0.0437 0.0436 0.0436 0.0436 
3 0.0041 0.0034 0.0033 0.0033 0.0034 0.0034 
4 0.0419 0.0074 0.0055 0.0049 0.0046 0.0045 
5 0.0050 0.0048 0.0048 0.0048 0.0048 0.0048 
6 0.0049 0.0048 0.0047 0.0047 0.0047 0.0047 
7 0.0057 0.0058 0.0068 0.0069 0.0069 0.0068 
8 0.0064 0.009 0.0083 0.0086 0.0087 0.0090 
9 0.0044 0.0045 0.0047 0.0048 0.0048 0.0049 

N
um

be
r o

f h
id

de
n 

la
ye

r 
no

de
s 

10 0.0077 0.0079 0.0083 0.0111 0.0121 0.0160 
 
 
 

Table 3. Comparison of µ/� obtained by MCNP and ANN for different energies. 
 

t = 1 cm t = 2 cm t = 4 cm 
Energy   (MeV) 

ANN MCNP ANN MCNP ANN MCNP 
0.05 0.400440 0.400642 0.400729 0.400834 0.401316 0.401275 
0.07 0.245682 0.244555 0.245407 0.245255 0.244861 0.245389 
0.1 0.179499 0.178389 0.179053 0.178395 0.178164 0.178652 
0.3 0.107823 0.107404 0.107326 0.107094 0.106346 0.107206 
0.6 0.080303 0.080307 0.079890 0.080193 0.079085 0.080017 
0.8 0.070204 0.070409 0.069844 0.070367 0.069149 0.070141 

1.25 0.056324 0.056327 0.056061 0.056408 0.055559 0.056245 
1.75 0.047479 0.047520 0.047291 0.047508 0.046939 0.047361 

4 0.031809 0.031683 0.031785 0.031617 0.031760 0.031633 
6 0.026917 0.026643 0.026955 0.026571 0.027053 0.026597 
9 0.023469 0.023382 0.023557 0.023358 0.023754 0.023354 

12 0.021733 0.021796 0.021852 0.021806 0.022108 0.021826 
18 0.020091 0.020264 0.020246 0.020362 0.020576 0.020463 

 
 
 
mum of the data. Different values can be assigned for the 
scaling factors a and b. There are no fixed rules as to 
which standardization approach should be used in 
particular circumstances (Dawson and Wilby, 1998). 
Range of 0.2 - 0.8 increases the extrapolation ability of 
the ANN models (Cigizoglu, 2003; Kisi, 2008; Kisi and 
Cobaner, 2009). Therefore, in this study the a and b were 
taken as 0.6 and 0.2, respectively. 

Different ANN structures are tried in terms of iterations 
and hidden layer numbers. The test RMSE statistics of 
the ANN models are given in Table 2. The best one that 
gave the minimum root mean square errors (RMSE) was 
selected. As can be seen from this table, the ANN (2, 3 
and 1) model comprising 2 input, 3 hidden and 1 output 
layer neurons has the lowest RMSE (0.0033). Mass 
attenuation coefficient obtained by both MCNP and ANN 
for different energies is presented in Table 3.  

The relationship between MCNP observation of µ/� and 
predicted µ/� by ANN is linear as shown in Figures 7, 8 
and 9 for 1, 2 and 4 cm thickness, respectively. 

The relationship between observed µ/� and predicted 
µ/� by ANN for t = 1, 2 and 4 cm is also linear as shown 
in Figure 10. The fit line equation coefficients of the ANN 
model, 0.9997 and 5E-5, are closer to the 1 and 0, 
respectively. The relationship between the observed 
values and the ANN model predictions is noticeable with 
correlation of R2 = 1.   

Observed µ/� values and predictions by ANN are 
shown in Figure 11. As can be seen from Figure 11, the 
ANN estimates catch the MCNP values with a high 
accuracy. 
 
 
Conclusion 
 
Artificial Neural Network (ANN) model was used for 
analysis of MCNP results in the present study. The opti-
mum ANN model was obtained after trying different 
structures in terms of iterations and hidden layer 
numbers. The estimates of the selected ANN model were  
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Figure 7. Comparison of µ/� calculated by MCNP and ANN for 1 cm material thickness. 

 
 
 

 
 
Figure 8. Comparison of µ/� calculated by MCNP and ANN for 2 cm material thickness. 

 
 
 

 
 
Figure 9. Comparison of µ/� calculated by MCNP and ANN for 4 cm material thickness. 
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Figure 10. General comparison between MCNP and ANN for µ/�. 

 
 
 

 
 
Figure 11. MCNP Observations and predicted µ/� by ANN. 

 
 
 
compared with the MCNP results. Based on the compa-
rison results, the ANN was found good in prediction of 
mass attenuation coefficient for a shielding material. The 
relationship between the MCNP values and the ANN esti-
mates is noticeable with a high determination coefficient 
(R2) of 1 and has a root mean square error (RMSE) of 
0.0033. 
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