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The aim of present paper is to define certain subclasses of analytic functions in connection with the 
convolution operator. Moreover, some inclusion relationships, radii problems and a sharp coefficient 
bound have been successfully derived. These innovations are of extreme importance for a wide range 
of physical problems. Results are very encouraging. 
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INTRODUCTION 
 
This paper witnesses the exploration of some new 
classes of analytic functions in connection with the 

convolution operator. We consider nA  as the class of 

functions of the form 
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which are analytic in the unit disc 

}.1:C{  zzE The class nA  is closed under the 

convolution, denoted and defined by 
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where )(zf is given by Equation 1, and 
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Here, we list some classes of analytic functions (Noor, 
2008). Let 
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then  nPzp ,)(   if and only if  

,)(Re zp .,10 Ez  It can be observed that  

  )(1,  PP    is the class of functions with real part 

greater than   and    PP 1,0  is the well known class 

of functions with positive real part. Next, we have the 

class  Pk,n  for  k 2,  
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with  ,1 zp     .,2 nPzp  For ,1n we have 

    kk PP 1, . It is to be highlighted that this class was 

introduced by Padmanabhan and Parvatham (1975).  

Moreover for  ,0,1  n  we obtain the class  

  kk PP 1,0  defined by Pinchuk (1971) and for 

),(),(,2 2 nPnPk    defined earlier. It is easy to 

see that     ,,nPzp k   if and only if there exists 

   nPzp k ,01   such that 
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Further in (Noor, 2008), the following subclasses have 
been studied: 
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We note that   kk RR 1,0 , the class of bounded radius 

rotation and   kk VV 1,0 , the class of bounded 

boundary rotation. For ,1,0,2  nk   these 

classes reduce to the well known classes of starlike and 
convex univalent functions. It is given in (Noor, 2008) that 

       .,, nRzfznVzf kk    With the help of 

convolution, we consider an operator  

nn

m AAD :   0NN,0 0  m  as follows: 
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and in general, we have  
 

      .N,0,)(*)(* 1   mzgfDDzgfD mm    (4) 

 

If )(zf  and )(zg  are given by Equations 1 and 2 

respectively, then from Equation 4 we have 
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From Equation 5, it can be easily verified that 
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For ,1n  this operator was introduced by Aouf and 

Seoudy ( 2010). For 1n and    ,
1 z
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   we have 
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  where 
mD  is the 

generalized Salagean operator (Al-Oboudi, 2004), which 

yields the Salagean operator (Salagean, 1983) 
mD  for 

.1 This operator was earlier studied by several 

authors in (Carlson and Shaffer, 1984; Dzoik and 
Srivastava, 1999) under specific conditions. 

 
 
 
 

Furthermore, for 1c  the generalized Bernardi 

operator (Bernard, 1969) for analytic functions is defined 
as: 
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After a simple calculation, Equation 7 can be written as: 
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Using the operator  D
m ,  we define some new classes of 

analytic functions as: 
 
 
Definition 1  
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Definition 2  
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Remark  
 

For special values of parameters km,,  and 
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  we have many known classes of analytic 

functions (Malik, 2010; Miller, 1975). 
 
 
RESULTS AND DISCUSSION 
 
Preliminary results 
 
Lemma 1 
 

Let     nPnPzp  ,0  for .Ez  (Bernardi, 1974; 

MacGergor, 1963; Shah, 1972). Then 
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Lemma 2  
 

Let 21 iuuu  and 21 ivvv   and let ),( vu  be a 

complex valued function satisfying the conditions (Miller, 
1975 ): 
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If  zh  is a function analytic in E  such that 

Dzhzzh  ))(),((  with 0))(),((Re  zhzzh   

for ,Ez  then  0)(Re zh  in .E   

 
 
Main results 
 
Theorem 1 
 

Let ).,,,()(  nmRzf g
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is given by 
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Proof: Let ),,,()(  nmRzf g

k . Then 

   .,* nRgfD k

m    Equivalently 
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where )(zH  is analytic in E  and 1)0( H . Using 

Equations 6 and 10, we obtain 
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Logarithmic differentiation yields 
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Since    ,,nPzH k  we can write 
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where       .,0, 21 nPnPzhzh   Then from 

Equations 11 and 12 we have 
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Now, for ,2,1i  we use Lemma 1, with ,rz  to have 
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After some simplifications, we obtain 
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The right side of inequality is positive if ,0

nrz  where 

nr0  is given by Equation 9. As a special case, when  

,0,1,1   n  we obtain  321

0 r  which is the 

well known radius of convexity for starlike functions. 
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Theorem 2 
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This completes the proof. 
 
 
Theorem 3 
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where  zH  is analytic in E  and    10 H . Using 

Equations 6 and 13, we obtain 
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Logarithmic differentiation yields 
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From Equations 14 and 15, we have 
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Since ),,,1,()(  nmRzf g

k  we have 
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We formulate a functional ),( vu by taking  
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The first two conditions of Lemma 2 are obvious. For the 
third condition, we proceed as follows: 
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We note that 0),(Re 12  viu if 0A and 0B . 

From  0A , we obtain 
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By virtue of Lemma 2, we see that 

   ,,0 nPPzp ni  for 2,1i  and .Ez  Hence, 

   nPzhi ,1  which implies ),()( 1 nPzH k   and 
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the proof. 
 
 

Theorem 4 
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where  zH  is analytic in E  with   10 H . Using 

Equations 6 and 17, we obtain 
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Logarithmic differentiation yields 
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Now using the same steps as in Theorem 3, we obtain 
the required result. 
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where  zH   is analytic in  E  with    10 H . Let  zH   
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From Equations 5, 18 and 19, we obtain 
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By using Cauchy's product formula (Goodman, 1983) for 
the power series, we obtain 
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This bound is sharp and the equality occurs for  
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where  zH   is analytic in E  and    10 H . Using 

Equation 8 and 20, we obtain 
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Now following the same steps as in theorem 3, we obtain 
the required result. 
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Now following the same steps as in Theorem 3, we 
obtain the required result. 
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Logarithmic differentiation yields 
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and this implies that     ,,nVzG k  which completes 

the proof. 
 
 
CONCLUSIONS 
 
Some new classes of analytic functions in connection 
with the convolution operator have been explored. 
Moreover, some inclusion relationships, radii problems 
and a sharp coefficient bound have also been 
successfully derived. It was also observed that the 
proposed innovations are of extreme importance for a 
wide range of physical problems.  
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