Full Length Research Paper

Certain subclasses of analytic functions

Muhammad Arif ${ }^{1}$, Saqib Hussain ${ }^{2}$ and Syed Tauseef Mohyud-Din ${ }^{3 *}$
${ }^{1}$ Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan.
${ }^{2}$ Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
${ }^{3}$ Department of Mathematics, HITEC University Taxila Cantt Pakistan.

Accepted 07 February, 2012

Abstract

The aim of present paper is to define certain subclasses of analytic functions in connection with the convolution operator. Moreover, some inclusion relationships, radii problems and a sharp coefficient bound have been successfully derived. These innovations are of extreme importance for a wide range of physical problems. Results are very encouraging.

Key words: Bounded boundary and bounded radius rotation, Salagean operator.

INTRODUCTION

This paper witnesses the exploration of some new classes of analytic functions in connection with the convolution operator. We consider A_{n} as the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{j=n+1}^{\infty} a_{j} z^{j},(n \in \mathrm{~N}=\{1,2,3, \ldots\}), \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z \in \mathrm{C}:|z|<1\}$. The class A_{n} is closed under the convolution, denoted and defined by

$$
(f * g)(z)=z+\sum_{j=n+1}^{\infty} a_{j} b_{j} z^{j},
$$

where $f(z)$ is given by Equation 1, and

$$
\begin{equation*}
g(z)=z+\sum_{j=n+1}^{\infty} b_{j} z^{j}, n \in \mathrm{~N} . \tag{2}
\end{equation*}
$$

Here, we list some classes of analytic functions (Noor, 2008). Let

[^0]$p(z)=1+\sum_{j=n}^{\infty} a_{j} z^{j}, z \in E$,
then $\quad p(z) \in P(\gamma, n)$ if and only if $\operatorname{Re} p(z)>\gamma, 0 \leq \gamma<1, z \in E$. It can be observed that $P(\gamma, 1)=P(\gamma)$ is the class of functions with real part greater than γ and $P(0,1)=P$ is the well known class of functions with positive real part. Next, we have the class $P_{k} \operatorname{ll}$ for k ロ2,
$P_{k}(\gamma, n)=\left\{p(z) \in A_{n}: p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z),\right\}$
with $\quad p_{1}(z), \quad p_{2}(z) \in P(\gamma, n)$. For $\quad n=1$, we have $P_{k}(\gamma, 1)=P_{k}(\gamma)$. It is to be highlighted that this class was introduced by Padmanabhan and Parvatham (1975). Moreover for $n=1, \gamma=0$, we obtain the class $P_{k}(0,1)=P_{k}$ defined by Pinchuk (1971) and for $k=2, P_{2}(\gamma, n)=P(\gamma, n)$ defined earlier. It is easy to see that $p(z) \in P_{k}(\gamma, n)$, if and only if there exists $p_{1}(z) \in P_{k}(0, n)$ such that
$p(z)=(1-\gamma) p_{1}(z)+\gamma, z \in E$.

Further in (Noor, 2008), the following subclasses have been studied:

$$
\begin{aligned}
& R_{k}(\gamma, n)=\left\{f(z): f(z) \in A_{n} \text { and } \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\gamma, n)\right\} . \\
& V_{k}(\gamma, n)=\left\{f(z): f(z) \in A_{n} \text { and } \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\gamma, n)\right\} .
\end{aligned}
$$

We note that $R_{k}(0,1)=R_{k}$, the class of bounded radius rotation and $V_{k}(0,1)=V_{k}$, the class of bounded boundary rotation. For $k=2, \gamma=0, n=1$, these classes reduce to the well known classes of starlike and convex univalent functions. It is given in (Noor, 2008) that $f(z) \in V_{k}(\gamma, n) \Leftrightarrow z f^{\prime}(z) \in R_{k}(\gamma, n)$. With the help of convolution, we consider an operator $D_{\lambda}^{m}: A_{n} \rightarrow A_{n}\left(\lambda \geq 0, m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}\right)$ as follows:
$D_{\lambda}^{0}(f * g)(z)=(f * g)(z)$,
$D_{\lambda}^{1}(f * g)(z)=(1-\lambda)(f * g)(z)+\lambda z\left(f^{*} g\right)^{\prime}(z)$,
and in general, we have

$$
\begin{equation*}
D_{\lambda}^{m}(f * g)(z)=D_{\lambda}\left(D_{\lambda}^{m-1}(f * g)(z)\right),(\lambda \geq 0, m \in \mathrm{~N}) \tag{4}
\end{equation*}
$$

If $f(z)$ and $g(z)$ are given by Equations 1 and 2 respectively, then from Equation 4 we have

$$
\begin{equation*}
D_{\lambda}^{m}(f * g)(z)=z+\sum_{j=n+1}^{\infty}[1+\lambda(j-1)]^{m} a_{j} b_{j} z^{j},\left(\lambda \geq 0, m \in \mathrm{~N}_{0}\right) . \tag{5}
\end{equation*}
$$

From Equation 5, it can be easily verified that
$\lambda z D\left(\begin{array}{l}m \\ \lambda\end{array}(f * g)(z)\right)^{\prime}=D_{\lambda}^{m+1}(f * g)-(1-\lambda) D_{\lambda}^{m}(f * g),(\lambda>0)$.
For $n=1$, this operator was introduced by Aouf and Seoudy (2010). For $n=1$ and $g(z)=\frac{z}{1-z}$, we have $D_{\lambda}^{m}(f * g)(z)=D_{\lambda}^{m}(f)(z)$, where $\quad D_{\lambda}^{m}$ is the generalized Salagean operator (Al-Oboudi, 2004), which yields the Salagean operator (Salagean, 1983) D^{m} for $\lambda=1$. This operator was earlier studied by several authors in (Carlson and Shaffer, 1984; Dzoik and Srivastava, 1999) under specific conditions.

Furthermore, for $c>-1$ the generalized Bernardi operator (Bernard, 1969) for analytic functions is defined as:

$$
\begin{equation*}
J_{c} f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c} f(t) d t \tag{7}
\end{equation*}
$$

After a simple calculation, Equation 7 can be written as:

$$
\begin{equation*}
c J_{c} f(z)+z\left(J_{c} f(z)\right)^{\prime}=(c+1) f(z), z \in E . \tag{8}
\end{equation*}
$$

Using the operator D_{p}^{m}, we define some new classes of analytic functions as:

Definition 1

Let $f(z), g(z) \in A_{n}, m>0, \lambda>0,0 \leq \gamma<1, z \in E$, then $f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$ if and only if

$$
D_{\lambda}^{m}(f * g) \in R_{k}(\gamma, n)
$$

Definition 2

Let $f(z), g(z) \in A_{n}, m>0, \lambda>0,0 \leq \gamma<1, z \in E$, then $f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$ if and only if

$$
D_{\lambda}^{m}(f * g) \in V_{k}(\gamma, n)
$$

Remark

For special values of parameters λ, m, k and $g(z)=\frac{z}{1-z^{n}}$, we have many known classes of analytic functions (Malik, 2010; Miller, 1975).

RESULTS AND DISCUSSION

Preliminary results

Lemma 1

Let $p(z) \in P(0, n)=P_{n} \quad$ for $\quad z \in E \quad$ (Bernardi, 1974; MacGergor, 1963; Shah, 1972). Then
(i) $\left|\frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{2 n|z|^{n-1}}{1-|z|^{2 n}} \quad$ (MacGergor, 1963)
(ii) $\left|z h^{\prime}(z)\right| \leq \frac{2 n|z|^{n} \operatorname{Re} h(z)}{1-|z|^{2 n}} \quad$ (Bernardi, 1975)
(iii) $\frac{1-|z|^{n}}{1+|z|^{n}} \leq \operatorname{Re} h(z) \leq|h(z)| \leq \frac{1+|z|^{n}}{1-|z|^{n}} \quad$ (Shah, 1972)

Lemma 2

Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\Psi(u, v)$ be a complex valued function satisfying the conditions (Miller, 1975):
(i) $\Psi(u, v)$ is continuous in $D \subset C^{2}$.
(ii) $(1,0) \in D$ and $\operatorname{Re} \Psi(1,0)>0$.
(ii) $\operatorname{Re} \Psi\left(\right.$ iu $\left._{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$ with $\operatorname{Re} \Psi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

Main results

Theorem 1

Let $f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$. Then $f(z) \in R_{k}^{g}(\lambda, m+1, n, \gamma)$ for $|z|<r_{0}^{n}$, where r_{0}^{n} is given by

$$
\begin{equation*}
r_{0}^{n}=\frac{2 \lambda-\lambda \gamma-1}{\lambda(1-\gamma+n)+\sqrt{\lambda^{2}(1-\gamma+n)^{2}-(1-\lambda \gamma+\gamma)(2 \lambda-\lambda \gamma-1)}} \tag{9}
\end{equation*}
$$

Proof: Let $f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$. Then

$$
\begin{align*}
& D_{\lambda}^{m}\left(f^{*} g\right) \in R_{k}(\gamma, n) . \text { Equivalently } \\
& \frac{z\left(D_{\lambda}^{m}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m}\left(f^{*} g\right)}=H(z) \in P_{k}(\gamma, n), \tag{10}
\end{align*}
$$

where $H(z)$ is analytic in E and $H(0)=1$. Using Equations 6 and 10, we obtain

$$
\frac{D_{\lambda}^{m+1}\left(f^{*} g\right)^{\prime}}{D_{\lambda}^{m}\left(f^{*} g\right)}=\lambda H(z)+1-\lambda
$$

Logarithmic differentiation yields

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m+1}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m+1}(f * g)}=H(z)+\frac{z H^{\prime}(z)}{H(z)+\frac{1-\lambda}{\lambda}} . \tag{11}
\end{equation*}
$$

Since $H(z) \in P_{k}(\gamma, n)$, we can write
$H(z)=(1-\gamma)\left\{\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z)\right\}+\gamma$,
where $\quad h_{1}(z), h_{2}(z) \in P(0, n)=P_{n}$. Then from Equations 11 and 12 we have

$$
\begin{aligned}
& \frac{1}{(1-\gamma)}\left\{\frac{z\left(D_{\lambda}^{m+1}(f * g)\right)^{\prime}}{D_{\lambda}^{m+1}(f * g)}-\gamma\right\}=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{\left\{(1-\gamma) h_{1}(z)+\gamma\right\}+\frac{1-\lambda}{\lambda}}\right\} \\
& -\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{\left\{(1-\gamma) h_{2}(z)+\gamma\right\}+\frac{1-\lambda}{\lambda}}\right\} .
\end{aligned}
$$

Now, for $i=1,2$, we use Lemma 1 , with $|z|=r$, to have
$\operatorname{Re}\left\{h_{i}(z)+\frac{\lambda_{z z h_{i}^{\prime}}^{\lambda_{i}(z)}}{\left.\lambda^{\prime}(1-\gamma) h_{i}(z)+\gamma\right\}+1-\lambda}\right\} \geq \operatorname{Re} h_{i}(z)\left\{1-\frac{\frac{2 \lambda n n^{n}}{1-r^{2 n}}}{\left.\lambda\left\{(1-\gamma)\left(\frac{1-r^{n}}{1+r^{n}}\right)+\gamma\right\}+1-\lambda\right\}}\right\}$

After some simplifications, we obtain

$$
\operatorname{Re}\left\{h_{i}(z)+\frac{\lambda z z_{i}^{\prime}(z)}{\left.\lambda_{i}(1-\gamma) h_{i}(z)+\gamma\right\}^{\prime}+1-\lambda}\right\} \geq \operatorname{Re} h_{i}(z)\left\{\frac{1-2 \lambda(1-\gamma+n) r^{n}+(2 \lambda-2 \lambda y-1) r^{2 n}}{1-2 \lambda(1-\gamma) r^{n}+(2 \lambda-2 \lambda y-1) r^{2 n}}\right\}
$$

The right side of inequality is positive if $|z|<r_{0}^{n}$, where r_{0}^{n} is given by Equation 9. As a special case, when $\lambda=1, n=1, \gamma=0$, we obtain $r_{0}^{1}=2-\sqrt{3}$ which is the well known radius of convexity for starlike functions.

Theorem 2

Let $\quad f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$. Then $f(z) \in V_{k}^{g}(\lambda, m+1, n, \gamma)$ for $|z|<r_{0}^{n}$, where r_{0}^{n} is given by Equation 9.

Proof: Let $f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$. Then

$$
\begin{aligned}
& D_{\lambda}^{m}\left(f^{*} g\right) \in V_{k}(\gamma, n), z \in E \\
& \Leftrightarrow z\left(D_{\lambda}^{m}\left(f^{*} g\right)\right)^{\prime} \in R_{k}(\gamma, n), z \in E \\
& \Leftrightarrow D_{\lambda}^{m}\left(z\left(f^{*} g\right)^{\prime}\right) \in R_{k}(\gamma, n), z \in E \\
& \Leftrightarrow z\left(f^{*} g\right)^{\prime} \in R_{k}^{g}(\lambda, m, n, \gamma), z \in E \\
& \Leftrightarrow z\left(f^{*} g\right)^{\prime} \in R_{k}^{g}(\lambda, m+1, n, \gamma),|z|<r_{0}^{n} \\
& \Leftrightarrow D_{\lambda}^{m+1}\left(z\left(f^{*} g\right)^{\prime}\right) \in R_{k}(\gamma, n),|z|<r_{0}^{n} \\
& \Leftrightarrow z\left(D_{\lambda}^{m+1}\left(f^{*} g\right)\right)^{\prime} \in R_{k}(\gamma, n),|z|<r_{0}^{n} \\
& \Leftrightarrow D_{\lambda}^{m+1}\left(f^{*} g\right) \in V_{k}(\gamma, n),|z|<r_{0}^{n} \\
& \Leftrightarrow D_{\lambda}^{m+1}(f * g) \in V_{k}(\gamma, n),|z|<r_{0}^{n} \\
& \Leftrightarrow f \in V_{k}^{g}(\lambda, m+1, n, \gamma),|z|<r_{0}^{n} .
\end{aligned}
$$

This completes the proof.

Theorem 3

Let $f(z) \in A_{n}$. Then
$R_{k}^{g}(\lambda, m+1, n, \gamma) \subset R_{k}^{g}\left(\lambda, m, n, \gamma_{1}\right)$.
where γ_{1} is given by

$$
\gamma_{1}=-\frac{1}{4}\left[(2 \eta-2 \gamma+1)-\sqrt{(2 \eta-2 \gamma+1)^{2}+8(2 \eta \gamma+1)}\right]
$$

Proof: Let $f(z) \in R_{k}^{g}(\lambda, m+1, n, \gamma)$ and set

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m}(f * g)\right)^{\prime}}{D_{\lambda}^{m}(f * g)}=H(z) \tag{13}
\end{equation*}
$$

where $H(z)$ is analytic in E and $H(0)=1$. Using Equations 6 and 13, we obtain
$\frac{D_{\lambda}^{m+1}\left(f^{*} g\right)^{\prime}}{D_{\lambda}^{m}\left(f^{*} g\right)}=\lambda H(z)+1-\lambda$.

Logarithmic differentiation yields

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m+1}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m+1}\left(f^{*} g\right)}=H(z)+\frac{z H^{\prime}(z)}{H(z)+\eta} \tag{14}
\end{equation*}
$$

where $\eta=\frac{1-\lambda}{\lambda}$. Let

$$
\begin{equation*}
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{15}
\end{equation*}
$$

From Equations 14 and 15, we have

$$
\begin{aligned}
& \frac{z\left(D_{\lambda}^{m+1}(f * g)\right)^{\prime}}{D_{\lambda}^{m+1}\left(f^{*} g\right)}=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{h_{1}(z)+\eta}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{h_{2}(z)+\eta}\right\} .
\end{aligned}
$$

Since $f(z) \in R_{k}^{g}(\lambda, m+1, n, \gamma)$, we have
$h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)+\eta} \in P(\gamma)$, for $i=1,2$.
Let $h_{i}(z)=\gamma_{1}+\left(1-\gamma_{1}\right) p_{i}(z)$ for $i=1,2$. Then
$\left(\gamma_{1}-\gamma\right)+\left(1-\gamma_{1}\right) p_{i}(z)+\frac{\left(1-\gamma_{1}\right) z p_{i}^{\prime}(z)}{\gamma_{1}+\left(1-\gamma_{1}\right) p_{i}(z)+\eta} \in P$, for $i=1,2$.
We formulate a functional $\Psi(u, v)$ by taking $u=u_{1}+i u_{2}=p_{i}(z)$ and $v=v_{1}+i v_{2}=z p_{i}^{\prime}(z)$, then
$\Psi(u, v)=\left(\gamma_{1}-\gamma\right)+\left(1-\gamma_{1}\right) u+\frac{\left(1-\gamma_{1}\right) v}{\left(\eta+\gamma_{1}\right)+\left(1-\gamma_{1}\right) u}$.
The first two conditions of Lemma 2 are obvious. For the third condition, we proceed as follows:
$\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right)=\left(\gamma_{1}-\gamma\right)+\frac{\left(1-\gamma_{1}\right)\left(\eta+\gamma_{1}\right) v_{1}}{\left(\eta+\gamma_{1}\right)^{2}+\left(1-\gamma_{1}\right)^{2} u_{2}^{2}}$.

From $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have
$\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq \frac{A+B u_{2}^{2}}{2 C}$,
where
$A=2\left(\gamma_{1}-\gamma\right)\left(\eta+\gamma_{1}\right)^{2}-\left(1-\gamma_{1}\right)\left(\eta+\gamma_{1}\right)$,
$B=2\left(\gamma_{1}-\gamma\right)\left(1-\gamma_{1}\right)^{2}-\left(1-\gamma_{1}\right)\left(\eta+\gamma_{1}\right)$,
$C=\left(\eta+\gamma_{1}\right)^{2}+\left(1-\gamma_{1}\right)^{2} u_{2}^{2}$.
We note that $\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq 0$ if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain
$\gamma_{1}=-\frac{1}{4}\left[(2 \eta-2 \gamma+1)-\sqrt{(2 \eta-2 \gamma+1)^{2}+8(2 \eta \gamma+1)}\right]$
By virtue of Lemma 2, we see that $p_{i}(z) \in P_{n}=P(0, n)$, for $i=1,2$ and $z \in E$. Hence, $h_{i}(z) \in P\left(\gamma_{1}, n\right)$ which implies $H(z) \in P_{k}\left(\gamma_{1}, n\right)$ and consequently $f(z) \in R_{k}^{g}\left(\lambda, m, n, \gamma_{1}\right)$. This completes the proof.

Theorem 4

Let $f(z) \in A_{n}$. Then
$V_{k}^{g}(\lambda, m+1, n, \gamma) \subset V_{k}^{g}\left(\lambda, m, n, \gamma_{1}\right)$.
where γ_{1} is given by 9.8
Proof: Let $f(z) \in V_{k}^{g}(\lambda, m+1, n, \gamma)$ and set

$$
\begin{equation*}
\frac{\left(z\left(D_{\lambda}^{m}(f * g)\right)^{\prime}\right)^{\prime}}{\left(D_{\lambda}^{m}(f * g)\right)^{\prime}}=H(z) \tag{17}
\end{equation*}
$$

where $H(z)$ is analytic in E with $H(0)=1$. Using Equations 6 and 17, we obtain
$\frac{D_{\lambda}^{m+1}(f * g)^{\prime}}{D_{\lambda}^{m}(f * g)}=\lambda H(z)+1-\lambda$.
Logarithmic differentiation yields

$$
\frac{z\left(D_{\lambda}^{m+1}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m+1}\left(f^{*} g\right)}=H(z)+\frac{z H^{\prime}(z)}{H(z)+\eta}
$$

Now using the same steps as in Theorem 3, we obtain the required result.

Theorem 5

If $f(z) \in R_{k}^{g}(\lambda, m, 1, \gamma)$ and $f(z)=z+\sum_{j=n+1}^{\infty} a_{j} z^{j}$ then $\left|a_{j}\right| \leq \frac{[k(1-\gamma)]_{j-1}}{(j-1)![1+\lambda(j-1)]^{m} \mid b_{j}}$.

Proof: Let $\quad f(z) \in R_{k}^{g}(\lambda, m, 1, \gamma)$. Then $D_{\lambda}^{m}(f * g) \in R_{k}(\gamma)$, or equivalently

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m}\left(f^{*} g\right)}=H(z) \in P_{k}(\gamma), \tag{18}
\end{equation*}
$$

where $H(z)$ is analytic in E with $H(0)=1$. Let $H(z)$ be of the form

$$
\begin{equation*}
H(z)=1+\sum_{j=1}^{\infty} c_{j} z^{j}, z \in E \tag{19}
\end{equation*}
$$

From Equations 5, 18 and 19, we obtain

$$
\begin{aligned}
z+\sum_{j=2}^{\infty}[1+\lambda(j-1))^{m} a_{j} b_{j} z^{j} & =\left[z+\sum_{j=2}^{\infty}[1+\lambda(j-1))^{m} a_{j} b_{j} z^{j}\right]\left[1+\sum_{j=1}^{\infty} c_{j} z^{j}\right] \\
= & {\left[\sum_{j=1}^{\infty}[1+\lambda(j-1))^{m} a_{j} b_{j} z^{j}\right]\left[1+\sum_{j=1}^{\infty} c_{j} z^{j}\right], a_{1}=b_{1}=1 } \\
= & \sum_{j=1}^{\infty}[1+\lambda(j-1))^{m} a_{j} b_{j} z^{j} \\
& \quad+\left[\sum_{j=1}^{\infty}[1+\lambda(j-1))^{m} a_{j} b_{j} z^{j}\right]\left[\sum_{j=1}^{\infty} c_{j} z^{j}\right]
\end{aligned}
$$

By using Cauchy's product formula (Goodman, 1983) for the power series, we obtain

$$
\sum_{j=1}^{\infty}(j-1)[1+\lambda(j-1)]^{n} a_{j} b_{j} z^{j}=\sum_{j=1}^{\infty}\left[\sum_{i=1}^{j-1}[1+\lambda(i-1)]^{m} a_{i} b_{i} c_{j-i}\right] z^{j} .
$$

Equating the coefficients of z^{j} on both sides, we have
$(j-1)[1+\lambda(j-1)]^{m} a_{j} b_{j}=\sum_{i=1}^{j-1}[1+\lambda(i-1)]^{m} a_{i} b_{i} c_{j-i}$.
Since $H(z) \in P_{k}(\gamma)$, we have $\left|c_{j-i}\right| \leq k(1-\gamma)$. This implies

$$
\left|a_{j} b_{j}\right| \leq \frac{k(1-\gamma)}{(j-1)[1+\lambda(j-1)]^{m}} \sum_{i=1}^{j-1}[1+\lambda(i-1)]^{m}\left|a_{i} b_{i}\right|
$$

By using induction on j, we obtain

$$
\left|a_{j}\right| \leq \frac{[k(1-\gamma)]_{j-1}}{(j-1)![1+\lambda(j-1)]^{m}\left|b_{j}\right|}
$$

This bound is sharp and the equality occurs for $f_{0}(z) \in A$ such that

$$
\begin{aligned}
\frac{z\left(D_{\lambda}^{m}(f * g)\right)^{\prime}}{D_{\lambda}^{m}(f * g)}= & \left(\frac{k}{4}+\frac{1}{2}\right)\left(\frac{1+(1-2 \gamma) z}{1-z}\right) \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left(\frac{1-(1-2 \gamma) z}{1+z}\right)
\end{aligned}
$$

Theorem 6

Let $f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$ and J_{c} is defined by Equation 7 , then $J_{c} f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$.

Proof: Let $f(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$ and set

$$
\begin{equation*}
\frac{z\left[J_{c}\left(D_{\lambda}^{m}(f * g)\right)\right]}{J_{c}\left(D_{\lambda}^{m}(f * g)\right)}=H(z) \tag{20}
\end{equation*}
$$

where $H(z)$ is analytic in E and $H(0)=1$. Using Equation 8 and 20, we obtain

$$
\frac{(c+1) D_{\lambda}^{m}\left(f^{*} g\right)}{J_{c}\left(D_{\lambda}^{m}\left(f^{*} g\right)\right)}=H(z)+c .
$$

Logarithmic differentiation yields

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{m}\left(f^{*} g\right)\right)^{\prime}}{D_{\lambda}^{m}\left(f^{*} g\right)}=H(z)+\frac{z H^{\prime}(z)}{H(z)+c} . \tag{21}
\end{equation*}
$$

Now following the same steps as in theorem 3, we obtain the required result.

Theorem 7

Let $\quad f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$, then
$J_{c} f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$.

Proof: Let $f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$ and set

$$
\frac{\left(z\left[J_{c}\left(D_{\lambda}^{m}(f * g)\right)\right]\right)^{\prime}}{\left[J_{c}\left(D_{\lambda}^{m}(f * g)\right)\right]}=H(z)
$$

where $H(z)$ is analytic in E and $H(0)=1$. Using Equations 8 and 20, we obtain

$$
\frac{(c+1)\left(D_{\lambda}^{m}(f * g)\right)^{\prime}}{\left[J_{c}\left(D_{\lambda}^{m}(f * g)\right)\right]^{\prime}}=H(z)+c
$$

Logarithmic differentiation yields

$$
\frac{\left[z\left(D_{\lambda}^{m}(f * g)\right)^{\prime}\right]^{\prime}}{\left[D_{\lambda}^{m}(f * g)\right]^{\prime}}=H(z)+\frac{z H^{\prime}(z)}{H(z)+c}
$$

Now following the same steps as in Theorem 3, we obtain the required result.

Theorem 8

Let $f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)$ and $h(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$, we define

$$
\begin{equation*}
G(z)=\int_{0}^{z}\left[\left(D_{\lambda}^{m}(f * g)(t)\right)^{\prime}\right]^{\delta_{1}}\left[\frac{\left(D_{\lambda}^{m}\left(h^{*} g\right)(t)\right)}{t}\right]^{1-\delta_{1}} d t \tag{22}
\end{equation*}
$$

where $0 \leq \delta_{1} \leq 1$. Then $G(z) \in V_{k}(\gamma, n)$.
Proof: From Equation 22, we have

$$
z G^{\prime}(z)=\left[\left(D_{\lambda}^{m}(f * g)(z)\right)^{\prime}\right]^{\delta_{1}}\left[\left(D_{\lambda}^{m}(h * g)(z)\right)\right]^{1-\delta_{1}}
$$

Logarithmic differentiation yields
$\frac{\left(z G^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}=\delta_{1} \frac{z\left[\left(D_{\lambda}^{m}(f * g)\right)^{\prime}\right]^{\prime}}{\left[\left(D_{\lambda}^{m}(f * g)\right)^{\prime}\right]}+\left(1-\delta_{1}\right) \frac{z\left[\left(D_{\lambda}^{m}(h * g)\right)\right]^{\prime}}{\left[\left(D_{\lambda}^{m}(h * g)\right)\right]}$.

Since

$$
f(z) \in V_{k}^{g}(\lambda, m, n, \gamma)
$$

and
$h(z) \in R_{k}^{g}(\lambda, m, n, \gamma)$, we have

$$
\frac{\left(z G^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}=\delta_{1} h_{1}(z)+\left(1-\delta_{1}\right) h_{2}(z)
$$

where $h_{1}(z), h_{2}(z) \in P_{k}(\gamma, n)$. Since $P_{k}(\gamma, n)$ is a convex set, we have

$$
\frac{\left(z G^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \in P_{k}(\gamma, n)
$$

and this implies that $G(z) \in V_{k}(\gamma, n)$, which completes the proof.

CONCLUSIONS

Some new classes of analytic functions in connection with the convolution operator have been explored. Moreover, some inclusion relationships, radii problems and a sharp coefficient bound have also been successfully derived. It was also observed that the proposed innovations are of extreme importance for a wide range of physical problems.

REFERENCES

Al-Oboudi FM (2004). On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci., 27: 1429-1436.
Aouf MK, Seoudy TM (2010). On differential sandwich theorems of analytics functions defined by certain linear operator. Ann. Univ. Mariae Curie-Sklodowska Sect. A., 2: 1-14.
Bernardi SD (1969). Convex and starlike univalent functions. Trans. Am. Math. Soc., 135: 429-446.
Bernardi SD (1974). New distortion theorems for functions of positive real part and applications to the partial sum of univalent convex function. Proc. Am. Math. Soc., 45: 113-118.
Carlson BC, Shaffer DB (1984). Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal., 15: 737-745.
Dzoik J, Srivastava HM (1999). Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput., 103: 1-13.
Goodman AW (1983). Univalent Functions. Polygonal Publishing House, Washington, New Jersey, pp. 117-118.
MacGergor TH (1963). The radius of univalence of certain analytic functions. Proc. Am. Math. Soc., 14: 214-220.
Malik B (2010). Radii problems for certain analytic functions. J. King Saud Univ.(Science).doi:10.1016/j.jksus.2010.07 001.
Miller SS (1975). Differential inequalities and caratheodory functions. Bull. Am. Math. Soc., 81: 79-81.
Noor KI (2008). On some differential operators for certain class of analytic functions. J. Math. Ineq., 2: 129-137.
Padmanabhan KS, Parvatham R (1975). Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math., 31: 311-323.
Pinchuk B (1975). Functions of bounded boundary rotation. Isr. J. Math., 10: 6-16.
Salagean GS (1983). Subclasses of univalent functions. Lect. Notes Math. (Springer- Verlag), 1013: 362-372.
Shah GM (1972). On the univalence of some analytic functions. Pac. J. Math., 43: 239-250.

[^0]: *Corresponding author. E-mail: syedtauseefs@hotmail.com.

