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The present study is two-dimensional analysis of blood flow with variable viscosity through stenotic 
artery in the presence of transverse magnetic field in the porous medium. Blood flowing radially to 
walls of artery and axially through lumen has been determined through the solution of Navier Stoke’s 
equations and Darcy law. If deposition of low density lipoprotein (LDL) is taken into case, the coupled 
approach offers an understanding of practical problem of blood flow through stenosed artery. The 
analytical expressions for radial velocity, axial velocity, shear stress and pressure gradient are obtained 
in the presence of magnetic field using Frobenius method. The numerical results for radial velocity, 
axial velocity, pressure gradient and shear stress are expressed graphically. The results then obtained 
are discussed to provide physical interpretation. The investigation shows that hypertensive patients are 
more adequate to have heart circulatory problems. 
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INTRODUCTION 
 

The abnormal growth, reducing the lumen of artery is 
called stenosis (atherosclerosis). This can cause serious 
problems by reducing the blood supply. One of the 
reasons for formation of stenosis is accumulation of 
macromolecules or low density lipoproteins on the arterial 
wall. The concept of transport of molecules to walls of 
artery has been supported by many researchers. 
Deposition of LDL along the walls of artery can greatly 
affect the velocity of blood flowing through artery, which 
ultimately  affects   the   pressure  of  blood.  The  sudden  
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changes in blood pressure of human body can collapse 
the heart of human being resulting in chances of sudden 
death. 

Oka and Murata (1970) gave hydrodynamical theory of 
steady motion of blood through capillary with permeable 
wall. They were much interested to consider the 
exchange of fluid across the permeable wall. Many 
researchers have contributed in this field of research. 
Kenyon (1979) developed mathematical model of water 
flux through aortic tissue. Schneiderman et al. (1979) 
studied abnormalities in the exchange of substances 
between the arterial wall and the blood flowing within the 
lumen. Klancher and Tarbeill (1987) discussed a simple 
model of water flow through deformable porous media 
with   emphasis   on   application  to  arterial  walls.  They  
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modeled radially directed transport of water through 
arterial tissue, which is very important because 
transmural flow plays a significant role in accumulation of 
low density lipoproteins on the arterial walls. 

In general, biological systems are affected by an 
application of external magnetic field on blood flow, 
through human arterial system. Haldar and Ghosh (1994) 
discussed the effect of magnetic field on blood flow 
through a stenosed artery. Sanyal and Maji (1999) 
discussed a mathematical model of unsteady blood flow 
in the presence of mild stenosis. The effect of pressure 
gradient and wall shear stress on flow was obtained and 
shown graphically. Dash and Mehta (1996) studied 
casson blood flow in homogeneous porous medium. This 
analysis exactly fits on pathological condition of artery, 
where fatty plaques of cholesterol are formed in the 
lumen of the coronary artery. They applied Brinkman 
model on the Newtonian flow through a porous media in 
a tube. Mazumdar et al. (1996) have discussed the 
pulsatile flow of blood through constricted artery and 
computed the results for axial velocity and pressure 
gradient and shown graphically. Sanyal and Maiti (1998) 
investigated the effect of externally applied magnetic field 
on the pulsatile flow of blood through a stenosed artery. 
Numerical solutions of axial velocity and pressure 
gradient have been discussed graphically. 

Stangeby and Eithier (2002) worked out the coupled 
model of luminal blood flow and transmural fluid flow 
which was achieved through use of Brinkman’s model, 
extension of Navier stokes equation in porous media. 
These equations are solved by using Petrov-Galerkin 
finite element method. Chakravarty and Sen (2005) have 
presented mathematical model describing the dynamic 
response of heat and mass transfer in blood flow through 
bifurcated arteries under stenotic condition. Ai and Vafai 
(2006) developed coupled model of transport of macro 
molecules in the blood flow and in the arterial walls. They 
used this model to simulate the LDL transport in a 
stenosed artery with various area reductions and stenosis 
numbers. Rathod and Tanveer (2009), discussed 
pulsatile flow of blood through porous medium under the 
influence of periodic body acceleration by considering 
blood as couple stress fluid. They studied effects of 
magnetic field, body acceleration and permeability 
parameter with the help of graphs. The effect of body 
acceleration on pulsalite flow of Casson fluid through mild 
stenosed artery has been investigated by Nagarani and 
Sarojamma (2008). They solved the involved non-linear 
equations using perturbation analysis. Sapna (2009) 
analyzed power law blood flow through constricted artery 
and explained results for resistance to flow, apparent 
viscosity and wall shear stress numerically.   

In the present study, we discuss luminal blood flow 
along with the deposit of macromolecules to the walls of 
artery, which is being the main contributing factor for the 
development of stenosis in arteries here. The effect of 
externally applied transverse magnetic field over two- 
dimensional blood flow with homogenous porous medium 

 
 
 
 
and variable viscosity has been considered. The induced 
magnetic field has been neglected without loss of 
generality. 
 
 
MATHEMATICAL MODEL 
 
It is known that blood is complex fluid with erythrocytes, leucocytes, 
thrombocytes suspended in plasma. But, major part of plasma is 
occupied by erythrocytes. In the present model, the viscosity of 
blood depends on the concentration of cells in the whole blood, 
known as hematocrit. Therefore viscosity of blood is allowed to vary 
radially. The coefficient of viscosity of blood, given by Einstein, is 
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where *

0µ  is the coefficient of viscosity of plasma and h(r*) is 
hematocrit described by the formula 
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In equation (2), R0 is the radius of normal tube, hm is the maximum 
hematocrit at the centre of the tube and n is the parameter 
determining the shape of profile. 

In this present problem, we consider n = 2, so that 
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where, k = βhm,   a = 1 + k. 
 
The stenosis develops symmetrically about the axis and non-
symmetric with respect to radial coordinates and its geometry has 
been described by Haldar and Ghosh (1994). 
 

* *
1 * *

0
0

( ) 1 ( ) ( ) ,s sR z A l z d z d
R

− = − − − −  *
0d z d l≤ ≤ +         (4) 

 
where s( > 2) is a parameter determining the shape of stenosis, 
R*(z*) is radius of stenosed artery, l0 is length of stenosis and d 
indicates its location. 
 
In equation (4), A is given by 
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where ∈ denoted the maximum height of stenosis at 
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We consider steady, laminar, incompressible and axially symmetric 
developed flow of blood with variable viscosity through an artery 
with mild stenosis under the influence of transverse magnetic field 
which is governed by the equations: 
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The flow of fluid through porous walls is given by Darcy law 
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where *W is filtration velocity, *K  is permeability constant and 
equation of continuity is given by 
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The corresponding boundary conditions are given as follows: 
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Fluid exchange across the wall is given by 
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( )* * * *
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where *
0P  and *

extP  are prescribed pressures at inside and outside 
the wall of artery. Due   to deposits of high cholesterol from the 
blood, ultimately forms the stenosis. It is to be specifically 
mentioned here that for the low density lipoproteins (LDL) transport 
to walls of artery, the radial velocity plays important role as they 

move in this direction.  Let us consider 0R
L

∈= , where L is the 

characteristic length of the artery and ε is perturbation parameter. 
We introduce non-dimensional scheme as follows: 
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where *ρ  is the density of the fluid, *
0U  is the characteristic 

velocity and Re is Reynolds number. Using above non-dimensional 
scheme, the equations (3) and (5-9) in terms of non-dimensional 
variables, become 
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The boundary conditions in terms of non-dimensional variables are 
as follows: 
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The non-dimensional flux across any cross-section is prescribed by  
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Fluid exchange across the wall is given by 
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Using Perturbation technique, we can assume a solution in the form 
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Substituting (24) in equations (15) – (17), we obtain 
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etc.  
 
We attempt here to determine the zeroth order solution for the axial 
velocity, radial velocity and pressure gradient. On integration of 
equation (19), we get 
 

1AW
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Equations (25) can be solved with the help of equations (18) and 
(26) using Frobenius method. It is required that 0zv  is bounded at r 
= 0, the only possible series solutions of equations (25) are given 
by 
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0C and 0C  are taken as unity and 1 1 0m mC C+ += =  
On applying boundary conditions (21-23) on equations (27) and 
(31), we obtain 
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The non-dimensional shear stress on walls of artery is given by 
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Figure 1. Two-dimensional variation of radial velocity at different radial and axial positions. 
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RESULTS AND DISCUSSION 
                                    
The shape of constriction considered for numerical 
computations is the same as in Haldar and Ghosh 
(1994). It is difficult to handle the problem with the 
extended notions considered herein, but computation 
with MATLAB 7.01 makes it easier to describe the 
numerical results graphically for the present investigation. 

The flow investigation has been carried out by studying 
the effect of individual factors like magnetic field M, 
filtration coefficient Kf, permeability constant K, and 
parameter k which depends upon hematocrit. The main 
objective of the study is to find the role of  magnetic  field,  

parameter k, filtration coefficient, permeability constant 
on axial and radial velocity profiles, and pressure gradient 
at various axial and radial positions. Figure 1 shows the 
radial velocity profiles at different radial and axial 
positions. Here the radial velocity decreases with 
increase in z which is confirmed in Figure 2. Figure 2 
shows radial velocity profiles at various transmural 
pressures, that is, P=P0-Pext . We observe from Figure 2 
that, for an increase in transmural pressure, there is 
increase in radial velocity which results in increase of 
transmural filtration and ultimately changes the 
concentration at the maximum height of constriction. 
Therefore, the net uptake of LDL on arterial wall increases. 
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Figure 2. Variation of radial velocity with axis for different values of P. 
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Figure 3. Variation of radial velocity with axis for different values of fK . 
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Figure 4. Variation of radial velocity along axis for different values of K. 
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Figure 5. Variation of radial velocity with axis at different radial positions. 
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Figure 6. Two-dimensional variation of pressure gradient at different radial and axial positions. 
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Figure 7. Variation of pressure gradient with axis for different values of k. 

 
 
 
These numerical results are in agreement with the results 
obtained by Oka and Murata (1970). This is the reason 
that hypertensive patients are more prone to 
atherosclerosis. Figure 3 describes radial velocity at 
different values of filtration coefficient. We observe that 
filtration coefficient ‘Kf’ plays the same role as the 
transmural pressure because filtering deletes the 
obstacles of the flow significantly. The effect of filtration 
coefficient is much more pronounced as compared to 
increase in transmural pressure. Figure 4 shows radial 
velocity profiles for different values of permeability 

constant K. It is observed that radial velocity decreases 
as we move along stenosis and it is minimum at the peak 
of stenosis. Figure 5 represents the variation of radial 
velocity for different values of r. It shows that as we move 
away from the axis, the radial velocity increases, and on 
the axis, it is zero.  

Figure 6 represents the variation of pressure gradient 
at both radial and axial positions simultaneously. It 
exhibits that as we move along the axis of the tube, the 
pressure gradient increases and it is maximum at the 
maximum height of stenosis and then decreases rapidly.  
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Figure 8. Variation of pressure gradient with axis for different values of M. 
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Figure 10. Variation of axial velocity with axis for different values of k. 
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Figure 11. Variation of axial velocity with axis for different values of M. 

 
 
 
the  stenosis  and  then  it  again  increases.  It shows the 
signs of improper blood flow along the tube. As per 
Figure 10, the axial velocity increase with increase in the 
value of k. Similarly, Figure 11 demonstrates that 

increase in M(Hartmann number)  increases  the  velocity 
which is physically also true. Figure 12 gives the com--
puted results for shear stress. It also shows the expected 
patterns   and  the  results  are  comparable  with  various  
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Figure 12. Two-dimensional variation of shear stress at different radial and axial positions. 

 
 
 
previous studies. The shear stress is maximum at the 
peak of stenosis and then decreases.  
 
 
Conclusions 
 
Increase in radial velocity with increase in transmural 
pressure leads to more and more deposition of LDL at 
the maximum height of stenosis which shows that at the 
peak of stenosis, there would be maximum deposition in 
comparison to other positions of stenosis which results in 
intimal thickening of artery and makes it more stiffened in 
particular region causing disturbed flow patterns of blood. 

The effect of increase in pressure gradient results in 
the rise in systolic pressure and fall in diastolic pressure, 
which are very harsh conditions for diseased heart. 

The effect of magnetic field is more pronounced in 
comparison to hematocrit. Application of low strength 
magnetic field on stenosed artery can improve the blood 
flow up to some extent but application of high strength 
can cause death also. 

Shear stress increases on the walls of artery as we 
move along the axis of tube but it is interesting to note 
that as we move close to the height of stenosis, it gives a 
sharp increase which is a remarkable effect on the walls 
of artery, causing disturbance in blood flow. 

Walls shear stress increases as we move along the 
stenosis and then it decreases. It indicates that influence 
of shear stress on walls of artery leads to more and more 
deposition of LDL along the wall of artery. 

It is evident from axial velocity that due to stenosis 
there is a back flow and hence velocity becomes negative 
at the stenosis. 
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