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In this paper, the frame-error-rate (FER) performance of full-diversity high-rate space-time block-coded 
(STBC) system is presented for quadrature phase-shift keying (QPSK) digital modulation technique, 
which is using the numeric-variable-forgetting-factor (NVFF) least-squares (LS) algorithm based 

channel estimator. The STBC transmission data-rates 5 4  with two-transmitter antennas and 9 8  with 

four-transmitter antennas are achieved by maximizing the coding gain and by minimizing the peak-to-
minimum-power-ratio while using the selective power scaling of the information symbols, which also 
guarantees full-diversity in case of the two-transmitter antennas. The imperfect channel estimation 
leads to degradation in the FER performance of the low complexity maximum likelihood decoding 
algorithms, though the optimum power scaling factor is incorporated along with the constellation 
rotation scheme. Simulation results are presented to demonstrate that the FER performance of high-
rate STBC system under idealistic conditions is quite different from its performance under realistic 
wireless environment due to the channel estimation errors. Therefore, the tracking performance of the 
pilot channel estimator is found to play significant role in the overall performance evaluation of the 
proposed wireless systems under slowly time-varying channels also in case of the general M-ary 
phase-shift keying (M-PSK) constellations. 
 
Key words: Space-time block-code, coding gain, peak-to-minimum-power-ratio, numeric-variable-forgetting-
factor, variable-forgetting-factor, least-squares algorithm. 

 
 
INTRODUCTION 
 
A new class of full-diversity high-rate space-time block-
codes has appeared as a breakthrough in the emerging 
field of multiple-antenna wireless communication 
engineering (Das et al., 2006), which exploits the innate 
algebraic structure in the existing orthogonal designs 
based on the quaternions for two-transmitter (TXR) 
antennas (Alamouti, 1998) and quasi-orthogonal designs  
for four-transmitter antennas (Jafarkhani, 2001). The 

achievable transmission rate ,STBC symbol
R K P=   can  be 
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more than unity in the case of the space-time signals by 
using the concept of signal constellation rotation (Su and 

Xia, 2004) and selective power scaling; where P  time 

slots are used to transmit K  information symbols. Das et 
al. (2006) demonstrated that the incorporation of optimum 
selective power scaling factor in the high-rate space-time 
block-coded (STBC) signal constellation leads to the 
maximization of coding gain while minimizing the trans-
mission signal peak-to-minimum-power-ratio (PMPR). 
Consequently, it is apparent from the simulation results 
that the effective throughput of STBC system significantly 
increases under high signal-to-noise-ratio (SNR) 
conditions, which also supersedes the rate-1 Alamouti 
STBC system (Alamouti, 1998).  
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The simplest space-time block-code with complex 

orthogonal design is the 2 2×  code, which achieves 

, 1
STBC symbol

R =  at the full-diversity, which uses the low 

computationally complex maximum likelihood (ML) 
decoding algorithms. The two different configurations of 

2 2×  STBCs are as follows: 
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where ( )
*
 denotes the complex conjugate operator and 

( ) { }1 22 2 ,
COSET

X J x x=  (Das et al., 2006) is the coset 

of ( ) { }1 22 1 ,
TXR

X J x x=  (Alamouti, 1998) in Equations 1 

and 2, which form the basis of two different STBCs 

T C
X and X  in Equations 1 and 3 with the power scaling 

factor 1 Ks .  

The low complexity ML decoding procedure for STBC 
system requires the knowledge of perfect channel-state-
information (CSI) at the receiver, which seems to be 
impractical under the time-varying channel. Under such 
Rayleigh fading environment, the linear-least-squares 
algorithm (linear polynomial model-based approach 
(Borah and Hart, 1999)) using variable-forgetting-factor 
(LSn-VFF) is developed for the channel estimation (Song 
et al., 2002), which can be used for the pilot channel 
estimation under the nonstationary environment. The 
LSn-VFF algorithm is reported to perform well at high 
SNRs at the cost of increased computational complexity 
(Song et al., 2000). However, Kohli et al. (2011) 
presented a computationally efficient channel estimation 
method using the linear-least-squares algorithm in 
combination with the numeric-variable-forgetting-factor 
(LSn-NVFF), which is based on the extended estimation 
error criterion. In this correspondence, we propose the 
utilization of LSn-NVFF algorithm based estimated 
complex  channel  coefficient  matrix  for  the  information 

 
 
 
 
symbol detection in high-rate STBC wireless systems 
akin to that of Grover and Kohli (2011), which is expected 
to improve the bit-error-rate (BER) performance of the 
high-rate quasi-orthogonal STBCs (QSTBCs) even at the 
low SNRs. 

This paper is organized as follows. We first describe 
the proposed high date-rate STBC system model working 
under the time-varying environment. Then, we give 
details about the simulation results to compare the frame-
error-rate (FER) performance of proposed system using 
different polynomial based variable forgetting factor LS 
algorithms along with ML decoding algorithm. The main 
focus/emphasis is on the usage/incorporation of channel 
matrix obtained by using the LSn-NVFF (first-order 
polynomial based approach) and LSn2-NVFF (second-
order polynomial based approach) pilot channel 
estimation algorithms (Grover and Kohli, 2011), which is 
the estimated CSI. The value of NVFF increases under 
stationary conditions for the accurate channel estimation 
and its value decreases under nonstationary conditions to 
reduce the lag noise (Kohli et al., 2011). Finally, 
conclusions and future scope are given for the proposed 

high data-rate STBC, that is, , 1
STBC data

R >  wireless 

systems with quaternions and M-PSK constellations (Su 
and Xia, 2004). 
 
 
PARADIGM FOR HIGH DATA-RATE STBC SYSTEM 
 
We first consider a wireless system equipped with two-transmitter 
antennas and two-receiver antennas to explore the transmitter-
diversity as well as the receiver-diversity benefits as shown in 

Figure 1. The received signals (
T

X  configuration for 2 2×  

STBCs) can be arranged in the following matrix form using 
Equation 1 as: 
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where ˆ
TY  is the received symbol signal matrix, 

TZ  denotes the 

additive white Gaussian noise (AWGN) sample matrix with zero-

mean and variance 
2

ησ , T
X  is the transmitted symbol signal 

matrix with zero-mean and variance 
2

xσ , the symbol duration is 

s
T  and C  is the channel coefficient matrix. The channel 

coefficients are assumed to be flat-fading slowly time-varying, which 
follow the first-order autoregressive process, because the realistic 
channel variations can be well approximated by using the first-order 
Markov process (Kohli, 2011). In the block diagram shown in Figure  

1, the symbols 1x  and  2x  from quadrature phase-shift keying 

(QPSK) constellation are chosen for the data bit sets { }1 2d d  and 

{ }3 4d d , respectively if 0 0d = . Similarly, the symbols 1c
x  and
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Figure 1. The block diagram of data rate – 5 4  STBC with QPSK modulation for the 

proposed system. 
 
 
 

2c
x  are chosen from QPSK constellation as shown in Figure 2 for 

the data bit sets { }1 2
d d  and { }3 4

d d , respectively in case 

0
1d = . 

The channel coefficients are assumed to be constant for the 

period of 2 2sT with P = . To decode the actual transmitted 

symbol signal matrix 
T

X  from the processed received signal 

matrix 
ˆ
TY , we form the decision matrix 

ˆ
TX as: 

 

( )

ˆ ˆ ˆˆ ˆ

ˆ

H H H

T T T T

T T

X C Y C CX C Z

X ML X

= = +

=%
                                     (5) 

 

where ( ).
T

, ( ).
H

, ( ).ML  and 
TX%  are the simple transpose 

operator, the Hermitian transpose operator, the maximum likelihood 
operator and the finally detected symbol matrix, respectively. For 
the symbol decoding in Equation 5, we propose the usage of the 

estimated channel coefficient matrix Ĉ . If the estimated channel 

coefficient matrix approach the actual channel conditions, that 

is, Ĉ C→ , then only ( )* *

2 1 1 2
ˆ ˆ 0c c c c− → , 

( )* *

1 2 1 2
ˆ ˆ 0c c c c− →  and 

2 2 2 2

1 2Avg xSNR c c ησ σ → +
 

 are at each element of the 

decision matrix ˆ
TX . As the two-branch transmitter-diversity 

scheme with one receiver is equivalent to that of the two-branch 
maximal-ratio receive combining (MRRC) only under the perfect 
channel estimation conditions (Alamouti, 1998), therefore, 

the 2 2×  STBC system doubles the benefit of diversity gain by 
improving SNR at the receiver. For two equal power uncorrelated 
transmitters, while keeping the total transmitted power constant 

(Gesbert et al., 2003) that is, 2 2
TXR TXR TXR

P P P= + , the 

capacity of such multi-input multi-output system is given as: 
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(under ideal conditions with known channel coefficient matrix) 
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(under realistic conditions with estimated channel coefficient matrix)  

where, { }E  is the expectation operator and { }det  is the 

determinant operator for matrices. Similarly, the received signals 

(
C

X  configuration for 2 2×  STBCs) can be arranged in the 

following matrix form using Equation 3 as: 

 

1 2

1 2 1 2 1 2

* * * * * * * *

2 1 2 1 2 1 2 1

ˆ CC

C

c c

c c

c c c c

C ZY

X

x x
y y c c Ks Ks

y y c c x x
Ks Ks

η η

η η

 + ++ + + + + +      
= +      

+ − − + + −      + −
 14243 14424431442443
144424443

  (8) 

 

where ˆ
C

Y  is the received symbol signal matrix, C
Z  denotes 

AWGN sample matrix with zero-mean and variance 
2

ησ , C
X  is 

the transmitted symbol signal matrix with zero-mean and variance 
2 2

xc Ksσ  with real scalar 1Ks > . The symbols 
1c

x  and 
2c

x  

are scaled by the factor 1 Ks for the selective power scaling to 

guarantee the full diversity for the proposed high-rate STBC system 
with two-transmitter antennas, which is equivalent to the radius of 

inner QPSK constellation circle, whereas the QPSK symbols 
1

x  

and 
2

x  on the outer constellation circle are normalized to unity, 

which leads to the transmitted signal peak-to-minimum-power-ratio
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Figure 2. Signal constellation depiction for data rate - 5 4  STBC with QPSK modulation. 

 
 
 

 (PMPR) equal to 
2

1Ks > . To decode the actual transmitted 

symbol matrix 
C

X  from the processed received symbol signal 

matrix ˆ
CY , we form the decision matrix ˆ

CX  as: 
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where 
C

X%  is the finally detected symbol matrix. For symbol 

decoding in Equation 9, we propose the usage of the estimated 

channel coefficient matrix Ĉ  like in Equation 5. Subsequently, it 

can be demonstrated that: 
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which results in the ideal decoding of transmitted symbol signal 

matrix. After deciding about 
TX%  or 

CX%  using ML scheme, the final 

decoding of 
0d  is as follows: 

 

{ }

{ }
0

0

0

1

T

C

decoded X d

decoded X d

→ =

→ =

%

%
                      (12) 

 

To obtain the optimum value of power scaling factor Ks , we need 

to maximize the cost function given by 
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Figure 3. The block diagram of data rate – 9 8  STBC with QPSK modulation for the proposed system. 
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By simple mathematical simplification, it can be shown that the 

optimum value of Ks  is 3  (Appendix) and the achievable 

maximum transmission rate is , 5 4 1
STBC data

R = >  for non-zero 

positive value of Ks . Thus, the frame of five data bits may be 

decoded. 
Further, the aforementioned scheme can be extended to achieve 

the maximum transmission rate of , 9 8 1
STBC data

R = >  by using 

the four-transmitter antennas in combination with the concept of 
constellation rotation or rotation of information symbols (Su and Xia, 
2004; Jafarkhani and Seshadri, 2003) as shown in Figures 3 and 4. 
For the four-transmitter antennas case, the rate-1 complex quasi-
orthogonal space-time block-code (QSTBC) configurations are 
presented (Jafarkhani, 2001; Su and Xia, 2004; Grover and Kohli, 
2011). It follows that: 
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However, this QSTBC does not exhibit the full-diversity, as the 
diversity gain is sacrificed to boost the rate of this QSTBC design 
(Su and Xia, 2004). Here, the channel coefficients are assumed to 

remain unchanged for the duration of 4 4sT with P = . Similar to 

the two-transmitter antennas based STBC systems, it can be shown 
that: 
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where 
 

{ } { }1 2 1 2
1 , 1 ,J x x conjugate J x x =      (20) 

 

{ } { }1 2 1 22 , 2 ,c c c c
x x x x

J conjugate J
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 
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   (21) 

 
It is noteworthy that the following information symbols belong to M-

PSK constellation with the rotation angle φ  in the signal 

constellation (Su and Xia, 2004). 
 

3 1 4 2

j jx x e and x x eφ φ′ ′= =                   (22)
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Figure 4. Signal constellation depiction for data rate – 9 8  STBC with QPSK modulation. 

 
 
 

where { }1 21 ,J x x  and { }1 2
1 ,J x x′ ′  belong to the same constellation 

points. 
 

3 1 4 2
,j j

c c c c
x x e and x x eφ φ′ ′= =                   (23) 

 

where { }1 22 ,
c c

J x Ks x Ks  and { }1 22 ,c cJ x Ks x Ks′ ′  belong to 

the same constellation points. For simulation results presented 
subsequently, the optimum value of rotation angle is considered to 

be 4φ π= . In the block diagram as shown in Figure 3, the 

symbols 1c
x , 2c

x , 3c
x  and 4c

x  from the QPSK constellation are 

chosen for the data bit sets { }1 2d d , { }3 4
d d , { }5 6d d and { }7 8

d d , 

respectively if 
0 1d = . The symbols 1c

x , 2c
x , 3c

x  and 4c
x  are 

scaled by the factor 1 Ks  for the selective power scaling to 

guarantee high diversity gain for the proposed high-rate STBC 
system, which is equivalent to the radius of inner QPSK 
constellation circle as shown in Figure 4, whereas the QPSK 

symbols 1x , 2x , 3x and 4x  on the outer constellation circle are 

normalized to unity, which leads to the transmitted signal PMPR 

equal to 2 1Ks > . After deciding about 4TX%  or 
4C

X% , the final 

decoding of 0d  is as follows: 

 

{ }

{ }
4 0

4 0

0

1

T

C

decoded X d

decoded X d

→ =

→ =

%

%
              (24) 

 
Thus, the frame of nine data bits may be decoded to provide 

, 9 8 1
STBC data

R = > , in which the optimum value of 2Ks =  

is considered for MATLAB simulations in the simulation results. 

 
 
SIMULATION RESULTS 
 
For simulations, we consider a single antenna at the 
receiver along with maximum likelihood decoder. The 
performance index is effective throughput in terms of the 
FER, which is defined as: 
  

 ( ) , 21 logSTBC dataEffective Throughput FER R M= − × ×
 

                                                                             (25)  
 

In the case of , 5 4 1
STBC data

R = >  with QPSK modulation, 

the value of M = 4, and therefore, the maximum value of 
effective throughput is 2.5. However, the maximum value 
of effective throughput is 2.25 in case of 

, 9 8 1
STBC data

R = >  with FER = 0. To obtain simulation 

results for the proposed full-diversity high-rate STBC 
systems using the estimated CSI at the receiver, we 
considered the pilot channel tracking using LSn-VFF 
(Song et al., 2002), LSn2-VFF (Song et al., 2000), LSn-
NVFF (Kohli et al., 2011) and LSn2-NVFF (Grover and 
Kohli, 2011) adaptive algorithms. For smoothly time-varying
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Figure 5. Effective throughput comparison for rate – 5 4  STBC with power-scaling. 

 
 
 
varying fading channels, the LSn-NVFF algorithm 
reduces the tracking weight error more in comparison to 
LSn-VFF algorithm.  

For the throughput performance evaluation of the 
proposed high-rate STBC communication systems, the 
time-varying wireless fading channels with fading rate 

( ) 0.01
d s

f PT ≤  are assumed, where 
d

f  is the 

maximum Doppler frequency under nonstationary 
environment. The presented results are based on the 
ensemble average of 250 independent simulation runs for 
the different channel realizations; such that 

( )250

1 250
avg

m

FER m
FER

=

=∑ . For known CSI, rate-1 Alamouti 

STBC systems are compared with , 5 4
STBC data

R =  

STBCs, 3Ks =  and with , 5 4
STBC data

R =  STBCs, 

4 4

1 2,j j

c c
x e x e

π π
, 1Ks =  (ordinary M-PSK case) in 

Figures 5 and 6, respectively; which depict that the usage 
of optimum power scaling factor results in higher effective 
throughput than the optimum rotation angle based 
strategy under similar conditions for all the values of SNR. 
At high value of SNR, we can observe cross-over in the 
effective throughput performance because the optimum 
power scaling factor and optimum rotation angle based 
schemes outperform the Alamouti rate-1 STBC systems. 

For high-rate 
,

5 4 1
STBC data

R = >  and full spatial diversity ( )2 2×  

orthogonal STBC wireless systems, it may be inferred 
from Figures 5 and 6 that at the lower values of SNRs, 

2 2LSn NVFF LSn NVFF LSn VFF LSn VFF
FER FER FER FER− − − −< < <

 and at the higher values of SNRs,  

2 2LSn NVFF LSn VFF LSn VFF LSn NVFFFER FER FER FER− − − −< < <  

Similarly, for the high-rate , 9 8 1
STBC data

R = >  and partial 

spatial diversity ( )4 4×  quasi-orthogonal STBC wireless 

systems with 2Ks =  , it is apparent from Figure 7 that 

at the lower values of SNRs, 

2 2LSn NVFF LSn NVFF LSn VFF LSn VFFFER FER FER FER− − − −< < <  

and at the higher values of SNRs, 

2 2LSn VFF LSn NVFF LSn VFF LSn NVFF
FER FER FER FER− − − −< < <

 However, at high value of SNR, we can notice a clear 
cross-over in the effective throughput performance as 
shown in Figure 7, as the optimum power scaling factor 
and the optimum rotation angle based schemes 
outperform the rate-1 QSTBC systems. Slight overall 
performance degradation is evident in the high-rate 
QSTBC system due to the loss of diversity-gain caused 
by quasi-orthogonal designs. Therefore, if we know the 
operating SNR level at the transmitter, we can switch 
between different pilot channel estimators  to  control  the
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Figure 6. Effective throughput comparison for rate – 5 4  STBC with phase-rotation (M-PSK). 

 
 
 

 
 

Figure 7. Effective throughput comparison for rate – 9 8  STBC with phase-rotation and power-scaling. 

 
 
 
effective throughput of the high-rate proposed STBC 
systems.  
 
 
Conclusion 
 

In this correspondence, we proposed high-rate 

( , 5 4 1
STBC data

R = > ) with full-diversity gain and high-rate 

( , 9 8 1
STBC data

R = > ) with high partial-diversity gain 

space-time block-coded systems, while using estimated 
channel state information for symbol decoding at the 
receiver, which provide the maximum value of effective 
throughput 2.5 and 2.25, respectively with zero frame 
error rate. Under realistic wireless conditions, the QPSK 
and M-PSK digital modulation techniques have been 
incorporated in combination with the selective optimum 
power scaling and the optimum angle rotation for signal 
constellation. It may be inferred from the simulation 
results that the optimum power scaling factor provides an  



 
 
 
 
efficient solution to maximize the coding gain and to 
reduce PMPR of the transmitted signal, which results in 

better effective throughput of , 5 4 1
STBC data

R = >  STBC 

systems than the , 5 4 1
STBC data

R = >  STBC systems 

using pure angular rotations without power scaling. 
Similar throughput improvement is observed in the 

extended design of high-rate , 9 8 1
STBC data

R = >  STBC 

systems, though, there is diversity-gain loss due to the 
quasi-orthogonal design configurations. The cross-over 
points in the throughput performance versus SNR graphs 
give us an opportunity to choose appropriate pilot 
channel estimator for the proposed high-rate moderate-
diversity STBC systems. The proposed scheme can be 
extended using the eight-transmitter antennas with 
QSTBC (Su and Xia, 2004), but the throughput 
performance advantage is marginal because of diversity-
gain loss in final ML decoding using CSI. 

Future scope includes the merger of the proposed high-
rate space-time block-code scheme with orthogonal-
frequency-division-multiplexing communication systems 
in 4G for the enhancement of date transmission rates. 
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APPENDIX 
 
To calculate the optimum value of power scaling factor, 
the maximization of cost function in Equation 14 leads to 
 

( ) ( )

( ) ( )
( )

1 1 2 2

* * * *

2 2 1 1

1
c c

TC

c c

Ksx x Ksx x
D

Ks
Ksx x Ksx x

 + − + −
 =
 − + + + 

(A.1) 

       
 
It is a well known exposition that: 
 

{ } { } { }det det det
H H

TC TC TC TC
D D D D=     (A.2) 

 
Using Equation A.1, it can be demonstrated that 
 

{ }det
TC TC TC

D Ksα β= −                  (A.3) 

 
where  
 

( ) ( ) ( )2 2 2 22
21 2 1 2

1
TC c c

x x Ks x x
Ks

α  = + − +
 

   (A.4) 

 

( ) ( ) ( )* * 2 * *
21 1 2 2 1 1 2 2

1
TC c c c c

x x x x Ks x x x x
Ks

β  = + − + 
 (A.5) 

 
Similarly,  
 

{ }det
H

TC TC TC
D Ksα β= +                  (A.6) 

 
Equation A.2 can be solved by using Equations A.3 and 
A.6 to give: 
 

{ } 2 2 2
det

H

TC TC TC TC
D D Ksα β= −                  (A.7) 

 
The cost function in Equation 14 may be maximized 
under the following condition, 
 

* *

1 1 2 2

* *

1 1 2 2

0

0

c c

c c

x x x x

x x x x

+ =

+ =
                                          (A.8) 

 
which is only possible, if  
 

1 1 2 2c c
x x and x x= = −                (A.9) 

 
The substitution of the earlier condition of Equation A.9 in 
Equations A.4, A.5 and 14 results in 

 
 
 
 

( ) ( )
2

2 2

2 1 2

1
TC

Ks
x x

Ks
α

 −
= + 
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  (A.10) 

 
2

1 2
arg max TC

F KsC
Ks

α
>

 
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 
   (A.11) 

 

( ) ( )
2

2 22

1 2

31

1
arg max

F Ks

Ks x x
C

Ks>

 − + 
=  

  

 (A.12) 

 
The maximization of cost function is only possible for the 
optimum value of power scaling factor, which maximizes 
the coding gain and minimizes the PMPR, such that: 
 

( )2

3

1
0F

KsdC d

KsdKs dKs

 − 
= =  

  
             (A.13) 

 

Consequently, 3Ks =  for the proposed 2 2×  STBC 

system with maximum transmission rate of 5 4 1
STBC

R = > . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


