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The problem of elastic-plastic transition stresses in a spherical shell under internal pressure has been 
solved by using Lebesgue measure temperature with the concept of generalized strain measure. It has 
been seen that the results are similar to those given by Hulsurkar (1963). 
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INTRODUCTION             
 
Classical measures of deformation are inadequate to 
deal with such transition and hence different constitutive 
equations are used for each state. The constitutive 
equations are further simplified by using assuming 
theory, which does not only bypass these transitions but 
also makes design engineers estimate them; and then 
plastic flow or creep or fatigue sets in. This, combined 
with experiment data, leads to over-designing of the 
structures. Thus, there arises the need to construct a 
generalized measure to avoid adhoc assumption and 
semi-empirical laws; and also to have better agreement 
with experimental results 

It is known that if, in a very small interval, the number of 
fluctuations is very large and the ordinary measure based 
on the Riemanian integral concept fails, measures like 
that of Lebesgue have to be used. In a similar way, the 
generalized measures given by weighted integral 
representations (Seth, 1972, 1966) give very satisfactory 
results in problems such as that of plasticity and creep. 
Seth (1972, 1966) has defined the generalized principal 
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ii
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where n is the measure and 
A

iie is the principal Almansi 

strain component. For the uniaxial case it is given by 
Seth (1972) as: 
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Where m is the irreversibility index and 0l  and l are the 

initial and strained lengths of the rod, respectively. In 
Cartesian framework we can readily write down the 
generalized measure in terms of any other measures. If n 
= 0, 1, 2, -1, -2, it gives the Hencky, Swainger, Almansi, 
Cauchy and Green measure respectively, where in all 
cases m = 1.  Seth (1972, 1966) said that the generalized 
measure gives the well-known creep strain law;  creep 
strain laws used in current literature such as Norton, 
Kachonov, Odqvist and Andrade laws etc. can be derived 
from the generalized measure.  
   The most important contribution made by the 
generalized measures is that they make use of empirical 
laws and jump conditions unnecessary. If such laws exist, 
they come out of the analytical treatment as a particular 
case. Thus, an important function of non-linear measure 
is to explain transition without assuming condition to 
match the two solutions at transitions. In this research 
paper we discuss the problems “elastic - plastic transition 
stresses in a spherical shell under internal pressure by 
using concept of Lebesgue measure and it is seen that 
the results are similar to those obtained by Seth’s strain 
measure. 
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LEBESGUE STRAIN MEASURE 
 
Taking the power of a weighted function as a principal 
measure, we take the derivative of the function of a 
weighted function as the principal measure and define 

the Lebesgue strain measure 
ii

ε in terms of the principal 

Almansi strain components
A

ii
e as: 
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                                                                                 (3)    

Such that ( ) ( ) ( )0 0, , 0 0F F F ′= ∞ = ∞ = . 

 
Problem in spherical shell under internal pressure has 
been analyzed by using strain measure in Section 2.It is 
shown that the results are obtained by using the concept 
of generalized strain measure as given by Seth’s. 
 
 
Governing equations 
 
Consider a spherical shell of constant thickness under 
uniform internal pressure. Let a be the inner radius and b 
be the external radius of spherical shell as shown in 
Figure 1. The symmetry of structure and the loading 
about the centre of spherical shell, the displacement 

components in spherical co-ordinates ( ), ,r θ φ can be 

taken as (Seth, 1972, 1963):   
           

                        )1( β−= ru ; v = 0;  w = dz,        (4)                                                                                           

 

where β  is function of r = 
22

yx +  only and d is a 

constant. 
 
The strain components for infinitesimal deformation are 
given by [2]: 
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where /d drβ β′ = . 

 
The generalized components of strain from equation (3) 
are: 
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Figure 1. Spherical shell under internal. 
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r
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The stress –strain relations for isotropic media is given by 
(Sokolnikoff, 1954) [3]: 
  

  ijT  = 1 2i j ijI eλδ µ+ , (i, j = 1, 2, 3)                (7) 

                                                                                                                                       

Where  ijT  are the stress components, λ  and µ  are 

Lame’s constants, 
kk

eI =1  is the first strain invariant, ijδ  

is the Kronecker’s delta. Non –vanishing components of 
stress are obtained by substituting equation (6) in 
equation (7) are: 
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The equations of equilibrium are all satisfied except: 
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Substituting the stresses from equation (8) into equation 
(9), one gets a non -linear differential equation in 
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where c is the compressibility factor of the material in 
term of Lame’s constant, and  is given by 

2 / 2c µ λ µ= +    

 
Equation (10) becomes: 
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Transition points of β  in equation (10) are 

0, , 1P → ± ∞ − . 

 

The boundary conditions are: rrT  = - p    at   r = a and  

rrT  = 0   at r = b                                (12) 

 
 
Solution through the principal stress-difference   
 
For finding the creep stresses, the transition function 
through principal stress difference (Seth, 1963, 1970; 
Pankaj, 2009c; Pankaj, and Sonia, 2008a; Pankaj and 
Sonia, 2008b; Pankaj and Gupta, 2007a; Pankaj and 
Gupta, 2007b; Pankaj and Gupta, 2008; Pankaj and 
Sharma, 2009; Pankaj, 2009a, 2009b) at the transition 
point P→ -1 leads to the creep state .The transition 

function ‘R’ is defined as:  
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Taking the logarithmic differentiation of equation (13) with 
respect to r and using equation (10), one gets: 
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Taking the asymptotic value of equation (14) as 1P → − , 

one gets: 
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where 0A is a constant of integration. Putting the 

boundary condition (12) in equation (15), we get the 
transitional creep stresses as: 
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CASE STUDY 
 
As a case study, function (1) equal to Seth’s generalized 
measure, that is 
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If we put ( )1 2 / mF n= , equation (18) becomes: 
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Putting equation (19) in equation (15), one gets: 
 

( )
3 2

2

1 1 1
c

m
c n

rr
T T A rθθ β

−
−   − = − −   

          (20)  

                                                                      

where 

3 2

1 0

2
c

m
A A

n

−
 

=  
 

constant of integration Equation 

(20) are same as obtained by Seth (1972). 
Using equation (12) in equation (17), one gets the 

transitional creep stress for steady state creep as: 
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which are the results obtained by Hulsurkar (1963). It 
may be noted that in deriving equations (12) and (21), 
none of the assumptions adopted current literature such 
as (1) creep strain laws of Norton, (2) the incom-
pressibility condition and (3) the yield condition of Tresca 
have been used. 
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