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Climate change may have noticeable impacts on global biodiversity and can be considered as a huge 
long-term threat to species survival. To assess the extinction risk of wildlife species and in spatial 
planning approaches for conservation strategies, it is essential to predict how species respond to 
climate changes via shift in geographic range. The prediction of species responses to climate change 
can be done using alternative modeling approaches. This paper provides an overview of five climate-
envelope models and their relative benefit to climate change studies.   
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INTRODUCTION 
 
Climate change involves, among other effects, changes 
in the carbon and hydrologic cycles, mean temperature, 
alterations in distribution of precipitation, and solar 
radiation and storm severity (Wang and Schimel, 2003; 
Parry et al., 2007). The alternation in phenology, 
population density, community structure (Crick et al., 
1997; Walther et al., 2002; Parmesan and Yohe, 2003; 
Root et al., 2003; Edwards and Richardson, 2004; 
Jonze´n et al., 2006) and species ranges (Parmesan et 
al., 1999; Beaugrand et al., 2002; Walther et al., 2005; 
Thomas et al., 2006) are among the most obvious 
impacts of climate change on biodiversity. 

Many recent studies have focused on modelling of 
impacts of climate changes on species’ range to 
anticipate their future potential geographical  distributions 
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(Pearson and dawson, 2003; Robertson et al., 2004; 
Barrio et al., 2006; Lawler et al., 2006; Brooker et al., 
2007; Sekercloglu et al., 2008; Virkkala et al., 2008; 
Anderson, 2010; Sinclair et al., 2010). Climate change 
has affected species geographical distributions and their 
persistence (Parmesan, 1996; Walther et al., 2002; 
Moore, 2003; Parmesan and Yohe, 2003). Pearson and 
Dawson (2003) investigated on predicting the impacts of 
climate change on the distribution of species. They 
questioned the usefulness of the bioclimatic envelope 
models and evaluated bioclimatic envelope models and 
argued about their functions for the dissimilar predictive 
modelling results. These authors proposed that despite 
the fact that the natural systems are complex; the 
bioclimatic envelope models can be valuable tools to 
explore the impacts of climate change on biodiversity. 
They concluded that spatial scale at each of these 
models has basic importance and the resultant models 
should be considered with attention to this limitation. They 
suggested     a     hierarchical   models   framework    to    be 



 
 
 
 
addressed inside a wider scale dependent context. Barrio 
et al. (2006) proposed a scheme of integrating multiple 
modelling approaches to predict the potential impacts of 
climate changes on species distributions in contrasting 
regions. They combined four models including dispersal 
model, regional scale bioclimatic and land use suitability 
model, a connectivity model and a continental scale 
bioclimatic envelope model in a scale dependent 
hierarchical framework. They tested an integrating 
approach to study the effects of climate and land use 
changes on species distribution. They concluded that 
climate changes involve the development of temporary 
situation and fragmentation inside the core of 
distributions. Likewise, dynamic conservation strategies 
are needed such that it is made possible to consider 
current and future arrangement of species and their 
habitat to support species in their respond to future 
environmental changes. Lawler et al. (2006) in their study 
about predicting climate – induced range shift expressed 
those anticipations of future range shifts are dependent 
on diversity of modelling methods with different levels of 
model accuracy. They investigated the potential 
implication of different modelling methods to show the 
results about future range shift and extinctions. The 
authors contrasted six approaches for modelling 
anticipated future ranges and concluded that the different 
methods can have different results on forecasted range 
shift and model – averaging methods seems to have 
greatest potential on anticipating geographical range 
shift. Sekercloglu et al. (2008) conducted a study about 
climate changes, elevation range shifts and bird 
extinctions. They modelled the impacts of height 
restrictions on the extinction risk of land birds and for this 
integrated elevation ranges, a middle estimation of 
surface warming of 2.8°C, and four millennium evaluation 
of habitat-lose scenarios. Then, they predicted 400 to 500 
land bird extinction likelihoods. They indicated that each 
degree of warming projected a nonlinear rise in bird 
extinction of about 100 to 500 species. Besides, they 
highlighted different scenarios of climate change and 
habitat loss for land birds. According to their findings, 
there is an essential requirement for fine resolution 
evaluations of shift in the elevation range of species to 
make more accurate climate induced extinction 
approximations. Anderson (2010) reviewed potential 
effects of climate changes on biodiversity especially on 
changes in species geographical range. The author 
highlighted methods that most broadly used to anticipate 
the effects of climate changes on geographic range of 
species. These included maximum entropy method that is 
used to discover a probability distribution consistent with 
a set of data via maximizing the information entropy of 
the selected distribution given the data limitations. Here, 
we discuss these approaches and some of their 
limitations.  

Nowadays ecologists are more focused on prediction of 
changes in distribution of species due to climate  changes, 
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because it considerably help to develop the conservation 
planning and strategies for biodiversity (Thomas et al., 
2004; Brooker et al., 2007). Some approaches such as 
long-period monitoring (Warren et al., 2001; Root et al., 
2003; Richardson and Schoeman, 2004) and 
manipulation experiments (Chapin et  al., 1995; Press et 
al., 1998; Emmett et al., 2004) which are used for current 
and future responses of ecosystem and species have 
limitation in their spatial or temporal scopes (Brooker et 
al.,2007). The modelling has therefore become a key 
supplementary tool (Brooker et al., 2007). As such, it is 
necessary to develop models that link species range and 
different scenarios of climate changes. The majority of 
anticipation of range shift of species is based on 
bioclimatic models; so it is essential to know about 
advantages and disadvantages of these models to 
choose the model with the best performance. 

The goal of this study is to introduce some common 
alternative modelling approaches to help understand the 
usefulness and negative sides of the bioclimatic models 
in predicting the geographic range of species and to 
quantify the risk affected by climate changes on 
biodiversity. 
 
 

APPROACHES 
 

There are various approaches to predict species range 
based on climatic condition (Table 1). In this paper, five 
models have been reviewed to describe their usefulness 
and assess their efficiency which includes: general linear 
models (GLM), generalized additive model (GAM), 
genetic algorithms for rule set prediction (GARP), artificial 
neural network (ANN) and maximum entropy (MAXENT). 
 
 

Generalized Linear Models (GLMs) 
 

The concept of GLMs is related to a unit theory of 
estimation and testing (McCullagh and Nelder, 1989). 
Powerful statistical basis and ability to realistically model 
ecological relationships are the reasons that generalized 
linear models are applied widely in species’ distribution 
modelling (Austin, 2002). GLMs permit for the modelling 
of other distributions in the response variable and 
impermanent variance functions, so modelling framework 
of these approaches is more flexible than basic linear 
regression models (Guisan et al., 2002). They fit 
parametric terms, usually some combination of linear, 
quadratic and/or cubic terms (Hastie and Tibshirani, 
1990). These techniques use the presence and absence 
data to predict species range. These approaches can be 
useful for non-normal data such as binary data (Venables 
and Dichmont, 2004). They do not constrain data into 
unnatural scales, so that permit for non-linearity and non-
constant variance structures in the data (Hastie and 
Tibshirani, 1990). GLM models can be executed in a 
geographic information system (GIS) and there are some 
packages to run these models in GIS software’s (Guisan
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Table 1. Different modeling approaches for prediction of climate changes on range shifts of species. 
 

Modelling 
method 

   Reference   Data Advantages Disadvantages 

GLMs 
McCullagh and Nelder (1989), 
Austin (2002), Guisan and 
Zimmermann (2000)  

- Presence and 
Absence data 

Useful for non-normal data like binary data. 

Do not constrain data into unnatural scales 

Needs fine environmental data and lots of 
valid records. Requires a specific 
response curve to be fit to the predictor 
variables 

GAMs 
Leathwick et al. (1996), Thuiller 
(2003, 2004), Araújo et al. 
(2004) 

- Presence and 
Absence data 

Do not need a particular response curve to be fit 
to the forecaster variables. Capability to deal with 
extremely non-linear and non-monotonic 
relationships among the response and the set of 
descriptive variables. Good at regional scales 

Causes a better data fit but comes with a 
lesser amount of clearness and 
interpretability 

ANN 
Berry et al. (2002), Thuiller 
(2003, 2004) 

- Presence data 

Is capable of managing descriptive variables from 
various sources. Indicates climatic envelopes that 
have nonlinear responses to environmental 
variables 

Needs large data to train. Identifies areas 
that will become climatically suitable for 
species without taking into account 
limiting factors of species dispersal 

GARP 

Stockwell and Noble (1992), 
Stockwell and Peters (1999), 

Anciaes and Peterson (2006) 

- Presence and 
Presence/Absence 
data. 

- Produces tight models 

Data layers easy to prepare 

Focused on potential geographical 
distributions instead of real geographical 
distribution. Predictive accuracy of GARP 
is not independent of range size 

MAXENT 
Phillips et al. (2006), Phillips 
and Dudik (2008) 

- Presence data 
Ability to run with presence-only point 
occurrences. A high performance with few point 
localities 

Smaller number of guideline for its use in 
general. Hardly can evaluate the amount 
of error in anticipation 

 
 
 

and Zimmermann, 2000). In addition, these 
models will be suitable for species with relatively 
simple relationships to environmental gradients 
(Lawler et al., 2006). These techniques focus on 
general trends of species’ presence/absence 
response (Segurado and Araújo, 2004) and need 
fine environmental data and lots of valid records. 
GLMs require a specific response curve to be fit 
into the predictor variables (Hastie and Tibshirani, 
1990) due to the fact that they are less flexible 
than GAMs. 
 
 
Generalized Additive Model (GAMs) 
 
GAMs are popular approach, which have been 
applied   in   climate   change   impact  studies  on 

species range (Leathwick et al., 1996; Thuiller, 
2003 and 2004; Araújo et al., 2004). GAMs are 
non-parametric extensions of GLMs (Hastie and 
Tibshirani, 1990) that are more flexible than 
generalized linear models, because the response 
variable is modelled as the additive combination 
of independent variables functions and does not 
need a particular response curve to be fitted into 
the forecaster variables (Hastie and Tibshirani, 
1990; Jeschke and Strayer, 2008). These models 
offer a better data fit, but come with a lesser 
amount of clearness and interpretability. GAMs 
use a link function to create a relation between the 
mean of the response variable and a ‘smoothed’ 
function of the descriptive variable(s) (Guisan et 
al., 2002). The potency of GAMs is the capability 
to     deal     with     extremely     non-linear      and 

non-monotonic relationships among the response 
and a set of descriptive variables (Guisan et al., 
2002). 
 
 
Artificial Neural Network (ANN)  
 
One of the robust rule-based modelling 
approaches which are used in bioclimatic 
envelope modelling is Artificial Neural Networks 
techniques (Berry et al., 2002; Thuiller, 2003, 
2004). The real neural networks are fundamental 
of ANN as a machine-learning approach (Ripley, 
1996). A series of interlink neurons make 
networks which get and process input signals and 
potentially generate output signals. For 
recognizing the patterns in the data set, the  network



 
 
 
 
is trained on a data set (Lawler et al., 2006). This method 
is capable of managing descriptive variables from various 
sources, like categorical and Boolean data. Besides, it 
does not assume a normal distribution of the data. This 
capacity causes the model to be useful for recognizing 
‘patchy’ or scanty distributions. Moreover, it is able to 
indicate climatic envelopes that have nonlinear 
responses to environmental variables (Hilbert and 
Ostendorf, 2001; Pearson et al., 2002, 2004). Meanwhile, 
there are some limitations (such as the need to numerous 
quantities of data to train) in this approach (Heikkinen et 
al., 2006). Identifying areas that are climatically suitable 
for species without taking into account limiting factors of 
species dispersal and validation and test of the model’s 
training dataset is according to the assumption that 
current species’ distributions are in equilibrium with the 
current climate (Pearson et al., 2002). Nonetheless, ANN 
provides a signal of the amount of the impacts of future 
climate changes and presents an intuition into potential 
future trends, including the recognition of those areas and 
species that are most sensitive to change. 
 
 
Genetic Algorithms for Rule set Prediction (GARP) 
 
GARP is one of the most widely used bioclimatic models 
for modelling species range. GARP employs a genetic 
algorithm to assemble a set of rules (for example, 
adaptations of regression and range specifications) to 
define a species’ range (Stockwell and Noble, 1992; 
Stockwell and Peters, 1999). Suitable conditions are 
predicted for pixels satisfying a number of set of 
environmental conditions via positive rules; comparably, 
unsuitable conditions are predicted by negative rules 
(Phillips et al., 2006). It is designed to use only presence 
data (Anciaes and Peterson, 2006) and geo-referenced 
data on ecological factors to provide predictions of the 
species’ geographical distribution (Heikkinen et al., 
2006), but it allowed for creating a set of pseudo-absence 
points with replacement from the pixels without 
confirming the presence data in the training (Anderson et 
al., 2003). GARP works in a repetitive procedure of rule 
selections, evaluation, testing and incorporation or refusal 
(Anciaes and Peterson, 2006) for generating a 
heterogeneous rule set to make summery of species’ 
ecological requirements (Anderson et al., 2002).  

Predictive accuracy of GARP is not independent of 
range size. Hence, widespread species are modelled with 
less accuracy (Stockwell and Peterson, 2002). GARP 
may often predict distribution in areas that are not 
occupied by the species and instead of emphasis on real 
geographical distributions are focused on potential 
geographical distributions (Meyer et al., 2004). Inclusion 
of extra ecological dimensions and even consideration of 
historical elements that causes the absence of species 
from areas that is suitable to live, may in some cases 
decrease these over  prediction  errors  (Peterson  et  al., 
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1999; Peterson and Vieglais, 2001). 
 
 
Maximum Entropy (MAXENT) 
 
One novel method which has not been widely applied in 
species geographic range modelling is MAXENT (Phillips 
et al., 2006; Phillips and Dudik, 2008). MAXENT is a 
general-purpose machine-learning method that is 
designed for use with presence-only data, (Phillips et al., 
2006) and it can compute probability distributions based 
on incomplete information (Phillips et al., 2006). This 
method makes a continual probability field that can be 
explained as a relative indicator of environmental 
suitability, where higher values show anticipation of better 
conditions for the species in the study area (Phillips et al., 
2006; Phillips and Dudik, 2008). Possibility distributions 
are estimated via MAXENT by finding the probability 
distribution of maximum entropy or uniform given 
restriction originated from the presence data and 
functions of the environmental feature (Phillips and 
Dudik, 2008). Model yield can be elucidated as the 
probability of presence under a comparable level of 
sampling effort as needed to get the recognized presence 
data (Phillips and Dudik, 2008). In addition, MAXENT 
scored as one of the most accurate in a recent 
comparison of several widely used models (Elith et al., 
2006), but there are some negative points that should be 
considered in any research involving MAXENT. For 
example, there are smaller numbers of guidelines for its 
use in general and the method can hardly evaluate the 
amount of error in anticipation (Phillips et al., 2006). 
Meanwhile, the exponential model which is used for 
probabilities in this approach is not intrinsically bounded 
above and can give so big anticipated values for 
environmental conditions that are not inside the range 
present in a given study area. Therefore, additional care 
is required when the method is applied to other study 
areas or to future or past climatic conditions (Phillips et 
al., 2006).  
 
 
CONCLUSION 
 
The modelling of current and future arrangement of 
wildlife species in landscape is essential for conservation 
and planning purposes to support species in their 
response to future environmental changes. Araújo and 
New (2006) have evaluated sixteen approaches of 
modelling from five continental areas, in relation to 
climate and species distribution. We described the five 
models that are more flexible and common with their own 
strengths and drawbacks. Summarizing credible bio-
geographic responses of species range for each of the 
modelling approaches can be different from climatic 
forecasters (Segurado and Araújo, 2004). In addition, the 
modelling techniques based on presence  data  are  more  
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precious (Anderson et al., 2003), because absence data 
are seldom available, in particular for poorly sampled 
tropical areas where modelling is potentially so precious 
and important for conservation (Anderson et al., 2002; 
Ponder et al., 2001; Sober´on, 1999). In addition, 
absence data in many situations may be of doubtable 
value (Anderson et al., 2003). Alternative approaches 
provide different results for modelling climate changes on 
species range and these results describe different range 
shift and different extinction risks. Every bioclimatic 
envelope modelling techniques have their capabilities, 
and are different in their ability to summarise credible 
biogeographic reaction of species distributions to climatic 
forecasters (Segurado and Araújo, 2004). Comparability 
of modelling approaches on climate change is more new 
(Thuiller, 2003, 2004; Araújo et al., 2005a, b; Pearson et 
al., 2006). Some of comparative studies have tested the 
act of diverse bioclimatic envelope modelling approaches 
(Franklin, 1995; Manel et al., 1999; Bio et al., 2002; Elith 
et al., 2002; Moisen and Frescino, 2002; Olden and 
Jackson, 2002; Thuiller, 2003; Muñoz and Felicísmo, 
2004; Segurado and Araújo, 2004). For example, the 
conclusions of the follow-up study by Thuiller (2003) 
expressed ANN indicated inclination, to overfit for the 
duration of the calibration procedure, whereas, GAMs 
and GLMs does not appear to overfit, and their accuracy 
were higher than ANN in various cases. Bio et al. (2002) 
in their study on bioclimatic modelling, reported GAMs to 
be than GLMs for modelling more than half of the 
species, demonstrating that species’ reaction are often 
complicated and hard to fit using simple symmetric 
response shapes. Elith et al., (2002) stated an obvious 
trend in relation to better model discriminatory 
performance from GAMs and GLMs compared to GARP. 
These authors reported that performance of GARP 
appears better than the other two techniques when 
original data was used for testing, otherwise it showed an 
ambiguous results and distinctions with different 
accuracy. These results are inconsistent with optimistic 
statements of Peterson and Cohoon (1999) and 
Anderson et al. (2003), who recommended that GARP is 
particularly victorious in predicting species’ distributions 
under a broad variety of situations )Heikkinen et al., 
2006). To evaluate the overall model performance there 
are some measures like AUC: Area under the receiver-
operating characteristic (ROC) curve and Kappa index. 
Assessments of modelling success using ROC showed 
MAXENT model has first and the highest performance of 
the modelling in comparison to other four modelling 
approaches (Elith et al., 2006). However, the method 
generally cannot account for some processes like 
dispersal, biotic interaction and adaptation. It is clear that 
there is no single approach that works best for all 
species. Multiple modelling approaches can be integrated 
to study the impact of climate changes on species 
distributions (Barri et al., 2006). In conclusion, the choice 
of method will always depend on the  focal  species,  data 

 
 
 
 
set and the question raised, and a range of factors 
including the breadth of ecological knowledge, existing 
distribution data, spatial and temporal scale as well as 
goals of the modelling (Pearson and Dawson, 2003). 
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