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In this paper, considering the effect of exoteric perturbation on system’s parameters, a robust observer, 
based on Lyapunov theory, is designed for the output synchronization of a class of uncertain systems 
when the full state vector is not available. With the help of LMI criterion and then using the MATLAB LMI 
Toolbox, the observer gain L is derived, which can not only make the outputs of both master and slave 
systems reach H� synchronization with the passage of time but also reduce the influence of the 
disturbance within a prescribed level. In the end, we take the perturbed Chua’s circuit as an example to 
illustrate that the proposed method is effective and quite robust against the effect of exoteric 
perturbation. 
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INTRODUCTION 
 
Owing to complexity and unpredictability of chaos beha-
vior, how to control and utilize chaos has attracted much 
attention since the pioneering work of Oat et al. (1990). At 
approximately the same time, Pecora and Carroll (1990) 
firstly proposed chaotic synchronization phenomenon. 
Generally speaking, chaos synchronization refers to a 
process wherein two (or many) chaotic systems (either 
equivalent or nonequivalent) adjust a given property of 
their motion to a common behavior due to coupling or 
forcing (Li et al., 2007). Now, it has been applied to many 
different fields such as secure communication, infor-
mation science, chemical reactions and biological system 
(Boccaletti et al., 2002; Bowong et al., 2006; Zhou et al., 
2005; Li et al., 2004). There are many strategies for 
achieving synchronization of chaotic systems, which 
include impulsive control (Rong et al., 2007), adaptive 
control (Bing-Jian et al., 2007; Agiza, 2004), back-
stepping control (Park, 2006), sliding mode control (Tie-
Gang et al., 2005) and observe-based control (Yao et al., 
2006; Ting, 2007).  

Though a considerable amount of research on chaos 
synchronization has been done in the past decade, 
availability of the full state vector of both master and 
slave systems is the basis of many approaches for 
achieving synchronization (Li et al., 2007; Bing-Jian et al., 
2007; Agiza, 2004; Park, 2006; Tie-Gang et al., 2005; 
Liao et al., 2007). But in many situations, it is impossible 

that we can obtain all state variables of the system, so 
observer-based method has been naturally proposed for 
chaos synchronization, where the outputs of the driving 
system are to control the response system so that they 
can oscillate in a synchronized manner. By using an inte-
gral observer approach, a sufficient condition was derived 
for realizing chaos synchronization based on Lyapunov 
stability theory for a class of chaotic systems in reference 
(Jiang et al., 2005), where chaotic systems’ parameters 
were taken as known constants. As we know, in practical 
situations, some or all of the system’s parameters are 
uncertain and these parameters change from time to 
time. So for uncertain chaotic system with parameters 
perturbation, based on LMI technique and Lyapunov sta-
bility theory, a new sufficient criterion was established for 
achieving chaotic synchronization in (Chen and Zhang, 
2006). One drawback, however, is that nonlinear input is 
introduced to eliminate the perturbation terms.  

Recently, the H∞ control method was proposed to 
reduce the effect of the disturbance on the available out-
put to within a prescribed level (Anton, 1992). Based on 
this idea, when system’s parameters were known, refe-
rence (Hou et al., 2007) investigated the output synchro-
nization for a class of chaotic systems, where the con-
troller was derived by means of output feedback control 
method. While, for some classical Rössler systems with 
noise  perturbation,  when    system’s   parameters   were 
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taken as known constants, reference (Liao et al., 2007) 
studied H∞ chaos suppression problem based on the slid-
ing mode control method, where all state variables were 
used in designing controller. 

In this paper, considering the effect of exoteric 
perturbation on system’s parameters, when only the sys-
tem outputs are available, the observer method is used in 
order to achieve robust output synchronization for a class 
of uncertain chaotic systems. Firstly, based on Lyapunov 
theory, we get a new sufficient condition that can gua-
rantee the observer is robust against the effect of exoteric 
perturbation. And then, we transform this condition into 
linear matrix inequality (LMI) form that can be solved by 
using MATLAB LMI toolbox, where an appropriate the 
gain matrix L is derived that can not only make the 
system outputs achieve H∞ synchronization but also 
reduce the influence of the disturbance within a pre-
scribed level. Finally, The Chua’s chaotic system is used 
to illustrate the effectiveness of the proposed method, 
and it shows that this observer we derived is assuredly 
robust against the effect of exoteric perturbation. 

Throughout this paper, || ||x represents the Euclidean 
norm of the vector x , while for a real matrix A , 

|| || ( )TA A Aρ= denotes the spectral norm of A , 
where ( )Mρ is the spectral radius of the 

matrix M and TA is the transpose of the matrix A . In 
addition, I is the identity matrix of appropriate dimen-
sions. 
 
 
System formulation 
 
Let a class of chaotic systems be given in the following 
 

( ) ( ) ( ( ))
( ) ( )

x t A x t B f x t

y t C x t

= +
=

&                                                   (1) 

 

Where nx R∈ is the state vector and my R∈ is the output. 
,A B andC are known matrices with proper dimensions 

respectively and ( , )A C is observable. ( )f x is a nonlinear 
function satisfying Lipschitz condition, which can be 
written as  
 

ˆ ˆ( ) ( )f x f x x xε− ≤ −                                                  (2) 
 
Whereδ is called Lipschitz constant and 0δ > . 
Considering the effect of exoteric perturbation on 
system’s parameters, system (1) becomes 
 

1( ) ( ( )) ( ) ( ( ))

( ) ( )

x t A A t x t Bf x t

y t Cx t

= + ∆ +
=

&
                                 (3) 

 

Where 1( )A t∆ is the perturbed matrix. 
 
When only the system  outputs  are  available,  based  on 

 
 
 
 
the observer method, the slave system is 
 

2ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ( ) ( ))
ˆ ˆ( ) ( )

x t A A t x t Bf x t L y t y t

y t Cx t

= + ∆ + + −
=

&
               (4)  

 

Where 2 ( )A t∆ is the perturbed matrix satisfying bounded 

condition 2 2|| ( ) ||A t ε∆ ≤ . L is the observer gain that need to 
be obtained . 
Let us define synchronization 
error ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )ee t x t x t y t y t y t= − = − , so the error 
dynamical system is  

1 2ˆ ˆ( ) ( ) ( ) ( ( ( )) ( ( ))) ( ) ( ) ( ) ( )

( ) ( )e

e t A LC e t B f x t f x t A t x t A t x t

y t Ce t

= − + − +∆ −∆
=

&  (5)                                                                                     

 

For the perturbed matrix 1( )A t∆ and 2 ( )A t∆ , we 

define 1 2( ) ( ) ( )t A t A tω = ∆ − ∆ and assume 2( )t Lω ∈ , that 

is
0

( ) ( )Tt t dtω ω
∞

< ∞� . The H∞ performance problem will 

be considered, which can formulate as follows: design 
the gain of matrix L such that 
If ( ) 0tω = , the error system (5) will be asymptotically 
stable; 
Given a positive scalarγ and under zero initial conditions, 
if ( ) 0tω ≠ , the following condition will hold: 
 

2

0
[ ( ) ( ) ( ) ( )] 0T T

e ey t y t t t dtγ ω ω
∞

− ≤�                             (6) 
 

Whereγ is called as the disturbance attenuation 
performance index. 

Our aim is to determine the gain of matrix L such that 
the statement (a) is satisfied and the performance index 
(6) in statement (b) is within the upper bound, that is, 
 

   
2

2

( ) 0, ( ) 2

|| ( ) ||
sup

|| ( ) ||
e

t t L

y t
tω ω

γ
ω≠ ∈

≤  

 
 
MAIN RESULTS 
 
This section is to get an appropriate observer, so that it 
could realize robust output synchronization of both 
master and slave system, that is to say, the outputs of the 
error system achieve H∞ synchronization with the distur-
bance attenuationγ with the passage of time. 
 
Theorem 1 Given three positive constants 1 2, ,δ δ γ  and if 

there exist the gain L and positive matrices ,P Q such that 
the following equality holds 
 

2 2 2 1 2 1 2
1 2 1 2 2( ) ( ) ( ) ( )T T TPA LC A LC P PBBP d P I CC Qδ δ γ δ ε δ ε− − −− + − + + + + + + =−    (7)                                                                                                 

 
then the outputs of the error system will satisfy the H∞ syn 



 
 
 
 
chronization with the disturbance attenuationγ . 
 
Proof. Construct the Lyapunov function in the form of  
 

( ) ( ) ( )TV t e t Pe t=                                                          (8) 
 

Where 0TP P= > . It is obvious that V is a positive 
function for all 0t ≥ .  
 
DifferentiatingV with respect to time t 
 

1 2

1 2

( ) ( ) ( ) ( ) ( )

ˆ ˆ(( ) ( ) ( ( ( )) ( ( ))) ( ) ( ) ( ) ( )) ( )

ˆ ˆ( ) (( ) ( ) ( ( ( )) ( ( ))) ( ) ( ) ( ) ( ))

( )( ( ) ( ) ) ( ) 2 ( ) ( ( ( ))

T T

T

T

T T T

V t e t Pe t e t Pe t

A LC e t B f x t f x t A t x t A t x t Pe t

e t P A LC e t B f x t f x t A t x t A t x t

e t P A LC A LC P e t e t PB f x t f

= +
= − + − +∆ −∆

+ − + − +∆ −∆

= − + − + −

& & &

1 2

ˆ( ( )))

ˆ2 ( ) ( ( ) ( ) ( ) ( ))T

x t

e t P A t x t A t x t+ ∆ −∆

    (9)                                                                                 

 
With the help of inequality (2), given a positive 
constant 1δ , we derive 
 

1 2
1 1ˆ2 ( ) ( ( ( )) ( ( ))) ( ) ( ) ( ) ( )T T T Te t PB f x t f x t e t PBB Pe t e t e tδ δ ε−− ≤ +      (10)                                                                                     

and 
 

1 2 2 1 2ˆ2 () ( () () () ()) 2 () () () 2 () ( () ()) ()T T Te t P At xt A t xt e t P A t et e t P At A t xt∆ −∆ = ∆ + ∆ −∆    (11)                                                                                     
 

Due to 2 2|| ( ) ||A t ε∆ ≤ , hence, with a positive constant 2δ , 
we obtain 
 

2 1 2
2 2 2 22 ( ) ( ) ( ) ( ) ( ) ( ) ( )T T Te t P A t e t e t P e t e t e tδ δ ε−∆ ≤ +    (12)                                                                                      

  
As we know, the system is chaotic, so for any time 0t ≥ , 
the state vector is bounded, i.e. || ( ) ||x t d≤ . Combined 
with 1 2( ) ( ) ( )t A t A tω = ∆ − ∆ and given a positive constantγ , 
the following inequality yields  
 

2 2 2 2
1 22 ( ) ( ( ) ( )) ( ) ( ) ( ) ( ) ( )T T Te t P A t A t x t d e t P e t t tγ γ ω ω−∆ −∆ ≤ +    (13)                                                                                   

                                     
Since (7) and (10)-(13) hold, we derive 
 

2( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TV t e t Qe t e t C Ce t t tγ ω ω≤ − − +&    (14) 
                                                                                                     
That is 
 

2( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
e eV t e t Qe t y t y t t tγ ω ω≤ − − +&  

 
Thus 
 

2( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
e eV t e t Qe t y t y t t tγ ω ω≤ − − +&       (15) 

 
It is easy to find that if ( ) 0tω =  
 

2
min( ) ( ) || ( ) || 0 ( 0)V t Q e t eλ< − < ≠&        (16)                       
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therefore, based on Lyapunov stability theory, the error 
system (5) is asymptotically stable. But if ( ) 0tω ≠ , 
integrating the two sides of (15) from 0 to ∞ , we have 
 

2 2 2

0
( ) (0) (|| ( ) || || ( ) || ) 0eV V y t t dtγ ω

∞
∞ − + − ≤�     (17) 

 
With zero initial condition, we have (0) 0V = and ( ) 0V ∞ > , 
so the following inequality holds 
 

2 2 2

0
(|| ( ) || || ( ) || ) 0ey t t dtγ ω

∞
− ≤�                              (18) 

 
Thus, H∞ performance with the disturbance attenua-
tionγ is satisfied. 

However, we can easily find that it is difficult to solve 
equation (7) and obtain the gain of matrix L . So we 
change it into linear matrix inequality by means of the 
following famous lemma, which can be easily solved by 
using the MATLAB LMI Toolbox. 
Lemma (Schur Complements [15]) for a given symmetric 
matrix 
 

11 12

21 22

S S
S

S S
� �

=� �
� �

 

 

Where 11 11 12 21,T TS S S S= = and 22 22
TS S=   

the condition 0S < is equivalent to 
 

22 0S <  and 1
11 12 22 12 0TS S S S−− < . 

 
Accordingly, theorem 1 can be transformed into the 
following conclusion. 
 
Theorem 2 Given three positive constants 1 2, ,δ δ γ  and if 

suitable matrix W and positive matrix P are selected such 
that the following equality holds 
 

11 12 13

12 22

13 33

0 0

0

T

T

Ξ Ξ Ξ� �
� �Ξ= Ξ Ξ <� �
� �Ξ Ξ� �

                                          (19) 

 

Where  
 

1 2 1 2
11 1 2 2( )T T T TPA A P WC C W I C Cδ ε δ ε− −Ξ = + − − + + +

12 PBΞ =     13 PΞ =   1
22 1 Iδ −Ξ = −   1

33 l I−Ξ = −   
 

2 2
2l dδ γ −= +  then, with the observer gain 1L P W−= , 

the H∞ synchronization problem with the disturbance 
attenuationγ will be satisfied. 
Proof. Based on Schur Complements, it is easy for us to 
obtain (19). 
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    (a) Phase portrait (x1 versus x2)             (b) Phase portrait (x1 versus x3) 

     
     (c) Phase portrait (x2 versus x3)                   (d) the time history   

 
 Figure 1. Phase portrait and the time history of Chua’s system. 

 
 
 
Numerical simulations 
 
In this section, we will give simulation results of the 
Chua’s chaotic system to demonstrate that the above 
derived criterion is effective. 
The Chua’s chaotic system can be written as 
 

( ) ( ) ( ( ))
( ) ( )

x t Ax t Bf x t

y t Cx t

= +
=

&
                                              (20) 

 
Where 
 

1

2

3

x

x x

x

� �
� �=� �
� �� �

, 

1 2

0
1 1 1

0

A

α α

β β

−� �
� �= −� �
� �− −� �

, 
0 0

0 1 0

0 0 1

B

α−� �
� �= � �
� �� �

,  

1
1
0

T

C c
� �
� �= � �
� �� �

, 
1( )

( ) 0
0

f x

f x
� �
� �= � �
� �� �

. 

 
Where 0c ≠ and ( )f ⋅ is a piecewise linear function in the 
form of  
 

1 1 1 1( ) 0.5( )( 1 1)f x bx a b x x= + − + − −  

 

with 0a b< < . 
 

When parameters are taken 
as 1 210, 15, 0.0385, 1.28, 0.69a bβ β β= = = = − = − , the 
system (20) exhibits chaotic, this can be seen in Figure1. 
Figure 1a, b and c show us the phase portrait, while 
Figure 1d gives us the time history of Chua’s system. 
Due to the existence of exoteric perturbation, system (20) 
becomes 
 

1( ) ( ( )) ( ) ( ( ))

( ) ( )

x t A A t x t Bf x t

y t Cx t

= + ∆ +
=

&                            (21) 

 

and we select the perturbed matrix simply in the 
following: 

1

2 1

0 0 0

( ) 0 0 0
0 0 ( )

A t

tβ

� �
� �∆ = � �
� �∆� �

 

 

1( ) ( ( )) ( ) ( ( ))

( ) ( )

x t A A t x t Bf x t

y t Cx t

= + ∆ +
=

&                            (21) 

 

and we select the perturbed matrix simply in the fol-
lowing: 

1

2 1

0 0 0

( ) 0 0 0
0 0 ( )

A t

tβ

� �
� �∆ = � �
� �∆� �
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Figure 2. Uniformly distributed random noise in the range [-1.0,1.0]. 
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Figure 3. The time history of the output error with disturbance when any control input is not applied 

 
 
 
Now, based on the observer method, equation (21) is 
regarded as the master system and the slave system is 
 

2ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ( ) ( ))
ˆ ˆ( ) ( )

x t A A t x t Bf x t L y t y t

y t Cx t

= + ∆ + + −
=

&
                (22) 

 

2

22

0 0 0
( ) 0 0 0

0 0 ( )

A t

tβ

� �
� �∆ = � �
� �∆� �

and the gain matrix 1

2

l
L

l
� �

= � �
� �

. 

 
Where the perturbed matrix 

Thus, the error system can be derived as 
1 2ˆ ˆ( ) ( ) ( ) ( ( ( )) ( ( ))) ( ) ( ) ( ) ( )

( ) ( )e

e t A LC e t B f x t f x t A t x t A t x t

y t Ce t

= − + − + ∆ − ∆
=

&                                                                                          

                                                                           (23) 
Firstly, some constants are given in the following: 
 

1 210, 0.15, 0.3, 0.1c γ δ δ= = = = and 21 0.3cos(6 )tβ∆ = . 

Simultaneously, we adopt 21β∆  as to be uniformly distri-
buted random noise in the range [-1.0, 1.0], which can be 
seen in Figure 2. According to calculation, we get 

2|| ( ) || 0.3A t∆ ≤    and  10, 1.0d ε= = .  The  initial  conditions 
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Figure 4. The time history of the output error with disturbance via the observer method. 

 
 
 
both master and slave system are adopted 
as: 1 2 3(0) 0.8, (0) 0.1, (0) 0.1x x x= = =  and 

1 2 3ˆ ˆ ˆ(0) 0.8, (0) 0.1, (0) 0.1.x x x= = = So the initial values of  

the error system are 1 2(0) 0, (0) 0e e= =  and 3(0) 0e = . 
Figure 3 illustrates the time history of the output 
error ( )ey t with disturbance when any control input is not 
applied. It is found that, when the system’s parameters 
are perturbed, the output error ( )ey t with any control input 
cannot converge to zero as time t  tends to infinity though 
the initial values of the master system are the same to 
the ones of the slave system. In order to realize the 
output synchronization, the observer method is adopted 
here. By use of the MATLAB LMI toolbox, from (19), we 
derive that the gain of matrix 
is [ ]35.0897 126.8107 478.9436

T
L = . Figure 4 depicts 

the time history of the output error vector ( )ey t when the 
observer method is applied, we see that the outputs of 
the error system

1 2
( ), ( )e ey t y t all fluctuate in the range of [-

0.05,0.05], that is to say, the fluctuations of the output 
error vector is very small compared with 0.15.γ =  
Therefore, the appropriate gain L assuredly reduces the 
effect of the exoteric perturbation within a prescribed  
level 0.15.γ =  At this time , we conclude that robust 
output synchronization achieve via the proposed method 
in our paper. 

Secondly, we select constants 

1 2 2220, 0.25, 0.3, 0.1, 0.3cos(6 )c tγ δ δ β= = = = ∆ =  and 21β∆  
is taken as Gaussian noise with mean 0 and variance 1 
that shows in Figure 5. The initial conditions of both 
master and slave system are adopted as: 

1 2 3(0) 0.8, (0) 0.1, (0) 0.1x x x= = =  

and 1̂(0) 0.8,x = 2 3ˆ ˆ(0) 0.1, (0) 0.1x x= = . Therefore, we get 

that the initial values of the error system are 

1 2(0) 0, (0) 0e e= = and 3(0) 0e = . It is in Figure 6 that 
depicts the time history of the output error 
vector ( )ey t with disturbance when any control input is not 
applied. The same conclusion as the above is drawn that, 
the initial values of the master system are the same to 
the ones of the slave system, but the output 
error ( )ey t with any control input cannot converge to zero 

with the passage of time t . To observe 
the H∞ performance with disturbance attenuation, the gain 

of matrix is obtained [ ]26.2390 93.8341 354.5015
T

L =  

from (19) with the aid of the MATLAB LMI toolbox. Figure 
7 shows the time history of the output error vector ( )ey t of 
both master and slave system with disturbance via the 
observer method. It is found that the outputs of the error 
system

1 2
( ), ( )e ey t y t  all change in the range [-0.1, 0.1] 

with zero initial conditions, that is, compared 
with 0.25γ = ; the fluctuations of the output error vector 
are very small. So robust output synchronization 
achieves with the disturbance attenuation 0.25γ = with 
the passage of time, which is consistent with our theory 
analysis. 
 
 

Conclusions 
 

Due to the existence of exoteric perturbation, a robust 
observer, based on Lyapunov theory, is designed for the 
output synchronization of a class of uncertain systems 
when the full state vector is not available. A new sufficient 
condition is derived that can not only make the outputs of 
both master and slave systems reach H� synchronization 
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Figure 5. Gaussian noise with mean 0 and variance 1. 
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Figure 6. The time history of the output error with disturbance when any control input is not applied. 
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Figure 7.  The time history of the output error with disturbance via the observer method 
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with the passage of time but also reduce the influence of 
the disturbance within a prescribed level. Finally, we take 
the perturbed Chua’s circuit as an example to illustrate 
the effectiveness of the proposed method. It is found that 
our controller only depends on the outputs of the system, 
so it is relatively easy to implement in practical 
applications. 
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