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In this paper, the nonlinear dynamics of a non-autonomous system model for third order sub-harmonic 
in a basic ferroresonant circuit are analyzed in details, including phase trajectory, Poincaré map, 
bifurcation diagram, dissipativity analysis and Spectrogram map. Furthermore, a sliding mode 
controller of the system is designed and both theory analysis and numerical simulation are presented, 
which shows the effectiveness and potentials of the proposed techniques. 
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INTRODUCTION 
 
Chaos theory is a very interesting phenomenon which 
has provided us a new way of viewing the universe and is 
an important tool to understand the world we live in. 
Chaotic behaviors are useful in many real-world 
applications such as secure communication (Khadra et 
al., 2005), mathematics (Liu and Yang, 2010), time series 
(Zhang and Small, 2006), biology (Ma et al., 2009; Zhang 
et al., 2010), circuit (Chen et al., 2012), human brain 
dynamics (Schiff et al., 1994), and heart beat regulation 
(Brandt and Chen, 1997), and so on. 

The ferroresonance is a nonlinear resonance 
phenomenon that can affect the electrical transmission 
and distribution networks (Jacobson et al., 2002; Wornle 
et al., 2005). The analyzed circuit is a simplest physical 
model of large electrical power system in which 
forroresonant oscillation can occur and this is shown in 
Figure 1. Although, apparently simple, it indicates all 
oscillating phenomena, generally periodic, which 
particularly appear on all networks at capacitive dominant 
in interaction (Lamba et al., 1998; Preetham et al., 2006; 
Wornle et al., 2005; Lind et al., 2006). Some authors who 
attempt to study ferroresonance were reported in 
Preetham et al. (2006) and Saravanaselvan and 
Ramanujam (2011). In Milicevic et al. (2008, 2009), the 
authors presented  a  measurement  system   for   model 
verification of  non autonomous  second-order  nonlinear 
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systems and predicted the prechaotic birfurcation points 
of a ferroresonant circuit. The chaotic behaviour exhibited 
by a typical ferroresonant circuit in a neutral grounding 
system is investigated in Hui et al. (2009). The article Ben 
Amar and Dhifaoui (2011) study the periodic 
ferroresonance in the electrical power networks by 
bifurcation diagrams. 

As the chaotic state in most systems is harmful, thus 
chaos control is of great help. Chaos control is 
disquisitive in how to control the chaotic system to the 
periodic orbit or equilibrium point with the original 
parameters remained or only fine-tuned when the system 
parameters cannot be changed objectively, or the 
parameters change largely must pay a great price. 
Typical control methods have been proposed to achieve 
chaos control. Based on Ott, Grebogi, Yorke (OGY) 
approach, a multiparameter semi-continuous method was 
designed to control chaotic behavior in Paula de and Savi 
(2009) work. The unified chaotic systems with uncertain 
parameters were synchronized based on the control 
Lyapunov function (CLF) method in Wang et al. (2009). In 
Chen et al. (2011a, b) proposed a sliding mode control 
and its no-chattering method with uncertain parameters 
and bounded external disturbances to control chaotic 
system. Furthermore, in Shi et al. (2006), considering the 
problems of stochastic stability and sliding-mode control 
for a class of linear continuous-time systems with 
stochastic jumps, a reaching motion controller is 
designed such that the resulting closed-loop system can 
be driven onto the desired sliding surface in a limited 
time. In Yokoi and Hikihara (2011), a control  method  was 
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Figure 1. Basic ferroresonant circuit. 
 
 
 

proposed for establishing periodic rotation inherent in 
parametric pendulum based on a delayed feedback 
control. In another related work Henning et al. (2011), the 
authors used dynamical barriers to control the 
transmission of light through slowly varying photonic 
crystals. Wang et al. (2011) designed a novel nonfragile 
linear state feedback controller to realize the mixed outer 
synchronization (MOS) between two networks and 
proved analytically by using Lyapunov-Krasovskii stability 
theory. 

Motivated by all the current discussion, there are 
several advantages which make our approach attractive, 
compared with previous works. First, the nonlinear 
dynamics behaviors of a non-autonomous system model 
are analyzed for various values of the parameters using 
Poincaré maps, bifurcation diagrams, and the power 
spectrum. Moreover, we present a sliding mode control 
method with only one controlling term for the system, in 
which saturation function is substituted for sign function. 
The control method introduces an adaptive law with dead 
zone, while the adaptive rate also has some nonlinear 
characters. 
 
 
SYSTEM DESCRIPTION AND AVERAGING 
 
Here, the system equations along with a brief outline of 
the averaging method are presented. In the circuit, shown 
in Figure 1, the nonlinear inductor and the parallel 
resistor (R) represent the transformer. It is to be noted 
that the magnitude of the iron core losses which consists 
of (a) hysteresis losses and (b) eddy current losses, 
depend both on the flux density as well as the supply 
frequency. While modeling this dependence may be 
useful in creating a more accurate core loss model, here, 
the losses are aggregated and represented by a resistor 
R for simplicity of analysis. The nonlinearity of the core is 
modeled by the following equation. 
 

n

Mi a b                                          (1) 

 
The capacitor C represents the  coupling  effect  between 
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the source voltage at a supply frequency of ωs. The 
supply voltage e(t) is given by e(t)=Vscos(ωst). Then the 
dynamics of the circuit in Figure 1 can be described by 
the following equation. 
 

1 1 cos( )n

sk a b G t                                                   (2) 

 

Where, 1
k

RC
 , 

1

a
a

C
 , 

1

b
b

C
 , and s sG V . When the 

index n of the magnetization curve is three, Equation 2 is 
functionally similar to the periodically forced Duffing 
oscillator. 
 
 

Remark 1 
 

In the context of ferroresonance, the index n is usually 
obtained by approximating the magnetizing 
characteristics by a two term polynomial of suitable order. 
In Jacobson et al. (2002) and Mozaffari et al. (1995), 
indices corresponding to n=3 and 13 were used in the 
calculations. Jacobson et al. (2002) examined the effect 
of the index n on ferroresonant oscillations and lower 
exponents were found satisfactory in representing small 
capacity transformers. In this paper, the index n is set to 
three for ease and tractability of the analysis. Thus, (2) 
with n=3 is used to determine analytically the regions in 
2D parameter space (V, Vs), where sub-harmonic 
resonance can persist. 

Detailed analysis has been done on the Duffing 
oscillator since the classical work of Duffing. In particular, 
primary resonance, third order sub-harmonic and super-
harmonic resonances have been exhaustively studied in 
the classical texts of (Nayfeh, 1981, 1979) by using 
perturbation techniques such as the methods of 
averaging and multiple scales. A brief outline of the 
averaging method to analyze third order sub-harmonic 
resonance is provided here. The classic Duffing equation 
is provided here. The classic Duffing equation is 
described by 
 

2
3

1 32
cos( )s

d u
k u k u F t

dt
                                                     (3) 

 
After a suitable amplitude and time scaling (Nayfeh, 
1979), the dimensionless form of the Duffing equation 
including the effect of a small viscous damping can be 
expressed as 
 

2 3

0 2 cos( )v v v v F t                                                (4) 

 

The averaging method starts by noting that when 0  , 

the general solution to (4) is given by 
 

0cos( ) 2 cos( )sv A t t                                                    (5) 

 

where 2 2 1

0( )

2

F   
 

, 0  , the solution is still represented  
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in the same form as in Equation 5, except that now the 
variables A and β are treated as time varying instead of 
constant. Thus, replacing A by A(t) and β by β(t) in 

Equation 5, the derivatives v  and v  are computed and 

substituted in Equation 4 to solve for A(t) and β(t). It can 
be shown (Nayfeh, 1981) that resonant conditions arise 
in the system when 
 

0   termed as fundamental frequency, or period-1 

ferroresonance (Jacobson et al., 2002). 

03   termed as superharmonic resonance. 

03   termed as sub-harmonic resonance (which is the 

subject of this paper). 

0   which is not of relevance to ferroresonance. 

 

For the case 0

3


  , following the development in 

Nayfeh (1981), the averaged equations for the system in 
Equations 2 can be written as 
 

2

1

0

3 sin( )

2 4

b AkA
A






                                       (6) 
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( 3 ) [ ]

8 4
f

b A A 
  


                     (7) 

 

where 
2

0 1

a
a

C
   , 

2 2

0( )

2

sG  
  . Setting the right 

hand side of Equations 6 and 7 to zero yields the steady 
state amplitude and phase of the sub-harmonic 
oscillations described by 
 

2

1

0

3 sin( )

2 4

b AkA 




                                (8) 
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                                  (9) 

 
For a nontrivial sub-harmonic oscillation to exist, it is 
evident that A > 0. Eliminating b from Equations 8 and 9, 
one can arrive at a quadratic in A

2
 and derive a condition 

(Nayfeh, 1981) for the existence of nontrivial sub-
harmonic oscillations, the result of which is described by 
 

2

0 01

2 2 2

0 0

2( 3 ) 4( 3 )263
63

8 ( )s

b G

k k k

   

  

 
  


    (10) 

 
The condition described in Equation 10 defines the 
boundary of the region where sub-harmonic oscillations  

 
 
 
 
can exist. In this paper, the parameters of interest in 
Equations 10 are (i) the coupling capacitance C, which 
decides the natural frequency of oscillation ω0, (ii) the 
amplitude of the source voltage Vs and (iii) the core loss 
resistor R. The dependence of the sub-harmonic domains 
on the parameters of interest and consequently, its 
implications to ferroresonance is thus discussed. The 
system mode of Equation 2 is described as follows 
 

31
cos( )s s s

dx
y

dt

dy a b
y x x V t

dt RC C C
 





     


              (11) 

 

Where define x = , 
dx

y
dt

 . 

 
 
SYSTEM DYNAMICS ANALYSIS 

 
In this study, the nonlinear dynamics of the system are 
analyzed using dynamic trajectory, Poincaré map, 
bifurcation diagram, dissipativity analysis and 
spectrogram map. The basic principles and numerical 
results of each analytical method are reviewed in the 
following below. 

The dynamic trajectories of the system provide a basic 
indication as to whether the system behavior is periodic 
or non-periodic. The numerical simulations of Equation 11 
with several different parameters show that the dynamic 
trajectories are non-periodic. 

The dynamic trajectories of the system are unable to 
identify the onset of chaotic motion. Accordingly, some 
other form of analytical method is required. In the present 

study, define st  , and Equation 11 is rewritten as 

follows 
 

31
cos( )s s

s

dx
y

dt

dy a b
y x x V

dt RC C C

d

dt

 










    






        (12) 

 

Obviously, Equation 11 is a non-autonomous system, 
while Equation 12 is autonomous. The dynamics of 
Equation 12 are analyzed using Poincaré maps derived 
from the Poincaré section of the systems. A Poincaré 
section is a hyper-surface in the state-space transverse 
to the flow of the system of interest. The projections of 
the Poincaré section on the x plane and the y plane are 
referred to as the Poincaré map of  the  dynamic  system.



Wu and Wang          1749 
 
 
 

Table 1. Different values of R, C, Vs and ωs and negative values of exponential rate p. 
 

R(KΩ) C(μF) Vs(p.u) ωs(p.u) p 

10 4.1 1 1 -0.0244 

10 7.2 1 1 -0.0139 

10 13.5 1 1 -0.0074 

10 6.7 2 1 -0.0149 

10 12.7 2 1 -0.0079 

10 22 2 1 -0.0045 

10 18 3 1 -0.0056 
 
 
 

When the system performs quasi-periodic motion, the 
return points in the Poincaré map form a closed curve. 
For chaotic motion, the return points form a fractal 
structure comprising many irregularly-distributed points. 
In the numerical simulation, the Poincaré maps of 
Equation 12 show chaotic motion. 

A bifurcation diagram summarizes the essential 
dynamics of a system and is therefore a useful means of 
observing its nonlinear dynamic response. In the present 
analysis, rewrite the Equation 11 as: 
 

3

1 1 cos( )s s s

dx
y

dt

dy
ky a x b x V t

dt
 





     


                     (13) 

 
The bifurcation diagrams are generated using k as the 
control parameter. In this case, the bifurcation control 
parameter is varied with a constant step and the state 
variables at the end of one integration step are taken as 
the initial values for the next step. In the numerical 
simulation, the corresponding variations of the x 
coordinate and y coordinate of the return points in the 
Poincaré maps of Equation 12 are plotted to form the 
bifurcation diagrams. 

For Equation 11 with R=10KΩ, C=4.1μF, Vs=1p.u, 
ωs=1p.u, we can obtain 
 

1 0 0.0244 0.0244
x y

V p
x y

 
       

 
 

 
Where, p is a negative constant. Thus, Equation 11 is a 
dissipative system. 
 

0.0244pdV
e e

dt

   

 
For Equation 11, a volume element V0 is apparently 
contracted by the flow into a volume element 

0.0244pt t

o oV e V e  in time t. It means that each volume 

containing the trajectory of this dynamical system shrinks 
to zero as t→∞ at an exponential rate  p.  Thus,  all  these 

dynamical systems orbits are eventually confined to a 
specific subset that have zero volume, and the 
asymptotic motion settles on an attractor of the systems. 

For different values of the parameters R, C, Vs and ωs, 
the values of p is also a negative constant. 
Power spectrum of chaotic system exhibits continuous 
broadband feature. The numerical simulation for power 
spectrum of Equation 11 exhibits continuous broadband 
feature. 

The simulation results are carried out using the 
MATLAB software with initial value [x y]

T
=[0.5 0.8]

T
. The 

sampled data of the parameters R, C, Vs and ωs shown in 
Table 1 was used to generate the dynamic trajectories, 
Poincaré maps, bifurcation diagrams and power spectrum 
of the system in order to obtain a basic understanding of 
its dynamic behavior and identify the onset of chaotic 
motion. Figures 2, 3, 4, 5, 6, 7 and 8 represent the 
dynamic behaviors of Equation 11 with different values of 
parameters R, C, Vs and ωs.  
 
 
SLIDING MODE CONTROL AND SIMULATION 
RESULTS 
 
Controller design 
 
The controlled form of the Equation 11 is defined as: 
 

3

1 2 3( ,[ , ] ) cos( )T

s s s

dx
y

dt

dy
f t x y u p y p x p x V t u

dt
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      (14) 

 
It is noted that the controller is active just when the 
current-driven induction motor system starts, that is, in 
chaotic state. But it is not active at other times. 

Here, to make Equation 14 track the aim orbit xd, which 
is n-order differentiable, we give a controller designed as 
follows: 
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Figure 2. Simulation result obtained for Equation 11 with R=10KΩ, C=4.1μF, Vs=1p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) Bifurcation maps w.r.t k (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 3. Simulation result obtained for Equation 11 with R=10KΩ, C=7.2μF, Vs=1p.u, 
ωs=1p.u; (a) dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 4. Simulation result obtained for Equation 11 with R=10KΩ, C=13.5μF, Vs=1p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k, (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 5. Simulation result obtained for Equation 11 with R=10KΩ, C=6.7μF, Vs=2p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k, (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 6. Simulation result obtained for Equation 11 with R=10KΩ, C=12.7μF, Vs=2p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k, (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 7. Simulation result obtained for Equation 11 with R=10KΩ, C=22μF, Vs=2p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k, (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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Figure 8. Simulation result obtained for Equation 11 with R=10KΩ, C=18μF, Vs=3p.u, 
ωs=1p.u; (a) Dynamic trajectories (x-y) (b) Poincaré maps (c) bifurcation maps w.r.t k, (d) 
power spectrum: logx-frequency/Hz and logy-frequency/Hz. 
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where 1 2, , , n   is positive and different from each 

other. 1 2, , , n   have a positive effect to the 

convergence rate. 
 
 

Theorem 1: For any given t T  , the controller 

Equation 15 makes Equation 14 meet the following 
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Proof: From Equation 14 and 1de x x  , one gets 
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Substitute Equation 15 into Equation 23, one getting 
 

0 0
( )

t ts
s rsat dt m rsdt


                                                   (24) 

Wu and Wang          1757 
 
 
 
Obviously, 
 

( )
s

s rsat mrs


                                                   (25) 

 
The Lyapunov function of the system is constructed as 

20.5V S , and then its first derivative with respect to 

time is 
 

2[ ( ) ] [ ( ) ]
s s

V ss s rsat mrs r ssat ms
 

                   (26) 

 

If s  , 

 

( / )s sat s s                                                     (27) 

 
2( ) 0V r s ms                                                 (28) 

 
One gets, for finite time T1, 
 

1( ) ,s t t T                                                 (29) 

 
Now, define  
 

1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

n n n

A

c c c c 

 
 
 
 
 
 
     





    





                                            (30) 

 
( 1)( ) [ ( ), ( ), , ( )]n TE t e t e t e t                                        (31) 

 

1

( ) [0,0, ,0, ( )]T

n

s t s t



                                                 (32) 

 
According to Equation 28, Equation 17 is rewritten as 
 

( ) ( ) ( )E t AE t s t                                                (33) 

 

The solution of Equation 33 is 
 

1

1

( ) ( )

1( ) ( ) ( )
t

A t T A t

T
E t e E T e s d                               (35) 

 

From Equation 18, 21 and 30, Vandermonde matrix R 
meet the following equation 
 

  1

1 2, , , ,nA Rdiag R      

 

Thus 
 

1 ( )( )( ) 1{ , , }n ttA te Rdiag e e R
                               (36) 

javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')


1758          Int. J. Phys. Sci. 
 
 
 

  
                             (a)                                                      (b) 

 

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

Time/sec.

x

0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Time/sec.

y

   
  

                             (a)                                                      (b) 

 

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

Time/sec.

x

0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Time/sec.

y

 
 
 
 

Time (s) 

   (b) 
 

Time (s) 

   (a) 
 

 
 

Figure 9. State responses of the Equation 35 when the control u(t) is not activated; (a) x-t (b) y-t. 
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The proof is completed. 
 
 
Numerical results 
 
The controlled form of Equation 14 is described as: 
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Where p1=-0.0244, p2=-0.0073, p3=-0.0146, ωs=1.0 and 
Vs=1.0.  
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Fourth order Runge-Kutta integration method is used to 
numerical simulate the time step size (0.01) and the 
simulation results are carried out with initial value [x 
y]

T
=[0.5 0.8]

T
. The state responses of the Equation 40 

with u=0 are shown in Figure 9. And it should be noticed 
that the controller is applied at t=10. The expected 
trajectory xd is chosen as a fixed point xd =0 and a 
periodic orbit xd =sin(1.1t). For xd =0, the system state 
responses of the closed loop system in the presence of 
the control law (Equation 36) are shown in Figure 10. And 
for xd =sin(1.1t), the system state responses and tracking 
error response are shown in Figure 11. The time 
response of the sliding controllers is shown in Figure 12. 
The time response of the sliding surface is shown in 
Figure 13. One can clearly observe that the controller has 
compelled the system states onto the sliding plane and 
kept the states on the surface for all subsequent time. In 
other word, from the simulation results, it shows that the 
obtained theoretic results are feasible and efficient for 
controlling the induction motor system. 
 
 

CONCLUSION 
 

In this paper, a non-autonomous system model for third 
order sub-harmonic in a basic ferroresonant circuit is 
described. The nonlinear dynamics of the system are 
analyzed   using   dynamical  trajectories,  Poincaré  map,
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Figure 10. Time response of controlled Equation 35 when the controller u(t) is activated at t=10s, for fixed point 
xd =0; (a) x-t (b) y-t. 
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Figure 11. Time response of controlled Equation 35 and tracking error response when the 
controller u(t) is activated at t=10s, for fixed point xd =sin(1.1t); (a) x-t (b) y-t. 

 
 
 

bifurcation diagram, dissipativity analysis and 
spectrogram map. Numerical simulation result shows 
chaotic motion. Then we design a sliding mode controller 
with only one term for the chaotic system, which is no-
chatting for its saturation function. Thus, the control 
method can guarantee the stability and reliability of the 
system. Both  theory  analysis  and  numerical  simulation 

result are presented to demonstrate the validity of the 
proposed control.  

Future research may focus on the following topics. 
Firstly, new dynamical behaviors for nonlinear systems 
need to be discovered. And the relationship of complex 
dynamical characters could be discussed with each other. 
Secondly,   new   controlling  method   should be  studied,

javascript:showjdsw('jd_t','j_')


1760          Int. J. Phys. Sci. 
 
 
 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time/sec.

u

  0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

4

5

Time/sec.

u

 

 

 

 

Time (s) 

  (a) 
Time (s) 

  (b) 
 

 

Figure 12. The time response of the controller u(t) which is activated at t=10s; (a) For xd =0 (b) For xd =sin(1.1t). 
 
 
 

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time/sec.

S

 

 

 

Time (s)  
 

Figure 13. The time response of the sliding surface 
 
 
 

which is suitable for uncertainties, external disturbances, 
unknown parameters and input nonlinearities.  
 
 

Nomenclature: Vs, Peak value of the sinusoidal supply 
voltage; ωs, angular frequency of the supply voltage; C, 
coupling capacitance; R, transformer shunt resistance 
representing core loss; λ, Flux linkage in the nonlinear 
inductor; iM, magnetizing current; a, Coefficient of the 
linear part of magnetization characteristics; b, coefficient 
of the nonlinear part of magnetization characteristics; n, 
exponent corresponding to the nonlinear magnetization 
characteristics; ω0, Natural frequency of the 
ferroresonant circuit. 
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