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This paper treats the dynamic and energy absorption responses of nonlinear spring-mass system using 
a developed two dimensional solver code. The influence of spring stiffness and various mass 
configurations on the impact response was investigated using validated models. Results are quantified 
in terms of important impact response and indicate that an assembly of spring-mass system can be 
employed to examine the impact response of energy absorption system prior to the detailed numerical 
analysis and experiment. The developed solver code will be useful for educational purposes to 
preliminarily understand the behavior and impact response of energy absorbing system without 
learning a piece of complicated nonlinear commercial finite element codes namely LS-DYNA. The 
developed code could facilitate the early stage of evaluation for impact applications. 
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INTRODUCTION 
 
For several decades, an increased emphasis has been 
placed on crashworthiness as a structural design 
requirement for occupant-carrying vehicles. Structural 
systems in vehicles are continuously subjected to 
increasing safety requirement since vehicles are exposed 
to multidirectional impact conditions namely frontal, rear, 
side and roll over impacts. Although, destructive testing 
provides the most reliable check of the structural 
performance in an impact event, trial and error approach 
is impractical as it is relatively expensive and time 
consuming. The most important decision in the 
development of a new crashworthy structure is made in 
the early stage of design so that significant economic 
gains can be achieved by using a reasonably accurate 
theoretical method to predict the relevant collapse 
properties (Deb et al., 2004; Sheh et al., 1992; Pifko and 
Winter, 1981; Deb and Ali, 2004; Wu and Yu, 2001). In 
order  to  meet crashworthiness criteria, it is indispensible 

that an adequate crashworthiness evaluation method 
may be used as early as possible in the design process.  
In general, various types of reliable crash analysis using 
experimental, theoretical, hybrid, finite element and 
analytical models can be conducted to examine the 
performance of energy absorption system in terms of 
energy absorption capacity, deceleration effect, dynamic 
force experienced by occupants and so forth (Jones, 
1989; Jones and Wierzbicki, 1983). There have been 
numerous studies on the crash analysis of vehicular 
system available particularly in using experimental and 
finite element models as a primary approach (Benson, 
1992; Wu and Cheng, 1997). However, most of the 
investigation emphasize on the detailed analysis rather 
than on the preliminary design concept in the early stage 
of design. It has been established that a hybrid analysis 
can promote a simple way of analyzing the effectiveness 
of  energy  absorption  system  with  minimum  effort  and 
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computational time (Wu and Yu, 2001; Ruan and Yu, 
2003).  

Hybrid analysis integrates a component testing and a 
simplified finite-element-based analysis. This integration 
of experimental and analytical approach significantly 
reduces development time and it also permits the study 
of a much wider variety of designs compared with 
conducting experimental testing alone (Gouddreau and 
Hallquist, 1982). In addition, this method requires less 
computer time than finite element methods leading to 
shorten design cycles and reduce development costs as 
well as providing useful preliminary design information 
relatively quickly or gross estimates of structural 
response. Moreover, by using this method, design errors 
can be easier to rectify before producing a full-scale 
model. Consequently, simplified hybrid models enable a 
quick parametric study to identify an optimum distribution 
of crush components, thus setting priority design targets. 
Hybrid method is also known as combined experimental 
and numerical methods in which a structure is divided 
into a number of masses which is connected each other 
using subassemblies that are treated as beams or 
nonlinear spring elements (Pifko and Winter, 1981; 
Hofmeister, 1978). A hybrid approach relies on 
experimental data gained separately from the load-
deflection curves of full scale tests of each structural 
component in conjunction with a theoretical model (Liaw 
et al., 1988; Kecman, 1997). The use of a relatively 
simple theoretical model aids better understanding of 
involved collapse phenomenon. If the load-deflection 
response (stiffness characteristic) of components (beam 
or nonlinear spring elements) is known, a single or multi 
degree of freedom mass-spring systems can be possibly 
developed to simplify a model of the structure without 
concern of the material used (Liaw et al., 1988). The load 
carrying capacity of a structure is assumed to be 
insensitive to the deformation rate (Kirkpatrick et al., 
2000). This approach, however, may give a limited 
accuracy of the results. In a pioneer research on hybrid 
model, Herridge and Mitchell (1978) have modeled a 
vehicle collision with two dimensional crash model. It 
appears that the model may anticipate the behavior of the 
structures in a brief manner. Sheh et al. (1992) have 
developed a simple hybrid model, namely a lumped 
parameter (LP) model in order to simply perform a frontal 
vehicle crash simulation. The model mainly consists of 
lumped masses and non-linear springs for a system with 
a single degree of freedom and the experimental data 
were used to assist the development of models. It is 
evident that by using this model, acceptable levels of 
safety in passenger automobile can be initially analyzed. 
In another study, Liaw et al. (1988) have used three 
dimensional hybrid models consist of lumped masses, 
nonlinear spring and beam using computer KRASH 
program. The nonlinear properties of the corresponding 
components were obtained from the static crush test and 
then  as  an  input  for  the  simulation using the computer 
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program KRASH. 

The present study treats the dynamic and energy 
absorption responses of crashworthy system under two 
dimensional impact loading. Dynamic response and 
feasibility of component assembly in energy absorbing 
system has been examined by varying component 
masses, crush characteristic of individual components 
and impact velocity. A solver code developed by using 
MATLAB programming (Thomson, 1988; Venkataraman, 
2002), validated using existing commercial finite element 
code LS-DYNA was employed to investigate the relative 
effect of varied parameter on the dynamic response of 
the energy absorption system. Overall the results 
demonstrate the advantages of using the developed code 
as an analysis tool aids for academic and industrial 
usages. The primary outcome of this study is a simple 
solver code for educational purposes to preliminarily 
understand the behavior and impact response of energy 
absorbing system without learning a piece of complicated 
nonlinear commercial finite element codes namely LS-
DYNA. The developed code could facilitate the early 
stage of design evaluation for impact applications 
specifically in automotive and aviation industries.  
 
 
DEVELOPMENT OF HYBRID SOLVER AND 
COMPUTATIONAL MODELLING 
 
Lagrangian computational method 
 
The main contribution of this paper is the development of 
solver code using MATLAB algorithm. This programming 
solver was developed in accordance with the explicit 
Lagrangian computational method (Benson, 1992; 
Gouddreau and Hallquist, 1982). The solutions are 
advanced in time using an explicit integration scheme 
and they must be resolved accurately in both space and 
time domains (Cook et al., 1989; Jonsén et al., 2009). 
Recently the development of Lagrangian hydrocode is 
continued for a wide range of application namely 
automotive and aviation industries. Fundamentally, 
Lagrangian hydrocode applies Lagrange formulation for 
spatial discretization (Hallquist, 2006). Spatial discreti-
sation can be carried out in either the Lagrangian or 
Eulerian framework. This hybrid solver code is a 
simplified hydrocode thereby becoming easier and 
straightforward. In particular, the time derivatives are 
material and thus simple partials of Lagrangian frame 
where coordinates are assigned to material points. As 
iterated in Benson (1992), a general iteration of 
Lagrangian code is outlined as follows.  
 
(i) Stress, pressure, hourglass forces at t

n
 in each 

element, calculate the force at the node and followed by 
acceleration calculation, 
(ii) Integration of acceleration to get velocity at t

n+1/2
, 

(iii) Integration  of  velocity  to  get  displacement   at   t
n+1

, 
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(iv) Integration of constitutive model for the strength from 
t
n
 to t

n+1
,  

(v) Calculation of shock viscosity and hourglass viscosity 
from u

n+1/2
, 

(vi) Updating internal energy based on work done 
between t

n
 and t

n+1
, 

(vii) Pressure is calculated from the equation of state, 
(viii) New time step is calculated, 
(ix) Advance the time and return to initial step. 
 

where t
n
 and t

n+1
 are full time intervals while t

n+1/2
 and 

u
n+1/2

 are half time intervals.  
From the above iteration, it should be noted that the 

present study has only calculated the force, thus ignoring 
fifth and seventh steps in consideration of the type of 
elements used and complicated calculation for pressure, 
shock and hourglass viscosity. Second, third, fourth, 
sixth, eighth and ninth steps were accordingly devoted in 
this solver code. For the fourth step, the evaluation of 
force deflection curve was performed rather than the 
integration of constitutive model for the strength. For 
clarity of the developed solver code, the subroutines used 
are outlined as follows. 
 

(i) Set-up problem: Input variables, material models, 
material properties, define curves,  
(ii) Initialize problem: Calculate stiffness, critical timestep, 
state initialization, initial length, element direction vector 
(iii) Solution: Solver, 
(iv) Plotting results: Displacement, velocity and 
acceleration. 
 

The equations used in the solver are based on 
Lagrangian formulation, equation of motion and 
fundamental spring-mass system. 
 
 

Central difference time integration 
 

Computational method using Lagrange formulation can 
solve the position of the mesh at discrete points in time 
(Cook et al., 1989). The solution is advanced from t

n
 to 

time t
n+1

 without any iterations and the time step Δt
n+1/2

. In 
order to minimize the storage required, the solution is 
stored for only one time t

n
 within the program and the 

initial solution of the time step is overwritten by the 
solution at the end of the step. The central different 
method was used to advance the position of the mesh in 
time and it is based on second order accurate central 
difference approximation. From the Taylor series 
derivation, the integration rule can be carried out. The 
integration rule for the Lagrange formulation is expressed 
by Equations (1) and (2). In the present study, discrete 
element was used and do not involve any element 
meshes.  
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Herein, x, u and u  are the displacement, velocity and 
acceleration respectively. In Equation (2), F and m are 
denoted to force and mass, respectively.  

Central difference method is prevalently used in explicit 
direct integration methods to integrate the equations of 
motion in time (Benson, 1992; Gouddreau and Hallquist, 
1982; Cook et al., 1989). Equation of motion is evaluated 
at the central time. In this present solver, the damping 
matrix was ignored as the system is an undamped 
system. Thereby, the equations of motion can be 
expressed by Equations (3) and (4) for the linear problem 
and nonlinear problem, respectively. In those equations, 
M, K and f 

ext
 are a group of matrices for mass, stiffness 

and external force, respectively.   
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For linear problems, the stiffness matrix is constant in 
time while for the nonlinear problem the stiffness matrix is 
a function of displacement as shown in Equuation (4). 
The central difference algorithm calculates the 
acceleration and velocity at the full time intervals, t

n-1
, t

n
, 

and t
n+1

 and the velocity at the half time interval, t
n-1/2 

and 
t
n+1/2

. In addition, this algorithm has a finite stable time 
step (Hallquist, 2006; Livermore Software Technology 
Corporation, LS-DYNA Keyword User's Manual, 2003). 
The critical time step must be determined to keep the 
time step for stability. Theoretically, central difference 
method is a second order accuracy with a single 
evaluation. Therefore, it can save the computational cost 
compared to second order Runge-Kutta. It is evident that 
the chosen method is problem dependences. In general, 
direct integration method is more expedient for a 
complicated nonlinearity. However, central difference 
method is more preferable for nonlinear dynamic 
problems (Stronge and Yu, 1993). 

 
 
Specifications of solver code 
 
Geometry 
 
In this study, discrete element and nodal mass were 
employed for the spring and component masses, 
respectively. This type of element can represent a large 
system when subjected to a gross motion. In addition, 
discrete element and masses provide a capability for 
modeling a simple spring-mass system and can be used 
for more complicated mechanism.  It should be noted that 
the  discrete  element  is  deemed  to  be  massless   and  



 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nodal Mass Discrete Element  
 

Figure 1. The discrete element and nodal masses for a 
spring-mass system. 

 
 
 
consists of two nodes for each element. In particular, the 
nodal masses are specified at this unconstraint node or 
joining node to separate the element. Figure 1 shows the 
discrete elements and nodal masses for a spring-mass 
system consisting of two springs and three masses. 

Force-displacement curve is an element property that 
can individually be included to represent the stiffness of 
the discrete element. By using discrete elements, various 
stiffness properties can accordingly be assigned to each 
element. The stiffness property is represented by 
stiffness matrix for a linear problem while load curve 
property is employed for a nonlinear problem. The nodal 
masses represent the crash component such as engine, 
bumper, sub floor, landing gear and other crashworthy 
components. Furthermore, element and nodal forces can 
easily be determined by using discrete element and nodal 
masses. A force of the local element coordinates can be 
expressed by the following equation. 
 


n

elementnode FF

                                               (5) 
 
n = Elements attached to node. 

Thereafter, kinematics responses namely acceleration, 
velocity and displacement for each nodal point mass can 
be computed directly with the time increment. 
 
 
Material model 
 
For the spring mass system, basic material models were 
defined excluding the strain rate effect and complicated 
equation of state. This programming solver code offers 
independent strain rate material models for the discrete 
elements such as linear elastic, nonlinear elastic and 
general nonlinear. Linear elastic discrete element is a 
typical force-displacement relations which is similar to 
Hooke’s law as expressed in Equation (6) where k is the 
element’s stiffness and Δl is the change of element’s 
length.  
 

lkF ˆ                                                                        (6) 
 
Thus, the linear elastic describes the system in which the 
force increases linearly with the displacement. The spring  
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Figure 2. Material model of nonlinear elastic. 

 
 
 
element remains in a linear elastic region without yielding 
when subjected to loading. Nonlinear elastic discrete 
element exhibits a nonlinear behaviour with varying 
stiffness properties. Nonlinear elastic model expresses a 
tabulated force-displacement relation as in Equation (7) 
where k (Δl) is the tabulated stiffness relation depending 
on the total change of element’s length.  
 

 llkF  )]([ˆ
                                                           (7) 

 
In particular, when a nonlinear elastic element starts to 
be loaded, it follows the loading path with varying 
stiffness properties. It remains in loading paths without 
yielding. For an unloading case, a nonlinear element is 
unloaded back along the loading paths. Figure 2 depicts 
the behaviour of the nonlinear elastic material model 
under loading and unloading cases. 

General nonlinear material model is a primary material 
model of this study. This material model can offer better 
solution for the crash analysis. In many real situations, 
structure always responses under a nonlinear behaviour 
and involves in numerous nonlinear problems. In general, 
a nonlinear problem is inherently more complex to be 
analyzed than linear problems. It is worth noting that the 
model can simulate the response of structural 
components with the inclusion of independent and 
nonsymmetrical linear loading and unloading paths 
including the initial yield forces. It is noted that a general 
nonlinear element yields in either tension or compression. 
For instance, if the element is subjected to tension, the 
discrete element loads and unloads   along the loading or 
unloading path as long as the load does not reach a yield 
point. Upon exceeding yield point and at all subsequent 
time, the element follows the specified loading and 
unloading curves. In addition, the displacement origin of 
the unloading curve is arbitrary and it is shifted to the 
present displacement where the element starts to unload.  
Then, the element reloads along the unloading path until 
it reaches the new updated yield point and follows the 
loading  curve subsequently as demonstrated in Figure 3. 
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Figure 3. Material model of general nonlinear (a) Loading and 

unloading curve (b)  Element yields in tension. 

 
 
 
Initial, boundary and loading condition 
 
In the programmed solver code, initial conditions are 
necessary in order to determine the kinematic behaviour 
and internal forces. The initial conditions required are 
initial velocity and initial coordinate. An initial velocity is 
needed to evaluate the motion (acceleration or 
deceleration) of the nodal masses. Alternatively, an initial 
acceleration can also be specified for the same purpose. 
Moreover, an initial coordinate is defined in the solver for 
capturing the translational motion of the element due to 
the change of the coordinate.  

The stationary nodal masses were fully constrained in 
translation.   The    present    solver    also    includes  the  

 
 
 
 
prescribe motion boundary condition. This boundary 
condition can be devoted to a prescribe motion for nodal 
motion such as displacement, velocity and acceleration 
imposed as a prescribed function of time. This is 
convenient when individual or a set of nodal masses 
have a required velocity or acceleration time history.  

There are only two types of loading conditions that 
have been specified in the solver namely, a concentrated 
load and a load with the inclusion of time variation 
(defined load curve). Any specified load curve has a 
tabulated force time relation.  
 
 
Solver output 
 
The present solver code is capable of providing beneficial 
design information which is pertinent to the structure 
crash analysis. A visualized output namely time-history 
plotting can interactively be presented to give a basic 
understanding of structure behaviour. Time history plot 
comprises of coordinate-time, displacement-time, 
velocity-time, acceleration-time and force-time. From 
those plots, the outputs are integrated to produce force-
displacement curve. It is well known that force-
displacement curve is dispensable in measuring the 
crush and energy absorption capacity of the system. In 
addition, this solver can also produce the kinetic and 
internal energy outputs. Therefore, the amount of 
dissipated energy can be evaluated for various spring-
mass assemblies. A nodal mass contributes a kinetic 
energy while a spring discrete element contributes an 
internal energy.  
 
 
Description of programming solver 
 
The spring-mass system represents an assembly of 
crash component in structural analysis. The system 
consists of nodal masses, linear spring, nonlinear spring 
and general nonlinear spring. In developing a spring-
mass system for crashworthiness analysis, it involves a 
topology study on the number of masses and springs to 
be connected and how are they connected. Mass 
distribution also needs to be justified in order to get an 
acceptable representation of the physical system. 

Initially, a single spring with a pair of masses was used 
to understand the behaviour of the model and to validate 
linear, nonlinear and general nonlinear spring elements. 
For validation, the mass and stiffness property values 
were chosen for the single spring validation. Figure 4 
shows a single spring-mass system in the preliminary 
model. Subsequently, two springs were duly used to 
evaluate the spring element behaviour due to the 
combination of linear elastic, nonlinear elastic or 
nonlinear elastic and general nonlinear material model.  
To ascertain whether the solver code was sufficiently 
accurate  and  feasible  for  analyzing  more  complicated  
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Figure 4. A spring-mass system in the preliminary 

model. 
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Figure 5. A spring-mass 
system of an idealized 

helicopter sub floor vertical 
impact. 

 
 
 
crash problems which consists of multi spring-masses, 
the code was programmed to perform analysis for multi 
spring-mass system representing a helicopter sub-floor 
structure as depicted in Figure 5. From Figure 5, the 
spring elements 1 and 2 represent a helicopter sub-floor 
and helicopter cabin structures, respectively. For the 
nodal masses, mass 1 represents a helicopter 
transmission and mass 2 represents a troop 
compartment.  

In general, programming flow comprises several 
phases namely input, initialization, solutions and output 
phases. The detailed programming flow of the entire 
solver code can be illustrated in Figure 6. 
 
 
VALIDATION AND DEMONSTRATION OF THE 
SOLVER CODE 
 
The solver  code  was  corroborated  directly  against  the  
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Figure 6. Programming 
flow for the solver code. 

 
 
 
numerical results obtained from LS-DYNA solver. Here, 
the validation is categorized for the single spring element 
and multi-spring element leading to the practical 
application of the structural crash. 
 
 
Single spring element 
 
Single spring element was initially simulated to duly 
comprehend the spring element behaviour under 
pertinent loading condition. For the single spring element, 
LS-DYNA was not employed to validate the response. 
For validation, force-time, displacement-time and load-
displacement curves are mainly of interest as those 
curves are sufficient to show the validity of the material 
model for a single spring element. Most importantly, the 
single spring element can present a reasonable trend 
prior to the subsequent validation of the multi-spring 
element.  

 
 
Linear elastic 

 
Figures 7 and 8 show the validation results for the single 
spring element. Obviously, the simulated curve trend 
shows  curve  response as expected when employing the  
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Figure 7. (a) Displacement-time (b) Force-time for a 
linear elastic spring element. 

 
 
 
fundamental theory in which force and displacement 
oscillate accordingly to the corresponding solution time, 
thus resulting in proportional trend of a force-
displacement curve. It is evident that the slope of the 
force-displacement curve is 20 N/mm which is similar to 
the defined spring stiffness, k in the solver code.  
 
 
Nonlinear elastic 
 
Nonlinear elastic material model can be defined by using 
the solver code for solving a simple nonlinear problem. 
Table 1 tabulates the input data of the force-displacement 
points. Figures 9 and 10 show accurate results plotted by 
the solver code for a force and displacement time history 
plot and a force-displacement curve respectively. Three 
points are indicated in Figures 9 and 10 in order to show 
loading and unloading paths within the solution time. In 
Fig. 9, the spring element is loaded rapidly to Point 1 and 
unloaded to Point 2. From this point onward, it is 
reloaded until it reaches Point 3. It is evident from Figure 
10 that the material model of the solver agrees well with 
the postulated behavior of nonlinear elastic model shown 
in  Figure  9.   The   results   obviously  give  an  accurate  
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Figure 8. Force-displacement curve for a linear elastic 
spring element. 

 
 

 
Table 1. Input data of force-displacement for nonlinear elastic 

material model. 
 

Force-displacement curve 

Displacement (X coordinate) 

(mm) 

Force (Y coordinate) 

(kN) 

0.0 0.0 

0.4 20.0 

1.5 26.0 
 
 

 
correlation between force and displacement time plot 
(Figure 9) with the force-displacement curve (Figure 10).  
 
 
General nonlinear 
 

The most complicated material model is a general 
nonlinear element. For this type of model, validation has 
been divided into two parts: Tension and compression 
loadings.  
 
Tension loading: To ascertain whether the solver was 
sufficiently accurate for more complicated material model, 
it was virtually validated using force-displacement curve. 
Force-displacement curve for general nonlinear behavior 
is specified for both curves: Tension loading and 
unloading phases as indicated in Tables 2 and 3, 
respectively. In tension loading, States 0, 1 and 2 are 
involved in this solver code as demonstrated in Figure 11. 
Each state condition is as follows: 
 
(i) State 0: Force has not reach tension and compression 
yield, 
(ii) State 1: Force exceeded tension yield, 
(iii) State 2: On unloading curve, 
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Figure 9. (a) Force-time (b) Displacement-time for a nonlinear elastic spring 

element. 
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Figure 10. Force-displacement curve for a nonlinear elastic spring 

element. 

Table 2. Input data of force-displacement curve for unloading 
phase in general nonlinear behaviour. 
 

Force-displacement (Unloading curve) 

Displacement (X coordinate) 

(mm) 

Force (Y coordinate) 

(kN) 

0.0 0.0 

0.1 1.0 

7.0 70.0 

 

 
 
(iv) State 3: Force exceeded compression yield. 

 
Obviously, a reliable result is obtained from the direct 
comparison      of     the     displacement-time    plot    and  
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Table 3. Input data of force-displacement curve for loading phase in 
general nonlinear behaviour. 
   

Force-displacement (Loading curve) 

Displacement (X coordinate) 

(mm) 

Force (Y coordinate) 

(kN) 

0.0 0.0 

0.23 20.0 

0.60 23.0 

0.90 18.0 

1.25 20.0 

1.50 35.0 
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Figure 11. State-time plot for general nonlinear behavior under 
tension loading. 

 
 
 
force-displacement curve (Figure 12). It should be noted 
that the element is subjected to general loading and 
unloading curves. In particular, from Point 1 to 2, the 
element is unloaded on the loading path as the force 
does not reach an initial yield force, 20 N/mm. However, 
the element is unloaded on the defined unloading curve 
upon a yield point as indicated at Points 3 to 4 in Fig.ure 
12. From Points 4 to 5, the element is reloaded along the 
defined unloading curve as the displacement increases. 
Overall, the solver code shows a good capability of 
presenting a general nonlinear behavior of system. As 
such, this solver can perform the task for general 
nonlinear spring element when subjected to tension 
loading. 
 
Compressive loading: Most of the crash structure is 
often exposed to compressive loading. Owing to this, this 
solver code was also validated under such loading 
condition. Table 4 tabulated input data of loading and 
unloading curve for the general nonlinear material model.  
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Figure 12. (a) Displacement–time curve; (b) Force-displacement 

curve for general nonlinear behavior under tension loading. 

 
 
 
Figure 13 shows displacement-time and force-
displacement curves for general nonlinear spring element 
when subjected to compression loading. It is evident that 
the curves show a good correlation between the loading 
and unloading conditions. 

In particular, when compression load exceeds the initial 
yield compression, -20 N, it is unloaded on the unloading 
path rather than on the loading path as expected by using 
this solver code. This validation result is sufficient enough 
to show that the solver code is duly feasible and reliable 
for the element under compressive load. Hitherto, the 
solver code can subsequently be employed to a real two 
dimensional  crash  structure  to  show its usefulness and 
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Table 4. Force-displacement input data of loading and unloading curves for Spring 1 (cabin). 
   

Displacement (X coordinate) (m) Force (Y coordinate) (kN) 

Force-displacement (Unloading curve)  

-0.006 -170000 

0.0 0.0 

0.006 170000 

  
Force-displacement (Loading curve) 

-0.300 -1000000 

-0.270 -500000 

-0.225 -150000 

-0.010 -150000 

0.0 0.0 
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Figure 13. (a) Displacement–time curve (b) Force-

displacement curve for general nonlinear behavior under 
compressive loading. 

 
 

 
benefit in structural crash analysis. 

Multi-spring element – two-dimensional crash solver 
code 

 
For the multi-spring element, direct comparisons between 
the coordinate-time, velocity-time, acceleration-time and 
force-time curves obtained from existing finite element 
nonlinear code LS-DYNA and present codes are 
presented to show the accuracy of this solver code. For 
instance, a helicopter subfloor structure and frontal 
automotive structure crashes are demonstrated in this 
paper. This structural crash scenario can numerically be 
performed to comprehend the fundamental 
understanding of crashworthiness analysis since it just 
consists of two spring elements. 

 
 
Helicopter sub-floor structure under vertical crash 

 
The assembly of the multi-spring element shown in 
Figure 5 is used here. Helicopter sub-floor structures are 
divided into two main crash parts namely a helicopter 
cabin and an under-floor structure represented by spring 
element 1 and 2 respectively. The purpose of this crash 
analysis is to examine the dynamic behaviour of the 
structure under vertical impact load. Established force-
displacement curve for the cabin and under-floor were 
included in the code prior to the analysis. Tables 4 and 5 
show the force-displacement input data for the Spring 1 
(cabin) and Spring 2 (under-floor) of helicopter sub-floor 
crash analysis (Liaw et al., 1988). 

From the initial calculation, the undercarriage could 
absorb sufficient impact energy to reduce the ground 
impact velocity to 8.2 m/s. As such, this velocity value 
was defined as the initial velocity. Crash analysis has 
been performed by using LS-DYNA commercial code and 
the developed solver code. Figures 14 and 15 
demonstrate  the  accuracy  of time history plots obtained  
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Table 5. Force-displacement data of loading and unloading 
curves for Spring 2 (underfloor). 
 

Displacement (X 
coordinate)(m) 

Force (Y coordinate)(kN) 

Force-displacement 
(Unloading curve) 

 

-0.009 -40000 

0.0 0.0 

0.009 40000 

  

Force-displacement (Loading curve) 

-0.50 -76000 

-0.223 -57200 

-0.045 -70000 

-0.009 -40000 

0.0 0.0 

10.0 5000 

 
 

 

from the solver code compared with the results from 
commercial software LS-DYNA. In addition to this, a 
force-time curve is also directly compared and shown in 
Figure 16.  

It is evident that the results obtained from the 
developed code, indicate good agreement between the 
two sets of results. The discrepancy becomes obvious 
upon reaching the solution time. The reason for this is 
due to the specified boundary condition. In LS-DYNA, 
rigid wall was defined as replacing translational constraint 
whereas in the solver code, the boundary condition was 
fixed. Thus, LS-DYNA code permits nodal mass 1 to 
bounce up and avoids any tension force occurred during 
the analysis. If this rigid wall is removed, the result would 
be better since the solver code does not take into 
account the contact algorithm. In order to overcome this 
problem, boundary conditions defined in LS-DYNA can 
be modified to suit with the non-contact solver code. 
Initially, the discrepancy has been anticipated due to the 
contact algorithm. As a recommendation for future 
research, this solver code can be improved by adding a 
contact boundary condition subroutine.  Nevertheless, the 
time history plots (displacement, velocity and 
acceleration) present good agreement with LS-DYNA 
plot.  
 
 

Automotive frontal structure crash 
 

Frontal vehicle structure has a more complex spring-
mass system. Typical results that produced using this 
solver code are presented to treat the capability of this 
solver code. The spring-mass model consists of 8 spring 
elements and 9 nodal masses as shown in Figure 17.  

The important spring properties are accordingly defined 
to  demonstrate  the  acceptable results of the automotive  

 
 
 
 
crash. It is noteworthy that force displacement curves 
applied on the structure were applied arbitrary on the 
structure to represent the structure impacting rigid wall. 
The list of structural component included in this analysis 
is as follows. 
 
(i) M1: Barrier mass, 
(ii) M2: Bumper mass, 
(iii) M3: Radiator interface mass, 
(iv) M4: Engine mass, 
(v) M5: Engine mounting component mass, 
(vi) M6: Frontal wheel mass, 
(vii) M7: Transmission component mass, 
(viii) M8: Aft frame mass, 
(ix) M9: Survival room mass.  
 
In this crash analysis, the engine nodal mass and survival 
compartment mass have been chosen in order to 
evaluate dynamic behavior of the energy absorbing 
system. Figure 18 shows the coordinate-time, velocity-
time and acceleration-time plots obtained from the solver 
code. More importantly, the results presented have an 
acceptable and reasonable finding as presented in 
Herridge and Mitchell (1978). It is evident that this 
developed solver code could successfully demonstrate 
the crash behavior and dynamic response of the multi 
complicated system in solving one dimensional crash 
analysis. 

Overall, the present solver code has demonstrated its 
capability in simulating crash analysis involving multi-
spring element: helicopter sub-floor structure. Although 
the code is not as accurate as LS-DYNA code, it can 
initially be employed to predict the impact response of the 
structure and to understand the behaviour of structure 
under impact loading condition.  
 
 
Conclusion 
 
The purpose of this study was to demonstrate the 
capability of solver code in performing two dimensional 
crash analysis of crashworthy system. It is evident that 
the solver code shows good correlation with the 
commercial finite element code. This satisfactory 
validation provides adequate confidence for promoting 
this code. Hence, this developed code may be employed 
as an educational tool. Most importantly, the code does 
not require learning complex pieces of nonlinear explicit 
code such as LS-DYNA in order to perform crash 
analysis. Moreover, no user manual is needed to be 
referred. Output response was quantified with respect to 
variations in the kinematic parameters and force-
displacement thereby representing the energy absorption 
capacity of the system. The demonstrated multi-spring 
system shows that the dynamic and energy absorption 
responses of crashworthy system is significantly 
influenced  by impact time, feasible component assembly  
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Figure 14. (a) Displacement-time (b) Velocity-time (c) Acceleration-time of helicopter sub-
floor crash (LS-DYNA). 



 

522          Int. J. Phys. Sci. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (s) 

D
is

p
la

c
em

en
t 

(m
) 

(a) 

Time (s) 

V
e
lo

c
it

y
 (

m
/s

) 

(b) 

Time (s) 

A
c
c
el

er
a
ti

o
n
 (

m
/s

2
) 

(c)  
 

Figure 15. (a) Displacement-time (b) Velocity-time (c) Acceleration-time of helicopter 
sub-floor crash (solver code). 
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Figure 16. (a) Force-time curve (LS-DYNA) (b) Force-time curve (solver). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1  m3 

m4 

m5 

m6 

m7 

m8 

m9 

k1 k2 

k3 

k4 

k5 

k6 

k7 

k8 

 
 

Figure 17. The spring-mass discrete elements for automotive frontal crash analysis. 
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Figure 18. (a) Coordinate-time (b) velocity-time (c) acceleration-time of frontal vehicle crash. 



 

 
 
 
 
and the stiffness of the component. It should be noted 
that this two dimensional solver is an innovative code to 
be used for the high educational level.  
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