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A novel robust filter is proposed via embedding extended Kalman filter into an optimal two-stage 
Kalman filter, which is improved through a modified Sage-Husa noise statistics estimator. Meanwhile, 
strong tracking multiple fading factors are introduced in this paper to improve the tracking performance 
for high maneuvering targets. The new method provides an optimal estimation of the target state 
through a combination of the output of the first stage (a “bias-free” filter) and that of the second stage 
(a “bias-compensating” filter). Furthermore, the unknown statistical parameters of virtual noises are 
estimated online, and the predicted covariance can be adjusted in real time by fading factors when high 
maneuvers occur. Simulation results of tracking a maneuvering target by 3 passive sensors show that 
the proposed algorithm has advantages over the conventional method in terms of the numerical 
accuracy with only a little additional computational cost. 
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INTRODUCTION 
 
Considering the problem of a maneuvering target tracking 
with both unknown maneuvers and dynamic uncertain-
ties, to avoid the influence of maneuvers which is usually 
assumed as an unknown bias sequence, the common 
method is to ignore the bias or to keep it as a prior con-
stant, leading to a simplified dynamic model. However, 
this simplification may yield to performance degradation 
of the filter. An effective compensating strategy is to use 
the multiple model (MM) method by constructing the 
dynamic model with more than one discrete prior bias 
(Kowalczuk and Sankowski, 2010; Li and Jilkov, 2010). 
However, the MM approach has much more computa-
tional cost due to the recursive processes of multiple 
model-matched filter. Another method is augmented state 
Kalman filter (ASKF) (Freidland, 1969; Garcia et al., 
2002; Khaloozadeh and Karsaz, 2009), which treats the 
maneuver as a part of the target state, whose computa-
tional burden increases with the dynamic dimension. To 
maintain the computational burden at a lower level and to 
avoid the numerical inaccuracy introduced by computa-
tions  of  large  vectors  and  matrices.  Friedland   (1969) 
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suggested employing the two-stage Kalman estimator. 
His idea is to decouple the augmented filter into two 
parallel filters. 

The first stage, called “bias-free” filter, is based on the 
assumption that the bias is weak enough to be ignored. 
The second stage, the “bias” filter, producing the 
remaining states, is combined with the output of the first 
stage to reconstruct the original system state estimation. 
Under an algebraic constraint, the optimal estimate of the 
system state can be obtained. Unfortunately, this 
algebraic constraint is seldom satisfied for target tracking 
systems (Hsieh and Chen, 1999; Hsieh, 2000). The 
optimal two-stage Kalman filter (OTSKF) (Hsieh, 2000; Lo 
et al, 2002) gives the optimal solution of the two-stage 
estimator, in which the algebraic constraint is removed. 
As to the uncertainties of the dynamic model with 
unknown statistical parameters, a homologous method is 
to replace the unknown parameters with conservative 
prior estimates. Because of the decrease of estimation 
precision introduced by this conservative method, it is 
desirable to estimate prior statistics online along with the 
recursive estimate of the state and to use these estimates 
in implementation of the optimum estimation algorithms. 
One of the prevailing methods is developed by Sage and 
Husa   (1969),   which   is    a   sequential   robust  Bayes 
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estimation algorithm for prior statistics of the unknown 
noises. All these approaches can track low maneuvering 
targets well, however, the tracking performance will 
degenerate badly for high maneuvering targets. To solve 
the aforementioned problem, a new robust two-stage 
extended Kalman filter (RTSEKF) is proposed on the 
basis of OTSKF (Hsieh and Chen, 1999) for a 
maneuvering target tracking. 

A modified Sage-Husa noise statistics estimator and 
strong tracking multiple fading factors are introduced in 
the two-stage extended Kalman filter for a passive 
maneuvering targets tracking. Simulations show that the 
proposed algorithm has a better tracking accuracy than 
the conventional OTSEKF method in tracking a 
maneuvering target with low maneuvers and/or high 
maneuvers. 

 
 
PROBLEM FORMULATION 
 
Consider the nonlinear discrete-time tracking system in 
two-dimensional case represented by: 
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Where s, s,( , )i ix y
 is the location of sensor is

,
1, ,i n= L , n  

denotes the number of sensors. 
One of the effective approaches for this nonlinear 

obstacle is Taylor linearization shown as follows: 
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ROBUST TWO-STAGE EXTENDED KALMAN FILTER 
(RTSEKF) 

 
The main idea of the novel robust two-stage extended 
Kalman filter (RTSEKF) is to redesign an optimal two-
stage extended Kalman filter for bearings-only 
maneuvering target tracking shown by Equation 1, in 
which both the unknown bias input and virtual system 
noises are estimated online to modify the original tracking 
output. Moreover, strong tracking multiple fading factors 
are introduced to enhance the tracking capability for high 
maneuvers. The structure of the RTSEKF method is 
depicted in Figure 1. The unknown statistical parameters 
of the system noises are estimated online with the two-
stage extended Kalman filtering technique. The new 
modified Sage-Husa time-varying noise statistics is given 
by: 
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Where 
x

kK  and 
u

kK are Kalman gain matrices, 
x~

kk
x

 and kk
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are residues of state prediction, 
x~
kz  and 

u~
kz  are 

measurements of the two stages. 
x

kd , 
u

kd  and 
z

kd  are 
adjustment coefficients which can be obtained by 
Equation 5. 
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Equations 4 and 5 can estimate the unknown system 
noises online to improve the tracking performance for low 
maneuvering targets, but when high maneuvers occur to 
the tracking system, the tracking accuracy is still low, 
even divergence may happen. Hence, we introduce 
strong tracking multiple fading factors based on Equa-
tions 4 and 5 to further improve the tracking performance 
of the  proposed  method  for  high  maneuvering  targets.   
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Figure 1. Structure of RTSEKF. 

 
 
 
Then, the proposed method can not only track low 
maneuvering targets well, but also can track high 
maneuvering targets accurately. In order to ensure that 
the proposed approach has a strong tracking filter 
performance, the filter gains must satisfy the orthogonal 
principle in the light of the design of strong tracking filter 
(Zhou and Frank, 1996; Zhou, 1999; Yang and Ji, 2010). 
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Where 1k +d  denotes the residue. 
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To obtain the appropriate time-varying gain 1

x
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needs to be adjusted in real time in the filtering process 
according to Equation 9. 
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Where ( 1)k +Λ  stands for a multiple fading factor matrix, 
which can adjust the prediction covariance of the different 
data channels at different rate in real time, and thereby 

adjust the corresponding filter gain 1

x

k +K
. Through some 

derivations, ( 1)k +Λ  can be obtained. 
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Where ( 1), 1,2, ,
i

k i nλ + = L  denote the fading factors. 
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Where ( 1)k +N  and ( 1)k +M  are derived to ensure that 
the residues at different time can remain approximate to 
orthogonality, without specific meaning. 
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In Equation 11 to 15, 0 1ρ< ≤  is a forgetting factor, 

generally taking 0.95; 1β ≥  is a softening factor, which 

can make the state estimated value smoother; 0 ( )kS  is a 

residual second-order moment; 1, 1, 2, ,
i

a i n≥ = L  are pre- 
determined coefficients. If a component of the state 

changes rapidly, a larger  ia
  will  be  selected  to  further  
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Figure 2. True trajectory and estimated trajectory. 
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Figure 3. RMSE of the estimated position. 

 
 
 

improve the tracking performance of the filter. If 
1, 1, 2, ,

i
a i n= = L , then, the multiple fading factors will 
degenerate into a single fading factor. For the selection of 
some parameter values, please refer to the literature 
(Zhou and Frank, 1996; Zhou, 1999). When the system is 

in stable state, ( 1)k +Λ  will approximate to unit matrix, 
nevertheless, the filtering algorithm is still able to main-
tain the tracking capability for a general uniform or low 
maneuvering target due to the modified Sage-Husa noise 
statistics estimator. 
 
 
SIMULATION RESULTS AND ANALYSES 
 
The performances of the proposed algorithms are 
evaluated in the scenarios of maneuvering target tracking 
for passive multiple sensors. Assume there is a target 

maneuvering with 0 .1 /r a d sω =  during 30 to 50th 
seconds and srad /14.0=ω  during 71 to 95th seconds by 
coordinate turn (CT), the tangential velocity of which is 
300m/s. State noise and observation noises are 1m and 
0.5mrad, respectively. The performances of the OTSEKF  

 
 
 
 

0 20 40 60 80 100
0

50

100

150

200

R
M

S
E

 o
f 

v x (
m

/s
)

Time (s)

OTSEKF

RTSEKF

 
 
Figure 4. RMSE of the estimated velocity in x-axis 

direction. 

 
 
 

0 20 40 60 80 100
0

100

200

300

R
M

S
E

 o
f 

v y
 (

m
/s

)

Time (s)

OTSE KF

RTSEKF

 
 
Figure 5. RMSE of the estimated velocity in y-axis direction. 

 
 
 

and RTSEKF are shown in Figures 2 to 5. Averagely over 
100 Monte Carlo simulations are adopted by 3 passive 
sensors. The locations of the 3 sensors are (0, 0 km), 
(2.5, 4.3 km), and (5, 0 km), respectively.  

Figure 2 illustrates the estimated trajectory by the 
OTSEKF method and the proposed algorithm (RTSEKF). 
It is clear that the estimated trajectory by the proposed 
method has a higher accuracy than the OTSEKF 
approach. Figure 3 illustrates the root mean square 
errors (RMSE) of estimated position, it can also be seen 
that the RTSEKF method performs far more effectively 
than OTSEKF because of the modified Sage-Husa noise 
statistics estimator and the multiple fading factors. Fur-
thermore, RMSEs of velocity are illustrated in Figures 4 
and 5, respectively. The same conclusions are drawn for 
the assumption of constant statistic parameters of noises 
in the OSTEKF, the flexibility for maneuvering is worse 
when the prior variances are less accurate. Therefore, 
the adjustment of the novel robust filer is significative. 

The runtime of RTSEKF is 0.56 second, only 0.16 
second slower than that of OSTEKF. Because of the 
robust processes, the new robust filter is synthetically 
preferable. 



 
 
 
 
CONCLUSIONS 
 

An improved filter algorithm is proposed for a 
maneuvering target tracking by bearings-only measure-
ments based on an optimal two-stage extended Kalman 
filter and a modified Sage-Husa adaptive statistical 
noises parameters estimator. Moreover, strong tracking 
multiple fading factors are introduced to further improve 
the tracking performance for high maneuvering targets. 
Simulations show that the proposed method has a better 
performance for passive maneuvering target tracking 
than the conventional method. In future work, the 
proposed method can also be applied in some prevailing 
techniques such as UKF, QKF, CKF (Ienkaran and 
Simon, 2009), linear fractional transformation (LFT) 
(Pasha et al., 2010) and particle filter (PF) to improve the 
performance for nonlinear systems. 
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