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We encounter Coulomb and quadratic terms in the Hamiltonian relation in many branches of physics. 
Here we consider the N-dimensional space Schrödinger equation in the presence of Coulomb and 
quadratic terms and analytically calculate the eigenfunctions and the corresponding eigenenergies. 
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INTRODUCTION 
 
Among the different forms of physical potentials which 
appear in the Hamiltonian, those with spherical symmetry 
have received great attention within the recent years 
because of their wide applications (de Souza and 
Almeida, 2000; Roy and Roy, 2002; Alhaidari, 2002; 
Serra and Lipparini, 1997; Li et al., 2003; Dong et al., 
1999). On the other hand, since the study of many 
physical systems corresponds to study an N-dimensional 
problem, many attempts have been made to analyze N-
dimensional spaces (Dong, 2000; Arda and Sever, 2010; 
Milanovic and Ikovic, 1999; Cardoso and Alvarez-
Nodarse, 2003; Coelho and Amaral, 2002; Chen, 2005; 
Kalnin et al., 2002; Oyewumi and Ogunsola, 2004). Often, 
the potential is assumed as a hypercentral one. 

The merit of using hyperspherical coordinates for 
hypercentral potentials is that it simply transforms the 
Schrödinger equation into a single hyperradial one. In the 
minimal case, there exist at least two hypercentral 
potentials which can be analytically solved; the harmonic 
oscillator, which is exactly hypercentral, and the 
hypercoulomb potential. Although the latter is not 
confining, it has interesting properties and for example 
leads to a power-law behavior of the proton from factor 
(Paz, 2001;  Oyewumi  et  al.,  2008;  Ikhdair  and  Sever, 
 
 
 
*Corresponding author. Email: h.hasanabadi@shahroodut.ac.ir. 
Tel:+98 232 4222522. Fax: +98 273 3335270. 

 
PACS numbers: 02.30Em, 03.65.Fd and 03.65.Ge. 

2008; Hamzavi et al., 2010a, b, c, d; Hassanabadi et al., 
2008; Hassanabadi and Rajabi, 2007; Zarrinkamar et al., 
2010; Zarrinkamar et al., 2010b; Zarrinkamar et al., 2011;  
Hamzavi et al., 2011; Hassanabadi et al., 2010a, b, c; 
Hamzavi et al., 2009; Ferraris et al., 1995; Campostrini et 
al.,  1987; Bali et al., 2000). 

Here, we have studied potentials of the form: 
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Where r denotes the hyperradius and the coefficients are 
both constant. 

 
 
The exact-band state solutions in N-dimensions  
 
The motion of a particle in a spherically symmetric 
potential in N-dimensions is written as: 
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As hyperspherical  harmonics  are  eigenfunctions  of  the 
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operator
2 ( )
N N

Λ Ω , we could write: 
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It is well-known that 
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 is a generalization of the 

centrifugal barrier for the case of N-dimensional space 

and involves the angular coordinates
N

Ω . 

The eigenvalues of the 
2 ( )
N N

Λ Ω are given by: 
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hyperspherical harmonics, , ( )
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R r is the hyperradial part, 

the energy eigenvalues and orbital angular momentum, 
respectively. The hyperradial part in the N-dimensional 
case is: 
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Before proceeding further, for the sake of simplicity, we 
introduce the following new parameters: 
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In order to solve Equation (6) let us consider the special 
limit r → ∞  corresponding to: 
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Multiplying both sides of equation (8) in , ( )
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dr
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pp , as really the case for 

large r , and finally integrating with respect to  r  give: 
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Therefore we choose the term corresponding to the 
relative motion according to: 
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With ,n l
N  being the normalization factor. Substitution of 

, ( )
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R r  from the given equations in Equation (6) gives: 
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Considering 
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seen that while ( )h r  is not analytical in 0r = , and 

neither is ( )g r , the functions ( ) ( )rh r H r=  and 

2 ( ) ( )r g r G r=  are analytical in 0r = . Making use of 

these two new functions instead of the former ones, we 
have the following characteristic equation: 
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As the wave function must be bounded in the origin, the 

acceptable physical limit is 0k ≥ . Let us now consider 

solutions of the form: 
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Substitution of the given equation in equation (11) gives, 
after setting equal the corresponding powers of r  on 
both sides, 
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On the other hand, the series must be bounded for
r

n n= . 

The latter leads to the equations: 
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It could be seen that the term 1n
a +  contains 

n
a  and 1n

a − , 

that is, 
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Naturally, for 1n
a +  to be zero, the coefficient of 1n

a −  must 

be zero, too. This leads to the given relation: 
 

( )12 ( 1) 17
2 rr n

N
n l Nβ β α −+ + − + =  

 
Which immediately gives the energy difference between 

the successive states 
r

n  and 1r
n + , after making use of 

Equation (7-a). To give some examples, let us consider 

the eigenvalue problem for 0
r
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Which corresponds to the wave function given as: 
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Which is of course an essential ingredient in many 
theoretical calculations of many, or few body systems 
such as the two- or three-electron-quantum dots. 
 
 
CONCLUSION 
 
Exact analytical solutions of Schrödinger equation have 
always been of great interest in different annals of 
physics. Depending on the physical problem, the 
dimension and also the chosen potential could vary. 
Namely, Coulomb and quadratic terms are present in 
different areas of physics including the solid state physic, 
nuclear physics, etc. In the present problem, we have 
presented an analytical method for this potential and 
thereby have calculated the corresponding 
eigenfunctions as well as the eigenenergies. 
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