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This study verifies the use of the proposed weighting method by Fayyadh and Abdul Razak (2011a) for 
damage detection algorithms applied on cracked steel beam. The results of the proposed weighting 
method for two damage severity algorithms are presented. That is, one based on the natural 
frequencies and the other based on the mode shape vectors. In addition, the stiffness deterioration 
based on the mathematical calculation of the change in the second moment of inertia is presented. In 
order to demonstrate the significance and capability of this new method, the magnitude of damage was 
calculated from an experimental model on a simply supported solid steel beam. Modal parameters were 
first obtained for the undamaged state by performing modal testing on the un-cracked steel beam. 
Subsequently, damage was created by cutting the beam section at mid-span from the tension zone to 
induce different degrees of flexural damage. The crack was created with different depth such as 2, 5, 10 
and 20 mm with a constant width of 2 mm.  At each level of damage, the Eigen value analysis was 
repeated to obtain the modal parameters relevant to the degree of damage induced. Stiffness change 
based on frequency and mode shapes were obtained; the proposed weighting method was applied and 
compared to the normal averaging method. Dynamic algorithms were compared to the change in the 
flexural rigidity as based on the change in the second moment of inertia of the beam cross-section at 
the crack zone. Proposed method returns one value of stiffness deterioration based on the considered 
set of modes, without affecting the sensitivity of damage detection algorithms. Flexural rigidity results 
showed higher sensitivity compared to dynamic algorithms.  
 
Key words: Proposed weighting method, modal parameters, modal assurance criteria (MAC), flexural rigidity.  

 
 
INTRODUCTION  
 
Many engineering structures when exposed to various 
external loads such as earthquakes, traffic, explosion and 
vibration during their lifetime, suffer damage and 
deterioration over the years. Their performance is 
affected and may lead to consequent structural failure. 
Hence structural health monitoring of structures for 
damage detection are of utmost importance in high 
hazard areas. Tools such as dynamic testing have 
become increasingly popular and important for this 
purpose. Damage inspection of structures is important in 
order to formulate a strategic plan for repair and 
maintenance works. Vibration test has been used for 
damage detection since the 1970s and in the offshore  oil 
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industry since early 1980s (Vandiver, 1975; Begg et al., 
1976; Coppolino and Rubin, 1980). The basic idea 
behind this approach is that modal parameters, that is, 
natural frequency, mode shape and modal damping, are 
functions of physical properties of structures namely 
mass, damping, and stiffness. Therefore, any change in 
the physical properties will result in detectable changes in 
the modal parameters. Considerable research has been 
carried out using the change in natural frequencies for 
damage detection (Salawu, 1997). The alternative to 
using natural frequency as damage identification is the 
use of mode shape, with Modal Assurance Criteria (MAC) 
determining the level of correlation between modes from 
the control beam and the modes from the damaged beam 
(Doebling et al., 1998). MAC was first used by West 
(1984) to locate structural damage without the prior use 
of  finite  element  model.   Modal   parameters   of   lower 



 
 
 
 
modes were found to have satisfactory precision in 
detecting the crack position and depth (Ruotolo and 
Surace, 1997). The trend in the natural frequencies was 
found to be sensitive to the corrosion deterioration state 
of RC beams (Abdul Razak and Choi, 2001). 
Frequencies were found to be affected by whether the 
loading configuration was symmetrical or asymmetrical, 
with odd modes affected more by the symmetrical 
configuration and the even modes affected more by the 
asymmetrical configuration. Though the MAC factor was 
found to be less sensitive than frequencies, it is able to 
give an indication of the symmetrical or asymmetrical 
nature of damage (Ndambi et al., 2002). Modal 
parameters were found to underestimate the damage 
severity than the actual damage size (Kim and Stunns, 
2002). However, modal parameters turned out as good 
indicators using developed direct stiffness calculation to 
assess damage in RC structures from experimental 
natural frequencies, mode shapes and its derivatives  
(Johan, 2003). The investigation by Douka et al. (2004) 
found there was a shift in the anti resonances of the 
cracked beam depending on the location and size of the 
cracks; this can be used as additional information carrier 
for crack identification in double cracked beams. The 
number of required measured frequencies adequate in 
predicting the location of the multi-cracks cases was 
found to be equal to twice the number of cracks (Patil and 
Maiti, 2005). The natural frequencies were found to 
decrease to a larger extent as the crack size increased, 
with the change varying based on the mode number 
(Choubey et al., 2006).  

The crack locations and sizes notably influenced the 
natural frequencies and mode shapes of the cracked 
beams especially when the cracks are located at the step 
parts of the beams (Kisaa and Gurelb, 2007). The 
structure becomes weaker than its previous condition 
when the crack size increases in the course of time 
(Orhan, 2007). The effect of the temperature variation on 
the natural frequencies was evident (Kim et al., 2007). 
Jassim et al. (2010) found that both modal parameters 
were affected by the crack regardless of position or size. 
Lower modes were found to be more sensitive to the 
change in the support conditions (Fayyadh and Abdul 
Razak, 2010; Fayyadh et al., 2011a). The slope of the 
first mode shape was used for damage detection and 
showed good results; the only concern was that even a 
small error in identifying the mode shape can result in a 
significant error in the damage detection results (Zhua et 
al., 2011). A new damage detection index based on the 
combination between the mode shape vectors and their 
curvature was developed and verified to have higher 
sensitivity than existing algorithms (Fayyadh and Abdul 
Razak, 2011b). Modifications to two of the existing 
damage location algorithms were proposed by Fayyadh 
and Abdul Razak (2011c). A new damage severity 
algorithm was proposed by Fayyadh et al. (2011b) which 
based on the combination of both natural frequencies and  
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mode shape and it was proven to be better sensitive than 
exist damage severity algorithms. Fundamental mode 
shapes and static deflection were used for damage 
detection and were found to have good sensitivity (Cao et 
al., 2011).  

Previous studies have shown that both frequency and 
mode shape were used for damage detection, which 
means that any proposed weighting method has to be 
validated for both parameters. It was also observed that 
the change in the modal parameter affected by the 
presence of the damage varied based on the mode 
number. Moreover, the modal parameters were also 
found to be affected by whether the loading configuration 
was symmetrical or asymmetrical. Odd modes were more 
affected by the symmetrical configuration while the even 
modes were more affected by the asymmetrical 
configuration. The need to develop a reliable weighting 
method which considers the different sensitivities of 
various modes and which is able to return one stiffness 
deterioration value was evident, hence, the new 
weighting method suggested by Fayyadh and Abdul 
Razak (2011a). This study will verify the use of the 
proposed weighting method on an experimental model 
using cracked solid steel beam.   
 
 

WEIGHTING METHODS 
 

The normal averaging method (NAM) always results in a 
constant weight for all the modes, which is equal to 1/n, 
where ‘n’ is the total adopted modes. The proposed 
weighting method by Fayyadh and Abdul Razak (2011a) 
results in different weights for different modes as based 
on the area under the curve of the mode shapes. As 
described in the paper by Fayyadh and Abdul Razak 
(2011a), and based on the relationship between the work 
and the bending stiffness as shown in Equation 1, it is 
suggested that the area under the mode shape curve of 
each specific mode can be used as a weighting for that 
specific mode to the change in the bending stiffness EI. It 
is expected that the more the work that is needed for the 
formation of the mode shape, the higher the weighting 
that the mode shape would have.  
 

   (1) 
 

where ‘W’ is the external work, ‘U’ is the strain energy, 
‘M’ is the bending moment, ‘I’ is the second moment of 
inertia and ‘E’  is the elasticity modulus.  

The area under the curves of the mode shapes will be 
calculated for each mode as Ai, where i is the mode 
number, and the total area (At) is the summation of the 
areas of the adopted modes. The Proposed Weighting 
(PWi) of each specific model and the average index value 
of any adopted set of modes are as describe in Equations 
2 and 3. Figure 1 show the area under the curve for the 
first four bending modes for a case when four modes are 
adopted.  

W = U = 
��2

2 �� �� ����  
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Figure 1. Area under the curve for each specific mode shape. 

 
 
 

                                               (2) 
 

      (3) 
 

where i is the mode number and DSA� is the damage 
severity algorithm at mode i.  
 
 

DAMAGE SEVERITY ALGORITHMS 
 

The proposed weighting method will be examined with 
two damage severity algorithms in order to verify its 
capability. One of the algorithms is based on the natural 
frequencies and the other on the mode shapes.  
 
 

Algorithm based on natural frequency  
 

The natural frequency, f, for transverse free vibration of a 
simply supported beam as suggested by Demeter (1973) 
and used by Abdul Razak and Choi (2001) is given by:   
 

                                                 (4) 
 

where n the mode number, m the  mass  per  unit  length,  

and L the span length, is proportional to the square root 
of its flexural rigidity, EI. From Equation (4), the following 
is derived:  

 

                                                                        (5) 

 
Equation (5) can be rewritten as: 

 

                         (6) 
 
By introducing a constant,  
 

                                                 (7) 
 

where 
 

                                     (8) 
 

Equation (8) can be rearranged as: 
 

                                              (9) 

 
By substituting Equation (7) into Equation (9), the 
following relationship is derived: 

 

 

 
 

 

 

                       Beam lenght (mm) 

PWi = Ai
At  

Avergae DSA =  ∑ DSAi ∗ PWini=1   

f = n2π
2 � EI

mL4              

f ∝ √EI                                                               

fn2  ∝ (EI) 

fn2 = A(EI)    

A = 2 fn δ fn
δ(EI )   

2 fn δfn = A δ(EI)   
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Figure 2. Test setup for the solid steel beam. 

 
 
 

                                                    (10) 

 

which implies that a change in flexural rigidity (EI) 
doubles the change in natural frequency. The stiffness 
change based on frequency is defined as: 
 

Stiffness change based on frequency =  
                                                                             (11) 
 
where fi,c and fi,d are the natural frequency at i

th
 mode for 

the control and damaged beam, respectively. 
 
 
Algorithm based on mode shape  
 
The method used to ascertain configuration errors 
between experimental mode shapes and eigen vectors 
predicted from the finite element model is called Modal 
Assurance Criterion (MAC) (Ewins, 2000). It is a 
correlation between experimental mode shapes and 
curve-fitted mode shapes with the correlation for the ith 
element given by the following formula: 
 

         (12) 

 
where !φ"#$ = %φA' · %C' = %φA'%φA'*%φX'. Matrix %φA' 
contains the analytical model mode shapes, %φA'* is the 
pseudo-inverse of the matrix, and %C' is the curve-fitting 

matrix. The values of the diagonal elements of the MAC 
matrix give the curve-fitting results. 

Utilizing the concept in the previous paragraph, the 
stiffness deterioration indicator can be considered as the 
reduction in MAC values for the damage cases based on 
the datum cases such as that shown in Equation 13. The 
stiffness change based on MAC is defined as: 
 

Stiffness change based on MAC = 

                         (13) 
 
and ϕi,c and ϕi,d are the mode shapes at i th mode for 
control and damaged beam, respectively. 
 
 
MATERIALS AND METHODS 
 

To demonstrate the significance and capability of this new method, 
experimental work on solid steel beam was prepared. The clear 
span length of the beam is 1000 mm with cross sectional 
dimensions of 75 mm by 180 mm (width*depth). Figure 2 shows the 
solid steel beam during test setup.  The physical and material 
properties of the steel were Poisson’s ratio of 0.3, mass density of 
7850 kg/m

3
, Young’s modulus of 200,000 MPa and Von Mises yield 

value of 420 MPa.  
 
 
MODAL TESTING  
 
Modal testing was carried out on the solid steel beam using the 
transfer function technique. Accelerometers with a sensitivity of 100 
mV/g were used to pick up the response on the tested beam under 
forced excitation. The beam was randomly excited using an 
electromagnetic shaker with a white noise signal source from an 
output channel of the digital signal analyzer via a power amplifier. 

2 ,1
f - ∂f = , 1

EI- ∂(EI)    

2. 01 − fi,dfi,c
5 · 100 

 

%MACx9x 'ii = :{φ"ix }T {φix }>2
:{φ"ix }T {φ"ix }>:{φix }T {φix }>   

Stiffness change based on MAC
1 − C∑ φi ,c ·φi ,dni=1 C2

(∑ φi ,c ·φi ,c )(ni=1 ∑ φi ,d ·φi ,d )ni=1         
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Figure 3. Modal test setup detail. 

 
 
 

Table 1. Details of damage levels. 

 

Damage level  Crack depth (mm) Crack width (mm) Crack location  

Control - - - 

DL 1 2 2 Mid-Span  

DL 2 5 2 Mid-Span  

DL 3 10 2 Mid-Span  

DL 4 20 2 Mid-Span  

 
 
 

Table 2. Area under the curve and propose weighting for each mode.  

 

Mode no. Area under the curve of the mode shape PWM NAM 

Mode 1 5.13 0.17 0.25 

Mode 2 6.03 0.2 0.25 

Mode 3 8.75 0.29 0.25 

Mode 4 10.25 0.34 0.25 

Total 30.16  square unit 1.00 1 

 
 
 
The vibration was transferred from the shaker to the beam via a 
plunger with a force transducer having a sensitivity 11.24 mV/N 
attached to the top to measure the input force. Both the input and 
output signals were fed to the signal analyzer for real-time data 
acquisition and for processing in the frequency domain. Figure 3 
shows the modal test setup.  

Initially, the frequency response function (FRF) spectrum within a 
4 kHz frequency span were obtained by executing fast Fourier 
transform (FFT) on the time domain signals acquired. A total of 12 
measurement points on the top surface of the beam were covered 
by roving the accelerometers while keeping the excitation point 
permanently fixed. The 12 measuring points were located within 
regular gaps where the first point was located at 6 cm from the left 
support and the subsequent points with 8 cm gaps from previous 
point until the last point (point 12) at 94 cm from the left support and 
6 cm from the right support.  The transfer functions for all the points 
are derived by dividing the Fourier transforms of the output 
(acceleration response) with the input (excitation force). Modal 
parameter extraction processs is  done  by  curve  fitting  the  set  of 

transfer function measurements in order to obtain the natural 
frequencies, mode shapes and damping ratios. In this study, the 
first four flexural modes were identified so as to establish the effect 
of bond action on the bending action.      

Initially, modal analysis was performed so that modal parameters 
for the control beam could be obtained. Next, the damage was 
introduced by creating a crack on the tension zone at the mid-span 
of the beam in order to induce three different degrees of flexural 
damage. First damage level was by creating a crack with depth of 2 
mm. The same procedure was applied to the other damage levels 
by increasing the crack depth as shown in Table 1. At each damage 
level, modal testing was repeated to obtain the modal parameters 
relevant to the degree of damage induced. Subsequently the 
damage severity algorithms based on frequency and MAC were 
calculated for the first four bending modes. Lastly, the PW i for each 
mode was calculated based on the area under the curve of the 
mode shapes, and then the average value was calculated for each 
algorithm. The proposed weightage of each mode are as shown in 
Table 2  which  also  presents  the  odes  weightage  based  on  the  
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Figure 4. Stiffness change based on frequency for the first four bending modes. 

 
 
 

 
 
Figure 5. Stiffness change based on MAC for the first four bending modes.  

 
 
 
normal averaging method (NAM). 

 
 
RESULTS AND DISCUSSION  

 
The results from the experimental work carried on the 
cracked solid steel beam used in present study are 
presented here. The stiffness change indices based on 
frequency and MAC were calculated for the first four 
bending modes of the control-beam model and at four 
different crack depths of 2, 5, 10 and 20 mm.  

Damage severity algorithm  
 
Figures 4 and 5 show the comparison of the stiffness 
change based on frequency and MAC, respectively. The 
stiffness was drawn corresponding to the crack depth 
ratio which was calculated by dividing the crack depth 
(hc) by the beam depth (h), which gives four ratios levels 
as 1.18, 2.94, 5.88 and 11.76%.  

The results show that the first and the third modes are 
the most sensitive to detect damage severity for the 
stiffness change based on frequency, while  modes  three 
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Figure 6. Comparison between PWM and NAM for stiffness change based on frequency. 

 
 
 

 
 
Figure 7. Comparison between PWM and NAM for stiffness change based on MAC. 

 
 
 
and four are the most sensitive for the stiffness change 
based on MAC. The higher values for all the modes were 
at the highest crack depth ratio of 11.76% for both 
algorithms. The first mode showed the highest value for 
stiffness change based on frequency, while mode four 
had the highest value for stiffness change based on 
MAC. For stiffness change is based on frequency, the 
second mode showed very small sensitivity, while for the 
stiffness change based on the MAC the first mode 
showed significantly small sensitivity. It is difficult to judge 
the stiffness deterioration quantitatively based on both 
modal parameters algorithms because there is a variance  

in sensitivity between different modes.  
 
 
Application of proposed weighting method 
 
In order to come out with one stiffness deterioration value 
at each crack depth ratio for both algorithms, the 
proposed weighting method (PWM) is used and is 
compared with the normal averaging method (NAM). The 
comparison results are shown in Figures 6 and 7 for stiff-
ness change based on frequency and MAC, respectively. 

The results showed that the PWM returns one value  at  
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Table 3. Change in the second moment of inertia corresponding to crack depths. 
 

Crack depth (mm) Crack depth ratio (%) Change in I (%) 

Datum 0.00 0.00 

2 1.18 3.49 

5 2.94 8.57 

10 5.88 16.63 

20 11.76 31.30 

 
 
 
each damage level for both algorithms, which makes it 
easier to derive the stiffness deterioration. The proposed 
method did not affect the sensitivity of the algorithms, and 
only helped to average its values for the set of the 
considered modes in a more reliable method. For 
stiffness change based on frequency, the PWM showed 
slightly smaller value than the NAM, where maximum 
difference was 4% at the higher crack depth ratio of 
11.76%. This can be due to the fact that for stiffness 
change based on frequency, the first mod was the 
highest sensitive mode and according to PWM its 
weightage was only 0.17 while according to the NAM its 
weightage was 0.25. Whilst for stiffness change based on 
MAC, the PWM showed higher values than NAM for all 
the crack depth ratios. The higher difference was 24% at 
the higher crack depth ratio of 11.76%. This can be due 
to the fact that for stiffness change based on MAC, the 
fourth mode had the highest sensitivity and its weightage 
according to PWM was 0.34 while according to NAM it 
was 0.25. Although the PWM showed slightly smaller 
value than NAM at higher crack depths for frequency 
based stiffness change, it is still able to return a single 
stiffness deterioration value based on the sensitivity of 
each individual mode in more reliable ways than the 
NAM, and even higher value for the algorithm based on 
MAC. Based on the PWM, the sensitivity of mode shape, 
in term of MAC, is higher than the sensitivity of 
frequency.  For the 11.76% crack depth ratio, there is a 
change of 2.14% in the stiffness based on frequency and 
2.37% in the stiffness based on mode shapes.  
 
 
Assessment of dynamic algorithms  

 
The relationship between the dynamic and static 
properties, that is, the natural frequency and the stiffness 
of the structural elements is expressed in the equation for 
transverse free vibration of a simply supported Bernoulli-
Euler beam given in Equation 14:  
 

                         (14) 
 
where f is the natural frequency, n is the mode number, 
m is the mass per unit length, and L is the span length. 
Rewriting Equations 14, and replacing the flexural rigidity, 

EI with the symbol K and assuming that the mass and 
length are constant, the expression below is obtained,  
 

                                                             (15) 
 

implying that a change in flexural rigidity causes changes 
in natural frequency.  

For the case of this study and since the only damage 
induced is the crack at a specific location along the beam 
length, the only change in the flexural rigidity is the 
change in the second moment of inertia (I) of the cross 
section at the crack location. The flexural stiffness (K) 
change is only related to the change in the second 
moment of inertia (I).  
 

                                                                     (16) 
 

The change in the second moment of inertia (I) is 
calculated by dividing I value of the cracked section 
(considering the new depth of the beam without the crack 
depth) by the un-cracked beam depth as expressed in 
Equation 17. 
  

Change in                                 (17) 
 
 
where h is the un-cracked beam depth and hc is the 
cracked beam depth. For the adopted crack depths of 
this study, Table 3 shows the change in the second 
moment of inertia (I) corresponding to adopted crack 
depths.  

In order to compare the damage severity based on the 
dynamic algorithms with the damage severity based on 
the change in the flexural rigidity, Figure 8 shows the 
stiffness change based on the dynamic algorithms, 
frequency and MAC, and flexural rigidity.  

The results showed that both damage severity dynamic 
algorithms were less sensitivity than the change in the 
flexural rigidity where at higher crack depth ratio of 
11.76%, the flexural rigidity indicated a deterioration of 
31.3% while the both dynamic algorithms detected a 
deterioration of less than 2.5%. This highlights the 
dynamic algorithms using modal parameters, frequency 
and mode shape, as underestimating algorithms and 
there is a need to develop a new algorithm which  may be

  ��= ��2��
2 � ����

����4   

 ��∝ √��                                                      

  ��∝ ��                   
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Figure 8. Stiffness change based on frequency, MAC and flexural rigidity corresponding to the adopted crack 
depth ratios. 

 
 
 
based on the mix between both parameters in order to 
improve the dynamic algorithm’s sensitivity.      
   
 
Conclusions 
 
Based on the results obtained from the experimental 
modal testing on the solid steel beam that was subjected 
to deterioration in stiffness by inducing of  cracks at 
certain location with specific depths, the following 
conclusions are drawn:   
 
1. Different modes have different sensitivity to the 
deterioration level based on the mode number and the 
modal parameter used. 
2. The simple calculation of the proposed method helped 
to return one value with regards to the stiffness 
deterioration based on the adopted set of modes. 
3. The proposed method did not affect the sensitivity of 
the damage algorithms based on the natural frequencies 
or mode shapes; it helps to apply simple and reliable 
calculations for each specific mode. 
4. The use of the flexural rigidity showed higher 
sensitivity compared to the dynamic algorithms based on 
modal parameter.  
5. Existing dynamic algorithms based on the modal 
parameters were found to be under estimating the value. 
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