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In this study, we have numerically considered mixed convection heat transfer in a square enclosure 
with cold left and right walls, insulated moving upper wall and hot fixed lower wall. The governing flows 
of two reliable articles were initially modeled and after validating calculations, the given flow of the 
study was solved by finite volume method. To examine the effects of different factors, such as Prandtl, 
Reynolds and Rayleigh numbers on heat transfer in a square enclosure, the laminar flow of Newtonian 
fluids was approximated and then laminar flow of non-Newtonian fluids, such as carboxy methyl 
cellulose (CMC) and carboxy poly methylene (Carbopol) water solutions were studied for different 
Richardson numbers. It was found from the results obtained in the present study that when Ri is less 
than 1, governing heat transfer inside the enclosure is forced convection for non-Newtonian fluids 
similar to Newtonian ones. When Ri increases, the effect of forced convection is reduced and natural 
convection heat transfer increases. It was also found that in constant Grashof numbers, if n decreases, 
the dimensionless temperature increases. Also, if n is constant, any increase in Grashof number 
causes a higher dimensionless temperature. It may be related to the fact that in similar conditions, any 
increase in forced convection, makes shear stresses more. 

 
Key words: Richardson number, power-law non-Newtonian fluids, mixed convection heat transfer, square 
enclosure, finite volume method. 

 
 
INTRODUCTION 
 
The process of heat transfer, in which the free convection 
and forced convection occur coincidentally, is called 
mixed convention heat transfer. Mixed convection heat 
transfer occurs when the buoyancy effect in a forced flow 
or the effect of forced flow in a buoyancy flow is 
significant (Safaei and Goshayeshi, 2010). 

In recent years, the practical applications of mixed 
convection heat transfer in various areas such as 
designing solar collectors, double-layer glasses, building  
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insulation, cooling electronic parts, food drying, steri-
lization, etc., have motivated many scientists to study this 
phenomenon. 

Basak et al. (2009) have studied laminar mixed 
convection of airflow inside a square enclosure by using 
a finite element method. Using local Nusselt number, 
they showed that the rate of heat transfer on the corners 
of the lower wall is high and decreases on its center. 

Oztop and Dagtekin (2004) conducted a study on 
laminar mixed convection flow inside an enclosure with 
moving isothermal vertical and insulated horizontal walls. 
They examined the flow of air (Pr = 0.7) in Gr = 104 and 
0.01 < Ri < 100. The results of his study demonstrated 
that in low values of Richardson's number,  if  the  moving  



 
 
 
 
walls of the enclosure move inversely, the heat transfer 
from the enclosure is more than the state that walls slide 
on one direction. 

On the other hand, since a long time ago, the behavior 
of fluids and their characteristics have been focused. 
Considering the linear relation between the changes in 
shear stress and rate of shear strain, the behavior of 
many single-phase fluids which include merely the 
compounds with low molecular weight has been 
simulated. These fluids are called Newtonian fluids. The 
development of chemical industry at the beginning of the 
20th century resulted in emergence of an expansive 
spectrum of synthetic materials, such as polymers. 
Moreover, increasing the usage of materials such as 
suspensions, emulsions, adhesives and the advent of oil 
exploration required to study a variety of materials which 
show strange behavior, because the relations of 
Newtonian fluids was not able to predict their shear 
behavior. The flow behavior of these fluids, called non-
Newtonian fluids, cannot be described by Newtonian 
model. Therefore, other models of flow behavior have 
been presented for these fluids which are extensively 
used in computer simulations (Maghmoumi, 2008; Alavi 
et al., 2008). 

Considering the studies done by the other scientists, it 
was found that, unfortunately, there is no certain article 
about mixed convection heat transfer inside enclosures 
by using non-Newtonian fluids and most of the conducted 
researches are about natural convection heat transfer 
inside enclosures. 

Demir and Akyoldoz (2000) solved laminar natural 
convection problem of a visco-elastic non-Newtonian fluid 
inside a square enclosure by using a finite difference 
method inside a square enclosure. They studied the 
effect of Weissenberg number (which is the criterion for 
the elasticity rate of fluid) and Rayleigh number on 
profiles of temperature and streamlines. They found that 
for their geometry, Wecritical is 0.1 and in Weissenberg 
numbers more than this value, the system becomes 
unstable and its equilibrium is lost. Of course, with 
consideration to the specificity of their fluid, their study is 
continuing experimentally and numerically. They try to 
describe the bifurcation phenomena for such variety of 
fluids in near future. 

Kim et al. (2003) studied laminar free convection of a 
power-law fluid inside a square enclosure with insulated 
upper and lower walls, cold left wall and hot right wall. 
They conducted numerical and scale analysis for fluids 
such as carboxy poly methylene (Carbopol) and carboxy 
methyl cellulose (CMC) in 105 < Ra < 107. Findings of this 
research showed that for high Rayleigh number and 
medium Prandtl number, if n decreases, the convection 
activity increases and total heat transfer augments, while 
when Rayleigh number and Prandtl number increase, 
Rheological properties of the fluid have significant effect 
on both stable and transient flows. 

Lamsaadi   et   al.   (2006)    studied    laminar    natural  
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convection of power-law non-Newtonian fluid inside a 
rectangular enclosure with adiabatic long horizontal walls 
and variable-thermal-flux vertical walls by approximate 
theoretical solution and numerical method. In this 
research, they used a non-Newtonian fluid consisting of 
4% paper pulp in water. In this study AR = 8, 0 < Ra < 
106 and 0.6 < n < 1.4 were considered. It was found from 
the comparison between the numerical results and 
analytical solution that fluid flow and characteristics of 
heat transfer for non-Newtonian fluid is more sensitive 
than Newtonian fluid; in such a way, shear thinning fluid 
(0 < n < 1), the rate of convection heat transfer and 
recirculation increases; while shear-thickening fluid (n > 
1) has an inverse effect. It was also found that in higher 
Prandtl numbers, natural convection inside the enclosure 
is controlled only by Rayleigh number and n.  

In one of most recent works, Turan et al. (2010) have 
studied laminar natural convection inside a square 
enclosure filled with Bingham fluids. In their studied 
enclosure, the left, right, upper and lower walls were hot, 
cold and insulated, respectively. The ranges of Rayleigh 
and Prandtl numbers studied by them were 103 to 106 and 
0.1 to 100, correspondingly. As indicated in their study, 
when Rayleigh number (Ra) increases, Nusselt number 
(Nu) also augments for Newtonian and non-Newtonian 
fluids. Although, in similar conditions, Nu is less for non-
Newtonian fluid. 

In the present paper, firstly, mixed convection heat 
transfer of air inside a square enclosure which has 
already been studied by Basak et al. (2009) and Oztop 
and Dagtekin (2004) was solved and after proving the 
accuracy of the solution, the laminar flow inside the 
square enclosure was studied by water and several other 
power-law non-Newtonian fluids for studying the 
rheological effect of fluids on mixed convection inside the 
enclosure, so that the effect of these properties on mixed 
convection heat transfer is realized for the first time in the 
world. 
 
 
GOVERNING EQUATIONS IN TWO-DIMENSIONAL 
STATE 
 
The continuity, energy and momentum equations have 
been studied for modeling this flow. The viscosity has 
been calculated through power-law. The density has 
been computed by employing Boussinesq approximation 
for CT °<∆ 30  and variable density parameter 

for CT °>∆ 30 . The other characteristics have been 
considered constant.  

The governing equations are as follows (Maghmoumi, 
2008): 
 
Continuity equation: 
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Table 1. Characteristics of non-Newtonian fluids (Chhabra, 2007; Maghmoumi, 2008). 

 

Name Temperature (K) n m (Pa.sn) Shear rate (s-1) 

0.125% Carbopol 290 0.32 6.67 1-100 
0.09% Carbopol 290 0.44 2.37 1-100 
0.05% Carbopol 290 0.65 0.1103 1-100 
0.77% carboxymethyl cellulose 294 0.95 0.044 44-560 
Water  305 1 0.000769 1-100 
Ideal fluid 305 1 1 1-100 

 
 
 
Momentum equation in X Direction: 
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Momentum equation in Y Direction: 
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Energy equation: 
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In the recent equation, m and n which are called 
constitutive parameters are two experimental parameters. 
The value of n varies between 0 and 1 for a shear-
thinning fluid. As much as the value of n is less, the 
shear-thinning property of fluid is more. 

Table 1 shows the characteristics of non-Newtonian 
fluids used in the present study. The ideal fluid used in 
this study (m = 1, n = 1) is an assumptive fluid and will be 
employed for better comparison of the results. 

The schematic used in this study has been illustrated in 
Figure 1. The boundary conditions have also been shown 
on this figure. 

These boundary conditions are as follows: 
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In this case, the stream function is calculated as follows: 
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NUMERICAL SOLUTION METHOD 
 
Finite volume method, described in details (Patankar, 1980; 
Goshayeshi et al., Safaei and Maghmoumi, 2009; Safaei, 2009) has 
been used for solving the governing differential equations on the 
flow. In this method, the calculation domain has been divided into 
several control volumes in such a way that any node is surrounded 
by a control volume and the control volumes have no shared 
volume. 

The integration of the differential equation on any of the control 
volumes was obtained. The piece-by-piece profile that indicates the 

 changes of φ  (an optional quantity such as temperature, velocity, 

etc.) between nodes, have been used for integrations. The result is 

discretization equation that includes values of φ  for a group of 

nodes (Patankar, 1980). 
The convection and the diffusion terms discretization methods are  



 
 
 
 

 
 

Figure 1. Schematic of the problem. 
 
 
 

 
 
Figure 2. Staggered location for u. 

 
 
 
hybrid and second order central difference schemes, respectively. 
Upon the correlation of Buoyancy term (Momentum equation to the 
direction of y) with the temperature, the governing equations are 
coupled and have to be solved simultaneously. In the momentum 
equations, the pressure term is achieved through the use of simple 
algorithm and it is calculated in a way that the continuity equation is 
valid. The resulting algebraic system of equations is solved by 
using implicit line-by-line tri diagonal-matrix algorithm. The 
convergence of the solution is only accepted when the absolute 

maximum value of conservation of energy is less than 710− . Such 
remaining amount guarantees the validity of this study.  
 
 
Discretization equations for two dimensions 
 
Now, by taking into consideration the first order upwind scheme, the 
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discretization equations could be written as follows; for example, for 
velocity equation in X direction and staggered location for u (Figure 
2), we have (Patankar, 1980; Maghmoumi, 2008): 
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In which the coefficients are obtained as follows: 
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where D and F are defined as follows: 
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Figure 3. Staggered location for v. 
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For velocity equation in Y direction and staggered location for v 
(Figure 3), we also have: 
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Pressure-correction equation: 
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Figure 4. One of the grids used in the present study. 

 
 
 

 
Figure 5. Temperature contour with Ri = 100, in 
comparison with Basak et al. (2009). 

 
 
 
where αp is under relaxation factor to determine the pressure and is 
usually chosen to be less than 0.6. In addition, other coefficients for 
discretization of the given point are obtained with the help of the 
aforementioned equations. 
 
 
RESULTS 
 
Grid generation and grid independence   
 
The grid generation in this study is an algebraic method. 
Instead of using a mesh  with  uniform  distribution  in  the  
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Figure 6. Stream function with Ri = 1, in comparison with 
Oztop and Dagtekin (2004). 

 
 
 
physical domain, the mesh points can get congested in 
the regions with high gradient which can result in 
decrease of the total number of meshes as well as 
increasing the efficiency of problem solving. This type of 
mesh is convenient to solve the calculations related to 
boundary layer. 

Figure 4 shows one of the grids used in the present 
study. 
 
 
Studying Newtonian mixed convection inside a 
square enclosure 
 
In laminar state, Gr = 104 and Pr = 0.7 is considered 
constant for comparison with the results obtained from 
Basak et al. (2009) and Oztop and Dagtekin (2004), 
where 0.01 < Re < 100 has changed. Figures 5 and 6 
demonstrate the contours of temperature and stream 
function in comparison with Basak et al. (2009) and 
Oztop and Dagtekin (2004). The suitable agreement of 
these contours indicates the accuracy of the problem 
solution in this study. 

Next, the aforementioned problem has been solved 
with the same boundary conditions but through the use of 
non-Newtonian fluids. 
 
 
Studying laminar flow of non-Newtonian fluids  
 
Figures 7 and 8 are diagrams of the dimensionless 
temperature in the mid-height for various kinds of non-
Newtonian fluids. It was found from the diagrams that 
Grashof number and power-law index have significant 
influences on characteristics of heat transfer; in such a 
way that in constant Grashof, any decrease in n results in  
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Figure 7. Dimensionless temperature in the mid-height for Carbopol 
in different concentrations.    
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Figure 8. Dimensionless temperature in the mid-height for water, 
CMC and ideal flow.   
 
 
 
increasing the dimensionless temperature; this is similar 
with the behavior for constant n in which Gr increases.  

Figures 9 to 12 are diagrams of wall shear stress on 
lower wall for different non-Newtonian fluids and 
Richardson numbers. 

As shown in the diagrams, when forced convection is 
governed, for all the non-Newtonian fluids, shear stress is  
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Figure 9. Wall shear stress diagram alongside the hot lower wall 
and Ri = 0.01 for water, CMC and ideal fluid. 
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Figure 10. Wall shear stress diagram alongside the hot lower wall 
and Ri = 1 for water, CMC and ideal fluid. 
 
 
 
about 10 folds of similar values in mixed convection. The 
value of shear stress, when natural convection is 
governed, is about 0.1 of the same value in mixed 
convection that indicates the effect of velocity of the 
higher wall on heat transfer inside the enclosures. The 
aforementioned diagrams also illustrates that in all 
Richardson numbers, the maximum values of shear 
stress is related to the ideal fluid with n = 1 and m = 1 
and the minimum of   these   stresses  is  associate  with  
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Figure 11. Wall shear stress diagram alongside the hot lower wall 
and Ri = 100 for water, CMC and ideal fluid. 
 
 
 

W
at

er
 s

h
ea

r 
st

re
ss

 (
N

/m
2 )

 

Position (m)  
 
Figure 12. Wall shear stress diagram alongside the hot lower wall 
and Carbopol fluid with different concentrations. 
 
 
 
water. It should be reminded that water is a Newtonian 
fluid and in this study, it has been solved merely for 
comparing it with other non-Newtonian fluids by using the 
formulas of non-Newtonian fluids but with n = 1 and m 
= µ water. 

In Carbopol fluid, the concentrations 0.05 and 0.125% 
(n = 0.32 and n = 0.65) have maximum shear stress and 
the concentration 0.09% (n = 0.44) has minimum shear 
stress. However, in Ri = 100, it is on the contrary, that  is, 
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Figure 13. Wall shear stress diagram alongside the hot lower wall 
and Carbopol fluid with different concentrations. 

 
 
 

 
 

Figure 14. Dimensionless temperature contour for Carbopol 
0.05% fluid in Ri = 1. 

 
 
 
n = 0.44 has maximum and n = 0.32, n = 0.65 minimum 
shear stress. 

Figures 13 to 30 show the contours of dimensionless 
temperature for different non-Newtonian fluids and water 
(as a Newtonian fluid) in 0.01 < Ri < 100. It is found that 
in governing natural convection, the isothermal lines are 
nearly symmetric and through transiting to forced 
convection, these lines become asymmetric. This is 
because the velocity is in higher wall of the enclosure. 
Since the flow is inside the enclosure, heat distribution  is  
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Figure 15. Dimensionless temperature contour 
for Carbopol 0.05% fluid in Ri = 0.01.  

 
 
 

 
 

Figure 16. Dimensionless temperature contour for 
Carbopol 0.09% fluid in Ri = 100.  

 
 
 

 
 

Figure 17. Dimensionless temperature contour for 
Carbopol 0.09% fluid in Ri = 1  

 
 
 

 

 
 

Figure 18. Dimensionless temperature 
contour for Carbopol 0.09% fluid in Ri = 0.01.  

 
 
 

 
 

Figure 19. Dimensionless temperature contour 
for Carbopol 125 fluid in Ri = 100.  

 
 
 

 
 
Figure 20. Dimensionless temperature 
contour for Carbopol 125 fluid in Ri = 1. 



 
 
 
 

 
 

Figure 21. Dimensionless temperature 
contour for Carbopol 125 fluid in Ri = 0.01.  

 
 
 

 
 
Figure 22. Dimensionless temperature contour 
for CMC fluid in Ri = 100. 

 
 
 

 
 

Figure 23. Dimensionless temperature 
contour for CMC fluid in Ri = 1. 
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Figure 24. Dimensionless temperature contour 
for CMC fluid in Ri = 0.01. 

 
 
 

 
 

Figure 25. Dimensionless temperature 
contour for ideal fluid in Ri = 100. 

 
 
 

 
 

Figure 26. Dimensionless temperature 
contour for ideal fluid in Ri = 1. 
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Figure 27. Dimensionless temperature 
contour for ideal fluid in Ri = 0.01. 

 
 

 

 
 
Figure 28. Dimensionless temperature 
contour for water in Ri = 100. 

 
 
 

 
 
Figure 29. Dimensionless temperature contour 
for water in Ri = 1. 

 
 
 
 

 
 

Figure 30. Dimensionless temperature contour 
for water in Ri = 0.01. 

 
 
 
coupled with stream function and this is why the 
isothermal lines gradually become asymmetric. 

It was found from Ri = 0.01 contours that due to 
increase in Reynolds number (Re) value and the inertia 
effect, the isothermal lines are pushed towards the lower 
and left walls. This may be described in another way 
similar to the one presented in Basak et al. (2009). 
“Because of increased recirculation and thermal mixing in 
the right half, the isothermal lines are pushed towards the 
left wall which leads in asymmetry of isothermal lines in 
forced convection.” 

It was understood from the aforementioned contours 
that the temperature in the lower corners is very high and 
as much as we move towards the center of the 
enclosure, the temperature decreases which causes the 
increase of heat transfer rate near the lower wall and 
decrease in the middle of the enclosure. 
Figures 31 to 47 demonstrate the contours of stream 
function for different non-Newtonian fluids and 
Richardson numbers of 0.01,1 and 100. 

Considering the fact that Gr is constant in all the cases 
and Reynolds number changes for altering Richardson 
number, it may be said that “if Grashof number (Gr) is 
constant, increase in Re causes the augmentation of the 
fluid recirculation power”. 

The full analysis of flow model indicates that governing 
mixed convection heat transfer on the enclosure is 
determined by two parameters of Ri and Pr. It is worthy to 
be noted that Prandtl number for non-Newtonian fluids is 
defined as follows: 
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Figure 31. Stream function contour for 
Carbopol 0.05% fluid in Ri = 100. 

 
 

 

 
 
Figure 32. Stream function contour for 
Carbopol 0.05% fluid in Ri = 1. 

 
 
 

 
 

Figure 33. Stream function contour for Carbopol 
0.05% fluid in Ri = 0.01. 
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Figure 34. Stream function contour for 
Carbopol 0.09% fluid in Ri = 100. 

 
 
 

 
 

Figure 35. Stream function contour for 
Carbopol 0.09% fluid in Ri = 1. 

 
 
 

 
 

Figure 36. Stream function contour for 
Carbopol 0.09% fluid in Ri = 0.01. 
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Figure 37. Stream function contour for 
Carbopol 0.125% fluid in Ri = 100. 

 
 
 

 
 
Figure 38. Stream function contour for 
Carbopol 0.125% fluid in Ri = 0.01. 

. 
 
 

 
 
Figure 39. Stream function contour for CMC 
in Ri = 100. 

 
 
 
 

 
 
Figure 40. Stream function contour for CMC in 
Ri = 1. 

 
 
 

 
 
Figure 41. Stream function contour for CMC 
in Ri = 0.01. 

 
 
 

 
 
Figure 42. Stream function contour for ideal 
fluid in Ri = 100. 



 
 
 
 

 
 
Figure 43. Stream function contour for 
ideal fluid in Ri = 1. 

 
 
 

 
 

Figure 44. Stream function contour for ideal 
fluid in Ri = 0.01. 

 
 
 

 
 
Figure 45. Stream function contour for water in Ri 
= 100. 
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Figure 46. Stream function contour for water 
in Ri = 1. 

 
 
 

 
 
Figure 47. Stream function contour for water in 
Ri = 0.01. 

 
 
 
It should be reminded that if Ri = 0.01, the power of 
clockwise recirculation is much more than counter-
clockwise because of the high influence of the upper 
insulated moving wall on the flow nature. But when the 
effect of the velocity of the upper wall decreases, the 
power of clockwise flow is reduced and this will cause 
less power of the flow. This is why the stream function 
magnitude for governing forced convection is about 10 
folds of the mixed convection and about 100 folds of 
governing natural convection, except in some exceptions. 

It is necessary to be noted that the compression of 
stream function lines and higher digits written on them in 
the aforementioned contours indicate that the flows in the 
corresponding points for different fluids are stronger. The 
simultaneous influence of n and m on Pr and Gr (Ra) and 
the effect of Ri on flow properties have made the analysis 
of   the  earlier-stated  contours  very  complicated  nearly  
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impossible. Rayleigh number which is the product of 
Grashof number multiplied in Prandtl number is defined in 
non-Newtonian fluids as follows (Kim et al., 2003): 
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Considering the Equation 60, we may realize the 
dependence of flow to Pr, Ra, n, m and Re.  
In this state, the Reynolds number is defines as follows: 
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where, V is the velocity of moving wall of the enclosure. 

For example, we may refer to the assumptive fluid (n = 1, 
m = 1) and CMC (n = 0.95, m = 0.044) that have the same 
values as the stream function. But for Carbopol fluid with 
different concentrations, although for concentrations such as 
0.125% (n = 0.32, m = 6.67) and 0.09% (n = 0.44, m = 2.37), 
the values of stream function are equal but the values of 
stream function for the concentration of 0.05% (n = 0.65, m 
= 0.1103) is different from the other two fluids. Although, the 
apparent shapes of all stream functions are similar to each 
other, the only exception is water the behavior of which is 
near to air when compared with the non-Newtonian fluids 
studied in this paper. 

 
 

Conclusions 
 

In the present study, laminar mixed convection heat tran- 
sfer inside a square enclosure for power-law non-
Newtonian fluids like CMC and Carbopol was solved by 
finite volume method. Grashof number is constant (104) 
and Ri changes between 0.01 to 100. Prandtl, Grashof 
and Reynolds numbers have been calculated in 
compliance with the equations of non-Newtonian fluids. 
Dimensionless temperature and shear stress diagrams 
have been illustrated for better comparison of different 
fluids. 

According to what has been considered in this study, it 
can be said that: 

 
1. In Richardson numbers less than 1, the fluid behavior 
into the enclosures is forced convection, and the more 
the Richardson number, the more powerful the heat 
transfer by natural convection.  
2. In governing natural convection, the isothermal lines 
are nearly symmetric and through transiting to forced 
convection, these lines become asymmetric. 
3. In constant Gr, increase in Re causes the 
enhancement of the fluid recirculation power. 
4. In constant Gr, non dimensional temperature increases 
by decreasing n.  

 
 
 
 
5. In constant n, increase in Gr leads to increasing non 
dimensional temperature.  
6. In the same condition, increasing forced convection 
causes the increasing of shear stress. 
 
 
Nomenclature: vu, , Velocities in x and y directions [m/s]; 

yx, , Cartesian coordinates [m]; P , pressure [N/m2]; T , 

temperature [K]; t, time [s]; g, gravitational acceleration 
[m/s2]; k , thermal conductivity [W/m.K]; Re, Reynolds 
number; Ri, Richardson number; Gr, Grashof number; 
Nu, Nusselt number; Pr, Prandtl number; Ra, Rayleigh 
number; H, enclosure height [m]; n, power index; m, 
constitutive parameter; ρ , density [kg/m3]; υ , kinematics 
viscosity [m2/s]. 
 
Subscripts: h, Hot wall; c, cold wall; m, mean. 
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