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In this paper, we applied the homotopy analysis method (HAM) to construct the analytical solutions of 
the space fractional diffusion equations. The derivatives are defined in the Jumarie’s fractional 
derivative sense. The explicit solutions of the equations have been presented in the closed form by 
using initial conditions. Two typical examples have been discussed. The results reveal that the method 
is very effective and simple. On the basis of computational work and subsequent numerical results, it is 
worth noting that the advantage of the homotopy analysis methodology is that it displays a fast 
convergence of the solution. 
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INTRODUCTION 
 
In recent years, analysis of fractional differential 
equations by different methods and techniques, which 
are obtained from the classical differential equations in 
mathematical physics, engineering, vibration and 
oscillation by replacing the second order time derivative 
by a fractional derivative of order   satisfying 0 <   ≤ 1 

, have been a field of growing interest as evident from 
literature survey such as, Adomian decomposition 
method (Momani, 2005a; Momani and Ibrahim,  2007; 
Momani, 2005b), variational iteration method and 
modified decomposition method (Das, 2008), variational 
iteration method (Momani et al., 2007), generalized 
differential transform method (Odibat et al., 2008). 
Fractional derivatives provide an excellent instrument for 
the description of memory and hereditary properties of 
various materials and processes. 

Recently, a new modified Riemann-Liouville left 
derivative is proposed by Jumarie (1993, 2006). 
Comparing with the classical caputo derivative, the 
definition of  the  fractional  derivative  is  not  required  to  

satisfy higher integer-order derivative than  . 

Secondly, th derivative of a constant is zero. For these 
merits, Jumarie modified derivative we successfully 
applied in the probability calculus (2009) and fractional 
Laplace problem (Jumarie, 2009 a, b). 

The solution of a fractional differential equation is much 
involved. In general, there exists no method that yields an 
exact solution for a fractional differential equation. Only 
approximate solutions can be derived using the 
linearization or perturbation methods. The homtopy 
anlysis method is  relatively a new approach providing an 
analytical approximation to linear and nonlinear 
problems, and is particularly valuable as tool for 
scientists, engineers, and applied mathematicians, 
because it provide immediate and visible symbolic terms 
of analytic solutions, as well as a numerical approximate 
solution to both linear and nonlinear differential equations 
without linearization or discretization. 

In this paper, we will consider space fractional diffusion 
equation by homotopy analysis  method.  The  derivatives
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are understood in the modified Riemann-Liouville sense. 
By the present method, numerical results can be 
obtained with using a few iterations. The homotopy 
analysis method (Liao, 2003a; b) contains the auxiliary 

parameter ,  which provides us with a simple way to 

adjust and control the convergence region of solution 
series for large value of  t. Unlike, other numerical 
methods are given low degree of accuracy for large 
values of  t. Therefore, the homotopy analysis method 
(HAM) handles linear and inhomogeneous problems 
without any assumption and restriction (Liao, 2009). 

Firstly, we consider a one-dimensional fractional 
diffusion equation considered in (Meerschaert et al., 
2006): 
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on a finite domain RL xxx   with 21  . We 

assume that the diffusion coefficient (or diffusivity) 

0)( xd . We also assume an initial condition 

)()0,( xstxu   for 
RL xxx   and Dirichlet boundary 

conditions of the form 0),( txu L
 and 

).(),( tbtxu RR  Equation 1 uses a Riemann fractional 

derivative of order  . 

Secondly, we consider a two-dimensional fractional 
diffusion equation considered in Tadjeran et al. (2006): 
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on finite rectengular domain HL xxx   and 

HL yyy  , with fractional orders 21   and 

21   , where the diffusion coefficients 0)( xd  and 

0),( yxe . The ‘forcing’ function ),,( tyxq  can be used 

to represent sources and sinks. We will assume that the 
fractional diffusion equation has a unique and sufficiently 
smooth solution under the following initial and boundary 
conditions. Assume the initial condition 

),()0,,( yxftyxu   for 
HL xxx  , 

HL yyy   

and Dirichlet boundary condition ),,(),,( tyxBtyxu   

on the boundary (perimeter) of the rectengular region 

HL xxx  , 
HL yyy  , with the additional 

restiriction that 0),,(),,(  tyxBtyxB LL
. In physics 

applications, this means that the left/lower boundary is 
set far away enough from evolving that no significant 
concentrations reach that boundary. The classical 
dispersion equation in two-dimensions is given by 

2  . The values of 21  , or 21    

model a super diffusive process in that coordinate. 
Equation 2 also uses Riemann fractional derivatives of 

order   and  . 
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Modified Riemann-Liouville derivative 
 
Assume )(,: xfxRRf  denote a continuous (but 

not necessarily differentiable) function and let the 

partition 0h  in the interval [0, 1]. Through the 

fractional Riemann Liouville integral  
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The modified Riemann-Liouville derivative is defined as 
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where nnx  1],1,0[ and .1n  

Jumarie’s derivative is defined through the fractional 
difference 
 

],)([)1()()1(
0

hkxf
k

xfFW k 







 






       (5) 

 
where )()( hxfxFWf  . Then the fractional 

derivative is defined as the following limit, 
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The proposed modified Riemann –Liouville derivative as 
shown in Equation 4 is strictly equivalent to Equation 6. 
Meanwhile, we would introduce some properties of the 
fractional modified Riemann –Liouville derivative in 
Equations 7 and 8. 
 
(a) Fractional Leibniz product law 
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(b) Fractional Leibniz formulation 
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                   (8)  

 
Therefore, the integration by part can be used during the 
fractional calculus  
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(c) Integration with respect to
 )(d  

 

Assume )(xf denote a continuous RR   function, we 

use the following quality for the integral with respect 

to
 )(d   
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HOMOTOPY ANALYSIS METHOD (HAM) 

 
We consider the following differential equation: 
 

   ,0, txuFD                             (11) 

 
where FD  is a nonlinear operator for this problem, x  and  t denote 

an independent variable,  txu ,   is an unknown function. In the 

frame of homotopy analysis method (HAM), we can construct the 
following zeroth-order deformation: 
 

           ,;,,,;,1 0 qtxUFDtxHqtxuqtxULq   (12) 

 

where  1,0q  is the embedding parameter, 0  is an 

auxiliary parameter,   0, txH  is an auxiliary function, L  is an 

auxiliary linear operator,  txu ,0   is an initial guess of  txu ,  

and  qtxU ;,  is an unknown function of the independent 

variables  x, t  and  q. 

Obviously, when 0q   and  ,1q  it holds respectively. 

 

   ,,0;, 0 txutxU       ,,1;, txutxU                 (13)  

 

Using the parameter q, we expand   qtxU ;,   in Taylor series as 

follows: 
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Assume that the auxiliary linear operator, the initial guess, the 

auxiliary parameter   and the auxiliary function  txH ,  are 

selected such that the series (12) is convergent at 1q , then due 

to Equation 12 we have 
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Let us define the vector 
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Differentiating Equations 10 m times with respect to the embedding 

parameter q, then setting 0q  and finally dividing them by !m , 

we have the so-called mth-order deformation equation 
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Finally, for the purpose of computation, we will approximate the 
HAM solution of Equation 9 by the following truncated series: 
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NUMERICAL APPLICATIONS 
 
In this section, we apply the proposed algorithm of 
homotopy analysis method (HAM) using Jumarie’s 
approach for fractional order diffusion equation: 
 
Example 1: We consider a one-dimensional fractional 
diffusion equation for Equation 1, as taken (Meerschaert 
et al., 2006; Ray et al., 2008): 
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on a finite domain 10  x , with the diffusion coefficient 

  
 

,183634.06)2.2()( 8.28.2 xxxd                (18) 

 
the source/sink function 
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with the initial conditions 
3)0,( xxu 
 
and the boundary 

conditions  
 

.0,),1(,0),0(   tforetutu t
                    (20) 

 
According to Equation 12, the zeroth-order deformation 
can be given by 
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Figure 1. The surface shows the solution ),( txu for Equation 17.  
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We choose the auxiliary linear operator 

    ,q;t,xUDq;t,xUL t

  with  the 

property   ,0CL  where  C  is an integral constant. We 

also choose the auxiliary function to be   .1t,xH 
 

Hence, the mth-order deformation can be given by: 
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Now the solution of the mth-order deformation Equation 

14 for 1m  become 
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Consequently, the first few terms of the HAM series 

solution for 1  are as follows: 
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It obvious that the noise terms appear between the 

components 0u and 1u , and these are all canceled. The 

closed form solution is .),( 3xetxu t   

The surface (Figure 1) shows the solution ),( txu for 
equation (17).

 

 
Example 2: Now, we consider a two-dimensional 
fractional diffusion equation for Equation 2, considered in 
(Tadjeran et al., 2006; Ray et al., 2008): 
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on a finite rectengular domain 10  x , 10  y , for 

endTt 0  with the diffusion coefficients  
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and the forcing function 
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with the initial condition  



1998          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 2. The surface shows the solution ),( txu for 

Equation 24. 

 
 
 

,)0,,( 6.33 yxyxu                                                    (28) 

 
and Dirichlet boundary conditions on the rectangle in the 
form  
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and  
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According to Equation 12, the zeroth-order deformation 
can be given by 
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We choose the auxiliary linear operator 
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  with  the 

property   ,0CL  where  C  is an integral constant. We 

also choose the auxiliary function to be   .1t,xH   

Hence, the mth-order deformation can be given by: 
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Now the solution of the mth-order deformation in 

Equation 14 for 1m  become 
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Consequently, the first few terms of the HAM series 

solution for 1  are as follows 
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It obvious that the “noise” terms appear between the 

components 0u and 1u , and these are all canceled. The 

closed form solution is .),,( 6.33 teyxtyxu   

The surface (Figure 2) shows the solution ),( txu  for 

equation (24). 
                        
Conclusion 
 
In this paper, the application of homotopy analysis 
method (HAM) was extended to obtain explicit and 
numerical solutions of linear and inhomogeneous space  



 
 
 
 
fractional diffusion equations with initial and boundary 
conditions. The obtained results and computational work 
demonstrate the reliability of the algorithm, reconform the 
convergence of the suggested algorithm and its wider 
applicability  to fractional differential equations. The 
advantage of HAM is the auxiliary parameter which 
provides a convenient way of controlling the convergence 
region of series solutions. It is clear that the solutions 
agree with the exact solutions. Further, the proposed 
technique is fully capable of coping with the nonlinearity 
of such physical problems. İt may be concluded that this 
suggested technique is a nice addition to the existing 
techniques for solving nonlinear problems of diverse 
fields. 
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