
International Journal of the Physical Sciences Vol. 6(23), pp. 5571-5574, 9 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.239
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

A collision-based fast hash function

Zhou Qing

College of Computer Science, Chongqing University, Chongqing, 400044, China. E-mail: tzhou@cqu.edu.cn.
Tel: +86 – 2365103199.

Accepted 25 May, 2011

A cryptographic hash function is proposed based on a simple physical model. The model contains two
balls and a ring. Each ball moves and collides with the fixed ring. Message is modeled as perturbations,
which influence the motions of balls. The final positions and velocities of the two balls are converted to
hash value. Simulations demonstrate that the proposed simple physical model has excellent
randomness and sensitivity properties. Moreover, it is more efficient than most well-known hash
functions.

Key words: Collision, hash function, computation model, cryptographic application.

INTRODUCTION

Communication via internet, mobile and sensor networks
is changing our lives. It is important to verify whether the
received message is trustable or not during communi-
cation. Hash functions help to achieve this goal efficiently.

A hash function takes a variable-sized message and
converts it into a fixed-size bit string called hash value.
Secure hash function must be resistant to collision. Here,
collision means the undesirable event that two different
messages are found to share the same hash value. To
avoid collision, a hash function should have randomness
and sensitivity properties.

Wang and Yu (2005) proposed a method to construct
collisions for some popular hash functions, and the
conventional hash functions, such as MD5 (Rivest, 1992)
and SHA

(U.S. NIST, 2008) are facing challenges. Some

new techniques for the design of cryptographic hash
function become interested. Most of them are based on
nonlinear maps. For example, Wong (2003) constructed a
hash function using chaotic logistic map. Yi (2005)
designed a hash function based on 1-D piecewise-linear
map. Recently, some new structures of hash functions
were proposed, such as coupled map lattice (Yang et al.,
2009), chaotic map network (Wang et al., 2008) and
neural network (Xiao et al., 2009). In all these schemes,
message block is mapped to initial states or system
parameters of the maps. It usually requires dozens of or
even hundreds of iterations for them to fulfill security
requirements. Hence, they are inefficient in processing
messages.

In physics, the concept of collision is in contrast to that
in hash functions. It means the situation whereby two or
more objects strike or come together. Many computation
models are designed based on the concept of collision
(Margolus, 2002).

For example, HPP model, the first lattice gas model
proposed to simulate fluid flows, contains a collision
process (Hard et al., 1976). In this process, if two
particles collide, both of them turn right to their original
direction. Some cellular automata are also motivated
from the collision of particles (Morita, 2008).

In this paper, we try to design a hash function from a
collision based physical model that consists of a ring and
a ball. The ring is fixed and the ball moves and collides
with the ring. This model has three advantages as a
prototype of a hash function:

1. The final system states are extremely sensitive to the
initial state of the ball;
2. The phase space of the system presents excellent
randomness property;
3. The model is simple so that the hash function can be
implemented efficiently.

Some problems need to be solved to construct a hash
function based on this physical model, that is, how to
influence the motion of the ball using message blocks?
How to transform the phase space of the system into
hash value? How to enhance the security of the hash

5572 Int. J. Phys. Sci.

function by a slight change of the model? Our proposed
hash function presents excellent randomness and
sensitivity properties after we overcome these problems.
Moreover, it is more efficient than many known hash
functions.

HASH FUNCTION BASED ON A COLLISION MODEL

Ring-ball collision model

Starting with the simplest model which contains a fixed ring and
only one ball; the collisions between them are elastic, and there is
no friction. After each collision, the direction of the velocity of the
ball is changed. The orbit of the ball is determined by Equation 1 to
3.

 (1)

 (2)

 (3)

where denotes the position where nth collision occurs,

 denotes the angle of the velocity of the ball after nth collision,

denotes the phase angle of the complex number Z and k
and t are calculated by Equation 4.

 (4)

The model is sensitive to the initial angle of the ball. The collision
positions and the angles of the ball are significantly different even if
the initial angle is changed slightly.

Adding perturbations to the model

The hash value should depend on each block of message data.
How each block of data influences the collision between the ball
and the ring? Conventionally, each message block is converted to
initial states or parameters of the function. In our approach, we
treated each block of data as a perturbation of the collision, that is,
the direction of the velocity of the ball changes with an angle
determined by a block of data of every several collisions between

the ball and the ring. When , we use Equation 5 to

calculate , otherwise, we use Equation 3.

 (5)

Now, the collision model can work as a hash function: the message

is modeled as a disturbance to the collision, and the (Note that

 depends on) and are taken as the hash value.
Nevertheless, hash value contains not more than 104 bits if we
adopt the double-precision floating-point numbers denoted by the
IEEE Standard 754, where each number contains at most 52-bit
information. Meanwhile, a practical hash function is expected to
produce a hash value with 128 or more bits.

There are two approaches to solve this problem. The first one is
to use other numeric format other than the IEEE Standard 754.

Thus, both and can be represented with a 64-bit precision.
Nevertheless, such format may not be supported by most
computers, or it requires large quantity of extra computations. The
second approach is to increase the number of the balls contained in
the model.

Hash function based on two-ball collision model

If a model contains two or more balls, we must ascertain that the
two balls influence each other. Otherwise, its hash value
corresponds to the concatenation of hash values generated by the
two one-ball collision models. And attackers can break the model
easily using divide-and-conquer method. To solve this problem, we
demand that the change of the direction of one ball depend on both
the message and the direction of another ball (Equation 6).

 (6)

where and are the angle of the velocity of the first and
second ball after nth collision.
The last several byte of the message has relatively weaker impact
on the final state of the balls. So after the states of the two balls are
interfered by each byte of the message, we repeat the process
again. In other words, the motions of the two balls will be affected
by the message for twice. Then, we convert the final state of the

two balls, into 128-bit hash value. Equation
7 describes the relationship between a floating-point number b and
the 32-bit data [b1, ..., b32]. Concatenating four 32-bit data together,
we obtain a 128-bit hash value.

 (7)

where is a number smaller than 2
-32

.
The proposed hash function can be described as follows:

Step 1. n = 1, i = 1, set the initial horizontal coordinates and angles
of the two balls;
Step 2. Change the positions and directions of the two balls
according to Equation 1 to 3; set n = n +1;
Step 3. If n mod 5 = 0, change the directions of the two balls using
ith message block according to Equation 6; set i = i + 1;
Step 4. If all message blocks have been processed, go to step 5;
otherwise, go back to Step 2;
Step 5. Convert the final state of the two balls into 128-bit hash

2 2

12

2 2

2

1 3
,

1 2 2
,

1
, otherwise

1

n

n

kt k t

k
x

kt k t

k

π π
α

−

− − − +
< <

 +
=

− + − +
 +

1 1
() ,n n n ny k x x y

− −
= − +

[]1 1
2 () mod 2 ,n n n nf x jyα α π

− −
= + −

(,)
n n

x y

n
α

()f Z

1

1 1

tan()
.

n

n n

k

t y kx

α
−

− −

=

= −

mod5 0n ≡

n
α

1
(2 / 256) mod 2 .

n n i
mα α π π

−
= +

n
x

n
y

n
x

n
α

n
x

n
α

(1) (2)

(2) (1)

(2 / 256)mod2
,

(2 / 256)mod2

n n i

n n i

m

m

α α π π

α α π π

 = +

= +

(1)

n
α (2)

n
α

(1) (2) (1) (2)

2 2 2 2
, , , ,

n n n n
x x α α

32

1

2 ,
i

i

i

b b ε−

=

= +∑

ε

Qing 5573

Table 1. Statistics of the proportion of bit one of 1000 hash values.

Maximum (%) Minimum (%) Mean (%) Standard deviation

63.28 36.72 49.88 0.0439

value according to Equation 7.

SIMULATION RESULTS AND PERFORMANCE
ANALYSIS

We simulated the proposed hash function to check its
randomness and sensitivity properties as well as its
ability to resist collision. Then, we compare its proceeding
speed with several well-known hash functions.

The initial horizontal coordinates and angles of the two

balls are set as ,

. The message to be hashed is the text
selected from the first paragraph of the paper: "A hash
function takes a variable-sized message and converts it
into a fixed-size bit string called hash value. Hash
functions are important in cryptographic applications such
as the message authentication and the digital signature
schemes." The following messages are derived from it.

M1: The original message;
M2: Changes the first character A in the original message
into B;
M3: Deletes the hyphen in 'variable-sized';
M4: Changes the full stop at the end of the original
message into comma;
M5: Adds a blank space to the end of the original
message.

The hash values of the aforementioned messages are
listed as follows:

H1: A8136E6301376B3DA217BBFE3DE944A6
H2: 0FF6B0A1A6932537C41D2995B37DE0FE
H3: E65BA589190123E4613F9488F9406691
H4: 1BA7609FDE2D2EDCE5FDB727CD38CD5C
H5: 810EC9D1B6A72ACB9A8F2B738BFE5FA2

Figure 1 depicts the aforementioned hash values. It
seems that all of them are random-like and a slightest
change of the message leads to significant difference
between the hash values. In the following, we present
more detailed results about the secure properties of the
proposed hash function.

Evaluation of randomness property

The most important measurement of randomness of hash

value is the proportion of 1’s of all bits of hash value,
which is expected to be closed to 0.5. To investigate the
randomness of the proposed hash function carefully, we
computed the hash values of 1000 randomly generated
messages. The statistics of the proportion of 1’s of the
1000 hash values are presented in Table 1.

The averaged proportion is almost equal to 0.5. The
standard deviation equals to 0.0439, which is also closed
to the theoretic value of 0.0442 determined by Equation
8, with n = 128 denoting the number of bits in the hash
value. The results demonstrate that the proposed hash
function has a satisfactory property of randomness.

. (8)

Evaluation of sensitivity property

The sensitivity of a hash function can be measured by bit
change rate c, which is calculated by Equation 9.

 (9)

where and are the i-th bits of two hash
values H1 and H2, respectively; N is the number of bits in
hash value. For hash functions with good sensitivity, the
bit change rate is close to 0.5 even if the messages differ
in only one bit. To test the sensitivity of the proposed
hash function, 1000 messages were generated randomly
by program. For each message, we flipped one randomly
chosen bit and obtained a new message. Then, we
calculated the bit change rate for each pair of messages.
Table 2 presented the statistics of change rates for 1000
pairs of messages, both the averaged value and the
standard deviation of which are extremely closed to the
theoretical value of 0.5 and 0.0442, respectively.

Evaluation of collision resistance ability

A secure hash function should be resistant to collision. In
order to test the collision-free properties of the proposed
hash function, we generated 1000 pairs of messages
randomly; each pair of messages differs in only one bit.
Then, the hash values of each pair of messages were
computed and two hash values are compared byte by

(1)

0
0.1x = (2)

0
0.3,x = − (1)

0
3 / 2,θ π=

(2)

0
/ 2θ π= 1

()
2

n
n

σ =

1 2

1

1
() (),

N

i

c H i H i
N =

= ⊕∑

1
()H i

2
()H i

5574 Int. J. Phys. Sci.

Table 2. Statistics of change rates for 1000 images.

Maximum (%) Minimum (%) Mean (%) Standard deviation

67.19 35.16 49.94 0.0429

Table 3. Performance comparisons with other hash function.

Hash function Number of iterations Output size (bits) Number of iterations per output bit

Wong’s scheme 200 8 25

Yi’s scheme 75 104 0.72

MD5 64 128 0.50

SHA-512 80 512 0.16

Proposed scheme 10 128 0.08

byte. The number of identical bytes in the same position
of two hash values is expected to be small. Simulation
shows that none of these 1000 pairs shares more than
two identical bytes in the same position.

Performance analysis

Most hash functions map message block to their initial
states or function parameters, such as the classic MD5
(Rivest, 1992) or SHA-512 (U.S. NIST, 2008) algorithm,
or new method proposed by Wong (2003) or Yi (2005). In
order to achieve proper security level, they need a large
number of iterations. By treating the message block as
perturbations to the phase space of the model, our
proposed hash function only requires 10 iterations to
process each message block. Table 3 lists the number of
bits in hash value versus the number of iterations
required for several classic hash functions. It shows that
our approach is the most efficient one in regards to the
speed to generate one bit of hash value.

CONCLUSION

Collision is a common event occurring in physical world.
Some computation models are constructed based on the
concept of collision. In this paper, a hash function is
proposed based on a simple physical model containing
two balls and a ring. Simulation demonstrates that the
proposed hash function has excellent randomness,
sensitivity and collision-resistance properties. Moreover, it
achieves high security level in much less number of
iterations than many well-known hash functions. This
simple physical model seems promising to fulfill the
requirements of the complex cryptographic hash function.

ACKNOWLEDGEMENTS

The work is supported by the National Nature Science
Foundation of China under Grant 61003246 and
61070246 and the National Science Foundation of
Chongqing under Grant CSTC, 2009BB2208.

REFERENCES

Hard J, Pazzis O, Pomeau Y (1976). Molecular dynamics of a classical

lattice gas: Transport properties and time correlation functions. Phys.
Rev., A. 13: 1949-1961.

Margolus N (2002). Physics-like Models of Computation. In: Andrew
(ed.) Collision-based computing. Springer-Verlag, London, pp 83-106.

Morita K (2008). Reversible computing and cellular automata - A Survey.
395: 101-131.

Rivest R (1992). The MD5 Message-Digest Algorithm,
http://www.ietf.org/rfc/rfc1321.txt.

U.S. National Institute of Standards and Technology (2008). FIPS PUB
180-3: Secure Hash Standard,
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

Wang XY, Yu HB (2005). How to break MD5 and other hash functions.
In: Cramer R (ed.) Lecture Notes in Computer Science 3494. Springer-
Verlag, German, pp 19-35.

Wang Y, Liao XF, Xiao D, Wong KW (2008). One-way hash function
construction based on 2D coupled map lattices. Inf. Sci., 178(5): 1391-
1406.

Wong KW (2003). A combined chaotic cryptographic and hashing
scheme. Phys. Lett., A. 307:292–298.

Yang HQ, Wong KW, Liao XF, Wang Y, Yang DG (2009). One-way hash
function construction based on chaotic map network. Chaos Solitons
and Fractals. 41: 2566-2574.

Xiao D, Liao XF, Wang Y (2009). Parallel keyed hash function
construction based on chaotic neural network. Neurocomput., 72:
2288-2296.

Yi X (2005). Hash Function Based on Chaotic Tent Maps. IEEE Trans.
Circ. Sys., II. 52: 354-357.

