

International Journal of the Physical Sciences Vol. 6(24), pp. 5682-5687, 16 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.1034
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Differential evolution algorithms for grid scheduling
problem

Amid Khatibi Bardsiri1 and Marjan Kuchaki Rafsanjani2*

1
Bardsir Branch, Islamic Azad University, Kerman, Iran.

2
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.

Accepted 6 September, 2011

Differential evolution (DE) has recently emerged as simple and efficient algorithm for global
optimization over continuous spaces. DE shares many features of the classical genetic algorithms (GA).
But it is much easier to implement than GA and applies a kind of differential mutation operator on
parent chromosomes to generate the offspring. Grid computing aims to allow unified access to data,
computing power, sensors and other resources through a single virtual laboratory. Scheduling is a key
problem in emergent computational systems, such as grid and P2P, in order to benefit from the large
computing capacity of such systems. In this paper, we present differential evolution algorithm based on
schedulers for efficiently allocating jobs to resources in a grid computing system. Several variations for
DE are examined in order to identify which works best for the grid scheduling problem.

Key words: Grid computing, differential evolution, crossover probability, scale factor, population.

INTRODUCTION

The emerging paradigm of grid computing and the
construction of computational grids are making the
development of large scale applications possible from
optimization and other fields (Foster and Kesselman,
1998). The development or adaptation of applications for
grid environments is being challenged by the need of
scheduling a large number of jobs to resources efficiently.
Moreover, the computing resources may vary in regard to
their objectives, scope and structure as well as to their
resource management policies, such as access and cost.
Grid computing and distributed computing, dealing with
large scale and complex computing problems, is a hot
topic in the computer science and research (Minhas et
al., 2011). Mixed-machine heterogeneous computing
(HC) environments utilize a distributed suite of different
machines, interconnected with computer network, to
perform different computationally intensive applications
that have diverse requirements (Tracy et al., 1998).
Miscellaneous resources should be orchestrated to
perform a number of tasks in parallel or to solve complex
tasks atomized to variety of independent subtasks (Baca,
1989). Various sciences can benefit from the use of grids

*Corresponding author. E-mail: kuchaki@mail.uk.ac.ir.

to solve CPU-intensive problems, creating potential
benefits to the entire society. Indeed, the grid
environment is dynamic and, also the number of
resources to manage and the number of jobs to be
scheduled are usually very large making thus the
problem a complex large scale optimization problem.
Task scheduling is an integrated part of parallel and
distributed computing. Intensive research has been done
in this area and many results have been widely accepted.
With the emergence of the computational grid, new
scheduling algorithms are in demand for addressing new
concerns arising in the grid environment. In the
heterogeneous nature of grid the job has to wait in the
queue, the waiting time of the job in the queue depends
on the following factors, such as load and availability of
the resources. Task scheduling is mapping a set of tasks
to a set of resources to efficiently exploit the capabilities
of such resources. It has been shown, that an optimal
mapping of computational tasks to available machines in
an HC suite is a NP-complete problem (Fidanova and
Durchova, 2006) and as such, it is a subject to various
heuristic and meta-heuristic algorithms. The heuristics
applied to the task scheduling problem include Min-min
heuristic, Max-min heuristic, longest job to fastest
resource- shortest job to fastest resource (LJFR-SJFR)
heuristic, sufferage heuristic, work queue heuristic and

Figure 1. A summary of differential evolution.

2 3 1 6 4 5 1 13

Figure 2. Job-to-Resource representation
(chromosome).

others (Izakian et al., 2009; Braun et al., 2001; Munir et
al., 2007). In this work, several DEs are proposed and
efficiently implemented in Matlab environment using a
generic approach based on a skeleton for DEs (Price et
al., 2005). The implementation has been extensively
tested to identify a set of appropriate values for the
parameters that conduct the search. We have used the
benchmark of Braun et al. (2001). We have done
extensive experimenting and fine tuning of parameters
and have thus, identified the configuration of operators
and parameters that outperforms existing implement-
tations for static instances of the problem. We aim to
minimize the completion time (makespan). Note that the
makespan is the most important parameter of the grid
scheduling problem.

DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a reliable, versatile and easy
to use stochastic evolutionary optimization algorithm. DE
is a population-based optimizer that evolves real encoded
vectors representing the solutions to given problem. The
DE starts with an initial population of N real-valued
vectors. The vectors are initialized with real values either
randomly or so, that they are evenly spread over the
problem domain (Price and Storn, 1995). During the opti-
mization, DE generates new vectors that are pertubations

Bardsiri and Rafsanjani 5683

of existing population vectors. The algorithm perturbs
vectors with the scaled difference of two randomly
selected population vectors and adds the scaled random
vector difference to a third selected population vector to
produce so called trial vector. The trial vector competes
with a member of the current population with the same
index. If the trial vector represents a better solution than
the population vector, it takes its place in the population.
Differential evolution is parameterized by two parameters
(Price and Storn, 1997a). Scale factor F∈ (0, 1) controls
the rate at which the population evolves and the
crossover probability C∈ [0, 1] determines the ratio of bits
that are transferred to the trial vector from its opponent.
Figure 1 shows the pseudo code of DE algorithm
(Zaharie, 2007).

The idea of differential evolution algorithm is to obtain a
new individual by adding the weighted difference vector
of any two individuals to another individual with certain
rules. In the proposed scheduling algorithm, the solution
is represented as an array of length equal to the number
of jobs. The value corresponding to each position i in the
array represent the resource to which job i was allocated.
The job-to-resource representation (Chromosome) is
illustrated in Figure 2.

Assume schedule S from the set of all possible
schedules, Sched. Each chromosome has a fitness
value, which is the makespan that results from the
matching of tasks to machines within that chromosome.
For differential evolution, we define a fitness function
fit(S): Sched → R that evaluates each schedule:

 (1)

We have implemented differential evolution for
scheduling of independent tasks on heterogeneous
independent environments.

Problem definition

The main goal of the task scheduling in grid computing
systems is the efficiently allocating tasks to machines.
Tasks that originate from different users/applications are
independent. We use the expected time to compute
(ETC) matrix model introduced by Ali et al. for formulating
the problem (Ali et al., 2000). It is assumed that an
accurate estimate of the expected execution time for
each task on each machine is known prior to execution,
and contained within an ETC matrix. ETC[i,j] is the
expected execution time of task i in machine j. Using the
ETC matrix model, the scheduling problem can be
defined as follows:

1. A number of independent tasks to be allocated to the
available resources; because of non-preemptive sche-
duling, each task has to be processed completely in a
single machine.

5684 Int. J. Phys. Sci.

Table 1. A summary of DE parameters.

Parameter Value

Population size 30

Probability of crossover 0.3

Scaling factor 0.9

Initial population Random

2. The number of machines available to participate in the
allocation of tasks.
3. Ready[m] represents the ready time of the machine
after completing the previously assigned tasks.
4. ETC matrix of size , where n represents the

number of tasks and m represents the number of
machines.

A meta-task is defined as a collection of independent task
(that is, task does not require any communication with
other tasks) (Barun et al., 1998). Tasks derive mapping
statically. For static mapping, the number of tasks, n and
the number of machines, m is known a priori. Assume

that (i∈{1,2,...,n}, j∈{1,2,..., m}) is the completion time

for performing ith task in jth machine and

(j∈{1,2,...,m}) is the previous workload of , then

Equation 2 shows the time required for to complete

the tasks included in it. According to the aforementioned
definition, makespan can be estimated using Equation 3
(Xhafa and Abraham, 2007).

 (2)

 (3)

RESULTS AND DISCUSSION

In grid scheduling systems, a major challenge is to
manage the consumers’ job based on their quality of
service (QoS) and provider nodes’ satisfaction. Most of
the capable job scheduling polices operate on the basis
of meta-scheduling systems (Bouyer et al., 2011).
Despite the efforts that current grid schedulers with
various scheduling algorithms have made to provide
comprehensive and sophisticated functionalities, they
have difficulty guaranteeing the quality of schedules they
produce (Lopez and Raja, 2011). Here, we apply a
powerful population based meta-heuristic algorithm from
the differential evolution to the task scheduling problem.
We have implemented DE in Matlab environment by
adapting the algorithmic skeletons defined (Price et al.,
2005). Though, dynamic scheduling is our eventual aim,
using static instances, we are able to see the quality of
the schedule produced by our DE implementation.

Figure 3. Comparison of different DE strategies.

Moreover, it is very useful in finding an appropriate
combination of operators and parameters that work well
in terms of robustness. The experimental results
discussed subsequently were obtained on a PC with 2
GHz processor and 2 GB of RAM. In this paper, we used
the benchmark proposed (Braun et al., 2001). The
simulation model is based on expected time to compute
(ETC) matrix for 512 tasks and 16 machines, therefore
each chromosome is a 512 × 1 vector. We use i-lo-lo
matrix for all cases and give the tables of values for the
parameters and for the each case graphical
representation is given.

Strategy

The differentiation operation can be realized by many
search strategies. Actually, it is the process of mutation
which demarcates one DE scheme from another
(Adeyemo and Otieno, 2009). We can now have an idea
of how the different DE schemes are named. The general
convention is DE/x/y/z. DE stands for differential
evolution, x represents a string denoting the type of the
vector to be perturbed (whether it is randomly selected or
it is the best vector in the population with respect to
fitness) and y is the number of difference vectors
considered for perturbation of x. Each mutation strategy
was combined with either the ‘exponential’ type crossover
or the ‘binomial’ type crossover (Price, 1999); z stands for
the type of crossover being used. From the tuning of
parameters, we obtained the values of parameters given
in Table 1. For these values, the resulting DEs behaviors
are graphically shown in Figure 3.

The relative performance order of the strategies from
best to worst was: (1) rand/1/exp, (2) best/1/exp, (3)
rand/1/bin and (4) best/1/bin.

Table 2. Values of parameters for comparing
crossover probability performance.

Parameter Value

Strategy DE/rand/1/exp

Population size 30

Scaling factor 0.9

Initial population Random

Figure 4. Comparison of the performance of crossover
probability.

Figure 5. Comparison of the performance of scale factor.

Crossover probability

To increase the potential diversity of the population, a
crossover operation comes into play after generating the
donor vector through mutation. The DE family of
algorithms can use two kinds of crossover schemes, such

Bardsiri and Rafsanjani 5685

Table 3. Parameter values used for comparing the
performance of scale factor.

Parameter Value

Strategy DE/rand/1/exp

Population size 30

Probability of crossover 0.1

Initial population Random

as exponential and binomial. The principal role of
crossover is as a construction. There is no such mutation
that can achieve higher levels of construction than
crossover (Price and Storn, 1997b). The constant of
crossover reflects the probability with which the trial
individual inherits the actual individual’s genes.
Crossover furnishes the high diversity of a population.
Moreover, small values of crossover constant (Cr)
increase the diversity of population. We obtained the
following values for the parameters (Table 2 and Figure
4).

Results show that higher values for Cr improve the
solution of scheduling problem efficiently. Upper limit for
Cr (0.9) provided fastest and smoothest convergence.

Scale factor

The constant F is a control parameter, which manages
the tradeoff between exploitation and exploration of the
space. The constant of differentiation F is a scaling factor
of the difference vector. Exploration efficiency can be
controlled by the differentiation constant F as well. F has
considerable influence on exploration: small values of F
lead to premature convergence and high values slow
down the search. Usually, F is fixed during the search
process. However, there are some attempts to relax this
parameter. The comparison of the performance of the
best scale factor value is presented in Figure 5 and the
values for the parameters given in Table 3. The graphical
representation clearly indicates that the better value of F
parameter is higher value (0.9). But researchers naturally
consider some techniques, such as self-adaptation to
avoid manual tuning of the scale factor parameter.
Usually self-adaptation is applied to tune the control
parameter F.

Size of population

DE optimizes a problem by maintaining a population of
candidate solutions. The size of population NP is a very
important factor. It should not be too small in order to
avoid stagnation and to provide sufficient exploration.
The increase of NP induces the increase of a number of
function evaluations; that is, it retards convergence. If the
population converges prematurely, then NP should be

5686 Int. J. Phys. Sci.

Table 4. Values of parameters for comparing the
performance of NP parameter.

Parameter Value

Strategy DE/rand/1/exp

Probability of crossover 0.5

Scaling factor 0.9

Initial population Random

Figure 6. Performance of the population size values.

Table 5. Values of parameters for comparing initial
population methods.

Parameter Value

Strategy DE/rand/1/exp

Population size 30

Probability of crossover 0.9

Scaling factor 0.1

increased. Furthermore, the correlation between NP and
F may be observed. The parameters are given in Table 4
and their resulting comparison is as shown in Figure 6. In
Figure 6 you can see that the large population size
values achieve the best makespan reduction.

Initial population

The DE starts with an initial population of N real-valued
vectors. The vectors are initialized with real values either
randomly or they are evenly spread over the problem
domain. The latter initialization usually leads to better
results of the optimization process.

In the second set of the experiments, the initial population

Figure 7. Comparison of the performance of initial
population methods.

of the DE was upgraded with vector obtained by Min-min
scheduling heuristic (Freund and Gherrity, 1998). Much
better results were obtained when we upgraded the initial
population with candidate solution obtained by the
heuristic algorithm. In such case, the algorithm managed
to exploit the different sub-optimal solutions provided at
the beginning and converged to better schedules. We
obtained the following values for the parameters (Table 5
and Figure 7).

CONCLUSION AND FUTURE WORK

Task scheduling is a critical design issue of distributed
computing. A computational grid is a highly distributed
environment. Scheduling in grid computing systems is an
NP-complete problem. Therefore, using heuristic
algorithms is a suitable approach in order to cope with its
difficulty in practice. We presented an extensive study on
the usefulness of DE algorithm for designing efficient grid
schedulers when makespan parameter is minimized.
Differential evolution (DE) has a number of parameters
that determine its behavior and efficacy in optimizing a
given problem. This paper gives a list of good choices of
parameters for various optimization scenarios which
should help the practitioner achieve better results with
little effort. The goal of the scheduler is minimizing
makespan. There are three main control parameters of
the DE algorithm: the mutation scale factor F, the
crossover constant Cr, the population size NP. Finally,
we focus on the effect of each of these parameters on the
performance of the DE as well as the state-of-the-art
methods for tuning these parameters. Selecting an
optimal set of control parameter values is a problem
specific task for DE. The trial and error method used for
tuning the control parameters is time consuming, less
reliable and requires multiple runs on the given problem.

Our future work is proposed to develop adaptive DE
based schedulers to grid scheduling problem.

REFERENCES

Adeyemo J, Otieno F (2009). Optimizing Planting Areas Using

Differential Evolution (DE) and Linear Programming (LP). Int. J. Phy.
Sci. (IJPS), 4(4): 212-220.

Ali S, Siegel H, Maheswaran M, Hensgen D (2000). Modeling Task
Execution Time Behavior in Heterogeneous Computing Systems.
Tamkang J. Sci. Eng., 3: 195-207.

Baca D (1989). Allocating Modules to Processors in a Distributed
System. IEEE Trans., Software Eng., pp. 1427-1436.

Bouyer A, Abdullah A, Mokhtari M (2011). Localized Job Scheduling
System Using Cooperative and System-centric Scheduling Policy for
Market-oriented Grids. Scientific Res. Essays J. (SRE), 6(17): 3729-
3750.

Braun T, Siegel H, Beck N, Boloni L, Maheswaran M, Reuther A,
Robertson J, Theys M, Yao B (1998). A Taxonomy for Describing
Matching and Scheduling Heuristics for Mixed-machine
Heterogeneous Computing Systems. Proceedings of the 17th IEEE
Symposium on Reliable Distrib. Systems, pp. 330-335.

Braun T, Siegel H, Beck N, Boloni L, Maheswaran M, Reuther A,
Robertson J, Theys M, Yao B, Hensgen D, Freund R (2001). A
Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing
Systems. J. Parallel Dist. Comput., 61(6): 810-837.

Fidanova S, Durchova M (2006). Ant Algorithm for Grid Scheduling
Problem. Large Scale Compu., LNCS, Springer, 3743: 405-412.

Foster I, Kesselman C (1998). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers.

Freund R, Gherrity M (1998). Scheduling Resources in Multi-user
Heterogeneous Computing Environment with Smart Net. Proceedings
of the 7th IEEE HCW.

Bardsiri and Rafsanjani 5687

Izakian H, Abraham A, Snasel V (2009). Comparison of Heuristics for

Scheduling Independent Tasks on Heterogeneous Distributed
Environments. Proceedings of the International Joint Conference on
Computational Sciences and Optimization, IEEE., 1: 8-12.

Lopez D, Raja S (2011). Dynamic Task Scheduling Using Service Time
Error and Virtual Finish Time. J. Eng. Comput. Innovations (JECI),
2(5): 90-97.

Munir E, Jian-Zhong J, Sheng-Fei S, Rasool Q (2007). Performance
Analysis of Task Scheduling Heuristics in Grid. Proceedings of the
Int. Conf. Machine Learning and Cybernetics (ICMLC), 6: 3093-3098.

Minhas A, Hadi F, Shah S (2011). A Novel Cost-based Framework for
Communication in Computational Grid Using Anycast Routing. Int. J.
Phy. Sci. (IJPS), 6(10): 2348-2355.

Price K, Storn R (1997a). Differential Evolution: A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”, J. Global
Optimization, 11(4): 341-359.

Price K, Storn R (1997b). Differential Evolution: Numerical Optimization
Made Easy. Dr. Dobb’s J., pp. 18–24.

Price K (1999). An Introduction to Differential Evolution. In: Corne, D.,
Dorigo, M., Glover, V. (eds.) New Ideas in Optimization, Mc Graw-
Hill, pp. 79–108.

Price K, Storn R, Lampinen L (2005). Differential Evolution A Practical
Approach to Global Optimization. Natural Computing Series,
Springer-Verlag.

Tracy M, Braun T, Siegel H (1998). High-performance Mixed-machine
Heterogeneous Computing. 6th Euro-micro Workshop on Parallel and
Distrib. Processing, pp. 3-9.

Xhafa F, Abraham A (2008). Meta-heuristics for Grid Scheduling
Problems. In Meta-heuristics for Scheduling in Distribution
Computation. Environment, Springer, 146: 1-37.

Zaharie D (2007). A Comparative Analysis of Crossover Variants in
Differential Evolution. Proceedings of the International Multi-
conference on Computer Science and Information Technology, pp.
171–181.

