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Differential evolution (DE) has recently emerged as simple and efficient algorithm for global 
optimization over continuous spaces. DE shares many features of the classical genetic algorithms (GA). 
But it is much easier to implement than GA and applies a kind of differential mutation operator on 
parent chromosomes to generate the offspring. Grid computing aims to allow unified access to data, 
computing power, sensors and other resources through a single virtual laboratory. Scheduling is a key 
problem in emergent computational systems, such as grid and P2P, in order to benefit from the large 
computing capacity of such systems. In this paper, we present differential evolution algorithm based on 
schedulers for efficiently allocating jobs to resources in a grid computing system. Several variations for 
DE are examined in order to identify which works best for the grid scheduling problem.  
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INTRODUCTION
 
The emerging paradigm of grid computing and the 
construction of computational grids are making the 
development of large scale applications possible from 
optimization and other fields (Foster and Kesselman, 
1998). The development or adaptation of applications for 
grid environments is being challenged by the need of 
scheduling a large number of jobs to resources efficiently. 
Moreover, the computing resources may vary in regard to 
their objectives, scope and structure as well as to their 
resource management policies, such as access and cost. 
Grid computing and distributed computing, dealing with 
large scale and complex computing problems, is a hot 
topic in the computer science and research (Minhas et 
al., 2011). Mixed-machine heterogeneous computing 
(HC) environments utilize a distributed suite of different 
machines, interconnected with computer network, to 
perform different computationally intensive applications 
that have diverse requirements (Tracy et al., 1998). 
Miscellaneous resources should be orchestrated to 
perform a number of tasks in parallel or to solve complex 
tasks atomized to variety of independent subtasks (Baca, 
1989). Various sciences can benefit from the use of grids 
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to solve CPU-intensive problems, creating potential 
benefits to the entire society. Indeed, the grid 
environment is dynamic and, also the number of 
resources to manage and the number of jobs to be 
scheduled are usually very large making thus the 
problem a complex large scale optimization problem. 
Task scheduling is an integrated part of parallel and 
distributed computing. Intensive research has been done 
in this area and many results have been widely accepted. 
With the emergence of the computational grid, new 
scheduling algorithms are in demand for addressing new 
concerns arising in the grid environment. In the 
heterogeneous nature of grid the job has to wait in the 
queue, the waiting time of the job in the queue depends 
on the following factors, such as load and availability of 
the resources. Task scheduling is mapping a set of tasks 
to a set of resources to efficiently exploit the capabilities 
of such resources. It has been shown, that an optimal 
mapping of computational tasks to available machines in 
an HC suite is a NP-complete problem (Fidanova and 
Durchova, 2006) and as such, it is a subject to various 
heuristic and meta-heuristic algorithms. The heuristics 
applied to the task scheduling problem include Min-min 
heuristic, Max-min heuristic, longest job to fastest 
resource- shortest job to fastest resource (LJFR-SJFR) 
heuristic, sufferage  heuristic,  work  queue  heuristic  and 



 

 
 
 
 

 
 
Figure 1. A summary of differential evolution. 
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Figure 2. Job-to-Resource representation 
(chromosome). 

 
 
 
others (Izakian et al., 2009; Braun et al., 2001; Munir et 
al., 2007). In this work, several DEs are proposed and 
efficiently implemented in Matlab environment using a 
generic approach based on a skeleton for DEs (Price et 
al., 2005). The implementation has been extensively 
tested to identify a set of appropriate values for the 
parameters that conduct the search. We have used the 
benchmark of Braun et al. (2001). We have done 
extensive experimenting and fine tuning of parameters 
and have thus, identified the configuration of operators 
and parameters that outperforms existing implement-
tations for static instances of the problem. We aim to 
minimize the completion time (makespan). Note that the 
makespan is the most important parameter of the grid 
scheduling problem. 
  
 
DIFFERENTIAL EVOLUTION 
 
Differential evolution (DE) is a reliable, versatile and easy 
to use stochastic evolutionary optimization algorithm. DE 
is a population-based optimizer that evolves real encoded 
vectors representing the solutions to given problem. The 
DE starts with an initial population of N real-valued 
vectors. The vectors are initialized with real values either 
randomly or so, that they are evenly spread over the 
problem domain (Price and Storn, 1995). During the opti-
mization, DE generates new vectors that are pertubations 
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of existing population vectors. The algorithm perturbs 
vectors with the scaled difference of two randomly 
selected population vectors and adds the scaled random 
vector difference to a third selected population vector to 
produce so called trial vector. The trial vector competes 
with a member of the current population with the same 
index. If the trial vector represents a better solution than 
the population vector, it takes its place in the population. 
Differential evolution is parameterized by two parameters 
(Price and Storn, 1997a). Scale factor F∈ (0, 1) controls 
the rate at which the population evolves and the 
crossover probability C∈ [0, 1] determines the ratio of bits 
that are transferred to the trial vector from its opponent. 
Figure 1 shows the pseudo code of DE algorithm 
(Zaharie, 2007).  

The idea of differential evolution algorithm is to obtain a 
new individual by adding the weighted difference vector 
of any two individuals to another individual with certain 
rules. In the proposed scheduling algorithm, the solution 
is represented as an array of length equal to the number 
of jobs. The value corresponding to each position i in the 
array represent the resource to which job i was allocated. 
The job-to-resource representation (Chromosome) is 
illustrated in Figure 2. 

Assume schedule S from the set of all possible 
schedules, Sched. Each chromosome has a fitness 
value, which is the makespan that results from the 
matching of tasks to machines within that chromosome. 
For differential evolution, we define a fitness function 
fit(S): Sched → R that evaluates each schedule: 
 

                                                   (1) 

 
We have implemented differential evolution for 
scheduling of independent tasks on heterogeneous 
independent environments. 
 
 
Problem definition 
 
The main goal of the task scheduling in grid computing 
systems is the efficiently allocating tasks to machines. 
Tasks that originate from different users/applications are 
independent. We use the expected time to compute 
(ETC) matrix model introduced by Ali et al. for formulating 
the problem (Ali et al., 2000). It is assumed that an 
accurate estimate of the expected execution time for 
each task on each machine is known prior to execution, 
and contained within an ETC matrix. ETC[i,j] is the 
expected execution time of task i in machine j. Using the 
ETC matrix model, the scheduling problem can be 
defined as follows: 
 
1. A number of independent tasks to be allocated to the 
available resources; because of non-preemptive sche-
duling, each task has to be processed completely in a 
single machine. 
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Table 1. A summary of DE parameters. 
 

Parameter Value 

Population size 30 

Probability of crossover 0.3 

Scaling factor 0.9 

Initial population Random 

 
 
 
2. The number of machines available to participate in the 
allocation of tasks. 
3. Ready[m] represents the ready time of the machine 
after completing the previously assigned tasks. 
4. ETC matrix of size , where n represents the 

number of tasks and m represents the number of 
machines. 
 
A meta-task is defined as a collection of independent task 
(that is, task does not require any communication with 
other tasks) (Barun et al., 1998). Tasks derive mapping 
statically. For static mapping, the number of tasks, n and 
the number of machines, m is known a priori. Assume 

that  (i∈{1,2,...,n}, j∈{1,2,..., m}) is the completion time 

for performing ith task in jth machine and  

(j∈{1,2,...,m}) is the previous workload of , then 

Equation 2 shows the time required for  to complete 

the tasks included in it. According to the aforementioned 
definition, makespan can be estimated using Equation 3 
(Xhafa and Abraham, 2007). 

 
                                                                (2)  

 
                         (3) 

 
 
RESULTS AND DISCUSSION 

 
In grid scheduling systems, a major challenge is to 
manage the consumers’ job based on their quality of 
service (QoS) and provider nodes’ satisfaction. Most of 
the capable job scheduling polices operate on the basis 
of meta-scheduling systems (Bouyer et al., 2011). 
Despite the efforts that current grid schedulers with 
various scheduling algorithms have made to provide 
comprehensive and sophisticated functionalities, they 
have difficulty guaranteeing the quality of schedules they 
produce (Lopez and Raja, 2011). Here, we apply a 
powerful population based meta-heuristic algorithm from 
the differential evolution to the task scheduling problem. 
We have implemented DE in Matlab environment by 
adapting the algorithmic skeletons defined (Price et al., 
2005). Though, dynamic scheduling is our eventual aim, 
using static instances, we are able to see the quality of 
the schedule produced by our DE implementation.  

 
 
 
 

 
 
Figure 3. Comparison of different DE strategies. 

 
 
 
Moreover, it is very useful in finding an appropriate 
combination of operators and parameters that work well 
in terms of robustness. The experimental results 
discussed subsequently were obtained on a PC with 2 
GHz processor and 2 GB of RAM. In this paper, we used 
the benchmark proposed (Braun et al., 2001). The 
simulation model is based on expected time to compute 
(ETC) matrix for 512 tasks and 16 machines, therefore 
each chromosome is a 512 × 1 vector. We use i-lo-lo 
matrix for all cases and give the tables of values for the 
parameters and for the each case graphical 
representation is given. 
 
 
Strategy 
 
The differentiation operation can be realized by many 
search strategies. Actually, it is the process of mutation 
which demarcates one DE scheme from another 
(Adeyemo and Otieno, 2009). We can now have an idea 
of how the different DE schemes are named. The general 
convention is DE/x/y/z. DE stands for differential 
evolution, x represents a string denoting the type of the 
vector to be perturbed (whether it is randomly selected or 
it is the best vector in the population with respect to 
fitness) and y is the number of difference vectors 
considered for perturbation of x. Each mutation strategy 
was combined with either the ‘exponential’ type crossover 
or the ‘binomial’ type crossover (Price, 1999); z stands for 
the type of crossover being used. From the tuning of 
parameters, we obtained the values of parameters given 
in Table 1. For these values, the resulting DEs behaviors 
are graphically shown in Figure 3. 

The relative performance order of the strategies from 
best to worst was: (1) rand/1/exp, (2) best/1/exp, (3) 
rand/1/bin and (4) best/1/bin. 



 

 
 
 
 

Table 2. Values of parameters for comparing 
crossover probability performance. 
 

Parameter Value 

Strategy DE/rand/1/exp 

Population size 30 

Scaling factor 0.9 

Initial population Random 

 
 
 

 
 
Figure 4. Comparison of the performance of crossover 
probability. 

 
 
 

 
 
Figure 5. Comparison of the performance of scale factor. 

 
 
 
Crossover probability 
 
To increase the potential diversity of the population, a 
crossover operation comes into play after generating the 
donor vector through mutation. The DE family of 
algorithms can use two kinds of crossover schemes, such  
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Table 3. Parameter values used for comparing the 
performance of scale factor. 
 

Parameter Value 

Strategy DE/rand/1/exp 

Population size 30 

Probability of crossover 0.1 

Initial population Random 

 
 
 
as exponential and binomial. The principal role of 
crossover is as a construction. There is no such mutation 
that can achieve higher levels of construction than 
crossover (Price and Storn, 1997b). The constant of 
crossover reflects the probability with which the trial 
individual inherits the actual individual’s genes. 
Crossover furnishes the high diversity of a population. 
Moreover, small values of crossover constant (Cr) 
increase the diversity of population. We obtained the 
following values for the parameters (Table 2 and Figure 
4). 

Results show that higher values for Cr improve the 
solution of scheduling problem efficiently. Upper limit for 
Cr (0.9) provided fastest and smoothest convergence. 
 
 
Scale factor 
 
The constant F is a control parameter, which manages 
the tradeoff between exploitation and exploration of the 
space. The constant of differentiation F is a scaling factor 
of the difference vector. Exploration efficiency can be 
controlled by the differentiation constant F as well. F has 
considerable influence on exploration: small values of F 
lead to premature convergence and high values slow 
down the search. Usually, F is fixed during the search 
process. However, there are some attempts to relax this 
parameter. The comparison of the performance of the 
best scale factor value is presented in Figure 5 and the 
values for the parameters given in Table 3. The graphical 
representation clearly indicates that the better value of F 
parameter is higher value (0.9). But researchers naturally 
consider some techniques, such as self-adaptation to 
avoid manual tuning of the scale factor parameter. 
Usually self-adaptation is applied to tune the control 
parameter F. 
 
 

Size of population 
 

DE optimizes a problem by maintaining a population of 
candidate solutions. The size of population NP is a very 
important factor. It should not be too small in order to 
avoid stagnation and to provide sufficient exploration. 
The increase of NP induces the increase of a number of 
function evaluations; that is, it retards convergence. If the 
population converges  prematurely,  then  NP  should  be  
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Table 4. Values of parameters for comparing the 
performance of NP parameter. 
 

Parameter Value 

Strategy DE/rand/1/exp 

Probability of crossover 0.5 

Scaling factor 0.9 

Initial population Random 

 
 
 

 
 
Figure 6. Performance of the population size values. 

 
 
 

Table 5. Values of parameters for comparing initial 
population methods. 
 

Parameter Value 

Strategy DE/rand/1/exp 

Population size 30 

Probability of crossover 0.9 

Scaling factor 0.1 

 
 
 
increased. Furthermore, the correlation between NP and 
F may be observed. The parameters are given in Table 4 
and their resulting comparison is as shown in Figure 6. In 
Figure 6 you can see that the large population size 
values achieve the best makespan reduction. 
 
 
Initial population 

 
The DE starts with an initial population of N real-valued 
vectors. The vectors are initialized with real values either 
randomly or they are evenly spread over the problem 
domain. The latter initialization usually leads to better 
results of the optimization process.  

In the second set of the experiments, the initial population 

 
 
 
 

 
 
Figure 7. Comparison of the performance of initial 
population methods. 

 
 
 

of the DE was upgraded with vector obtained by Min-min 
scheduling heuristic (Freund and Gherrity, 1998). Much 
better results were obtained when we upgraded the initial 
population with candidate solution obtained by the 
heuristic algorithm. In such case, the algorithm managed 
to exploit the different sub-optimal solutions provided at 
the beginning and converged to better schedules. We 
obtained the following values for the parameters (Table 5 
and Figure 7). 
 
 
CONCLUSION AND FUTURE WORK 
 
Task scheduling is a critical design issue of distributed 
computing. A computational grid is a highly distributed 
environment. Scheduling in grid computing systems is an 
NP-complete problem. Therefore, using heuristic 
algorithms is a suitable approach in order to cope with its 
difficulty in practice. We presented an extensive study on 
the usefulness of DE algorithm for designing efficient grid 
schedulers when makespan parameter is minimized. 
Differential evolution (DE) has a number of parameters 
that determine its behavior and efficacy in optimizing a 
given problem. This paper gives a list of good choices of 
parameters for various optimization scenarios which 
should help the practitioner achieve better results with 
little effort. The goal of the scheduler is minimizing 
makespan. There are three main control parameters of 
the DE algorithm: the mutation scale factor F, the 
crossover constant Cr, the population size NP. Finally, 
we focus on the effect of each of these parameters on the 
performance of the DE as well as the state-of-the-art 
methods for tuning these parameters. Selecting an 
optimal set of control parameter values is a problem 
specific task for DE. The trial and error method used for 
tuning the control parameters is time consuming, less 
reliable and requires multiple runs on the  given  problem.   



 

 
 
 
 
Our future work is proposed to develop adaptive DE 
based schedulers to grid scheduling problem.  
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