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To enable wireless internet and other data services using mobile appliances, there is a critical need to 
support content rich cellular data communication, including voice, text, image and video. However 
mobile communication of multimedia content has several bottlenecks including limited bandwidth of 
cellular networks, channel noise and battery constraints of the appliances. In this paper an efficient 
adaptive data codec for still images that can significantly minimize the energy required for wireless 
image communication in a narrowband system while meeting bandwidth constraints of wireless 
network, image quality and latency constrains of the wireless services is presented. Based on wavelet 
image compression an efficient wavelet Image compression algorithm (AEWICNBTS) for lossless 
compression of still images, enabling significant reduction in computation as well as communication 
energy needed with minimal degradation of image quality is proposed additionally, the wavelet image 
compression parameter that can be used to effect trade offs between the energy savings, quality of 
image and required communication bandwidth is identified. A dynamic configuration methodology that 
selects the optimal set of parameters to minimize energy under network service, appliance constrains is 
also presented. 
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INTRODUCTION 
 
One of the major challenges in enabling image transmit-
ssion will be the need to process and transmit a very lar-
ge volume of data through narrow band. While significant 
improvement in bandwidth is expected with future wire-
less access technologies, improvement in transmission 
technology lags the rapidly growing energy requirements 
of future wireless and wired data services. One approach 
to mitigate to this problem is to reduce the volume of mul-
timedia data transmitted over the wireless and wired cha-
nnel via data compression techniques. 

This has motivated active research on multimedia data 
compression techniques such as JPEG (Antonini et al., 
1996; Sweldens, 1995), JPEG 2000 (Daubechies and 
Sweldens, 1996) and MPEG.These approaches 
concentrate on achieving higher compression ratio 
without sacrificing the quality of the image. However 
these efforts ignore the energy consumption during 
compression and RF transmission. 
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Since images will constitute a large part of future wire-
less data, it is necessary to focus on energy efficient and 
adaptive image compression and communication techni-
ques. Therefore using wavelet image compression an 
energy efficient wavelet image transform technique is 
used to eliminate computation of certain high-pass coeffi-
cients of an image (Yin and Balchen, 1997). 

Digital communication allows more flexibility to the appli-
cations at only a fraction of a cost. Certain class of net-
work protocols (ISDN, GSM, and also ATM) allows band-
width reservation [Russell 93] that enables a smooth ser-
vice to the user of the application. ISDN and also the 
GSM phase 2 HSCSD circuit-switched connection provi-
des a user-requested, fixed n _ 64 kbps (n _ 9:6 kbps for 
HSCSD) bandwidth. Multipoint connections could be rea-
lized over a specialized service provider, to which point-
to-point connections of individual participants are to be 
made. A connection of fixed bandwidth is usually esta-
blished before starting a session and due to severe varia-
tions in network traffic imposed by remote imaging ser-
vices, a much higher bandwidth is to be allocated (and 
paid for) to a service that it would be statistically required.  



 
 
 
 

 
 
 
 

  
 
Figure 1. 2D wavelet decomposition. 

 
 
 
On the other side, statistical multiplexing and bandwidth 
sharing (Ethernet, Internet) makes higher data throughput 
over a physical line but adds additional limitations in 
terms of uncontrolled queuing delays, buffer overflows 
etc. that may seriously degrade the overall quality of ser-
vice. 

In this paper an efficient adaptive data codec for still 
images that can significantly minimize the energy re-
quired for wireless image communication in a narrow-
band system, while meeting bandwidth constraints of 
wireless network, image quality and latency constrains of 
the wireless services is presented. 
 
 
DISCRETE WAVELET TRANSFORMS (DWT) 
 
For Wavelet transforms to be calculated using computers 
the data must be discretised. A continuous signal can be 
sampled so that a value is recorded after a discrete time 
the, sampling rate is uniform but with wavelets, the samp- 
ling rate can be changed when the scale changes. Higher 
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scales will have a smaller sampling rate.  

According to Nyquist Sampling theory, the new samp-
ling rate N2 can be calculated from the original rate N1 
using the following: 
 
N = S1/S2 (N1) 
 
where s1 and s2 are the scales. So every scale has a dif-
ferrent sampling rate. 

After sampling the Discrete Wavelet Series can be 
used, however this can still be very slow to compute. The 
reason is that the information calculated by the wavelet 
series is still highly redundant, which requires a large 
amount of computation time. To reduce computation a di-
fferrent strategy was discovered and Discrete Wavelet 
Transform (DWT) method was born as shown in Figure 1. 
 
    
9/7 FLOAT TRANSFORM 
 
Analysis of filter coefficient 
 

 
 
The 9/7 Float DWT uses two sets of analysis filter coeffi-
cients (.taps.) The numerical values of the two sets of 
taps are specified in Table 1. 
 
 
Analysis of Filter Operations 
 

For N > 1, let 
 

 
 
denote a one-dimensional signal consisting of 2N sam-
ples. The one-dimensional float DWT 
is defined by the following pair of analysis filter opera-
tions: 
 

        (3) 
 
The outputs Cj, Dj are referred to as the coefficients of 
the wavelet transform. In equation 3 the filter taps are 
chosen so that Cj and Dj represent low-pass and high-
pass outputs respectively. 

That is, Cj is a smoothed (low-pass) version of the orig-
nal signal while Dj contains high-pass information. At the 
beginning (left boundary) of the signal, equation 3 re-
quires signal values with negative indices and at the end 
(right boundary) of the signal, it requires signal values 
with indices exceeding 2N-1.  
 
 

9/7 INTEGER TRANSFORM 
 

The present single-level, 1-d Integer DWT shall map a 
signal   vector   (equation   2)   to    two  sets  of    wavelet 



196          Int. J. Phys. Sci. 
 
 
 

Table 1. Comparison table for 9/7 transform and 5/3 transform. 
 

9/7 Transform 5/3 Transform IMAGES 

PSNR CR ENC Time DEC Time PSNR CR ENC Time DEC Time 

Cameraman 35.21 24.27 0.172 0.641 55.06 9.74 0.157 0.25 

Rice 39.87 27.78 0.156 0.672 57.44 11.65 0.125 0.234 

Rose 38.92 29.62 0.172 0.656 66.97 12.69 0.125 0.218 

Hibiscus 42.04 27.51 0.156 0.734 56.25 11.10 0.109 0.219 
 
 
 

 
 
Figure 2. Adaptive update lifting scheme. 

 
 
 
co-efficients, one high-pass set, Dj , and one  low-pass  
set,  Cj, in accordance with equations 5 and 6. Special 
boundary filters are required at either end of the signal, 
and lead to adapted formulas for j=0, j=N-2, and j=N-
1.Equations 5 and 6 define the integer transform that 
shall be used with this Recommended Standard. 

Given input values of xi, the Dj values in equation 5 
shall be computed first and used subsequently to com-
pute Cj values in equation 6. 
 

     (5)     
 

 
 
 
GENERAL ADAPTIVE UPDATE LIFTING 
 
We consider a (K + 1) band Filter bank decomposition 
with inputs x, y (1), y (2), y (3)….y (k), with k�1, which 
represent the polyphase components of the analyzed 
signal. The first polyphase component, x, is updated 
using the neighboring signal elements from the other po-

lyphase components, thus yielding an approximation sig-
nal. Subsequently, the signal elements in the polyphase 
components y (1), y (2)…y (K) are predicted using the 
neighboring signal elements from the approximated 
polyphase component and the other polyphase compo-
nents. The prediction steps, which are non-adaptive, re-
sult in detail coefficients. The adaptive update step is illu-
strated in Figure 2. Here, x and y (1), y (2)…y (K) are the 
input for a decision map D, whose output at location n is 
binary decision dn = D {y (1), y (2)…y (K)} ∈ {0,1}. 
 
 
Combining norms technique 
 
The input images x, y1, y2 and y3 are obtained by a poly-
phase decomposition of an original image x0 is given by, 
  
x (m, n) = x0(2m, 2n) 

 
 
In this decomposition, xx is called the approximation 
band and y1’, y2’, y3’ are called the horizontal, the verti-
cal and the diagonal detail bands respectively. At every 
position n = (m, n), the update step is triggered by the 
outcome  
 

))(,,,( 321 nyyyxDd n =   
 
Where D represents the decision map. The output nd  tri-
ggers the specific choice of the update step in the follow-
ing sense (Figure 3). 
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Where dnα  and dnµ  are the filter co-efficient. Note that 

the filter coefficients depend on the decision nd  which 
may change depending on the local characteristics of the 
input signals. We assume that the decision map only de-
pends of the gradient vector v (n), with components 

)(nv j  given by; 
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Figure 3. 2D wavelet decomposition comprising an 
adaptive update lifting step (left) and three cones-
cutive prediction lifting steps (right). 
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The filter co-efficient in (1), assumed that 
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With 0≠dα  for all d. 
 
In this way, we present the way of constructing the deci-
sion map by comparing different norms, each of them 
capturing different orientation features. Let us consider N 
norms, denoted by 110 ,.......,, −NPPP , and a decision map 

which can take N values, }1,....,1,0{)( −∈ Nvd . The 
decision criterion will be based on the comparison, at 
each sample, between the values of the norms. In this 
project considering N = 3, a possible construction of the 
decision maps, and hence of the decision regions, and its 
corresponding filter equations are described on the 
relations below.  
 
Decision Region I  
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Decision Region II 
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Decision Region III 
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NORMS 
 
Let v (n) be the gradient vector with components, 

T
N nvnvnv )))(),.....(),(( 21  (where T represents transpo-

sition), then  
 
L1 norm is defined as, 
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L2 norm is defined as,  
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In general, the ‘r’th norm is defined as, 
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And the ∞L norm is defined as, jvvP max)( =∞ , 

.,....2,1 Nj =   
 
The gradient vector at synthesis side is given by v’ (n) 
with components 

)()()( ,, nynxxnv jj −= , .,....2,1 Jj =  is related to 

gradient vector at analysis side v (n) by means of the 

linear relation )()(, nvAnv d= , Where T
dd ubIA −= , I  

is the JJ ×  identity matrix, and Tu )1,....,1(= , 
T

Jdddb ),......,( ,1, µµ=  are vector of length J. The super 

index ‘T’ denotes transposition. To have Perfect Recon-
struction (PR), we must be able to recover the decision 

Dn from the gradient vector at synthesis )()(, nvAnv d= .  
That is, for all n, 
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Similar to analysis, here also constructed the decision 
Map, and hence of the decision regions, and its corres-
ponding filter equations are described on the relations be- 
low, as well as the necessary and sufficient  condition  for 
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Graph 1. Computation and communication of high-pass 
coefficients 
 
 
 
Perfect Reconstruction (PR) specified. 
 
 
ENTROPY ENCODING AND DECODING 
 
Entropy encoding 
 
The encoding process is the main source of actual com-
pression. Entropy encoding is used to reduce the redun-
dancy of bits (pixel values) of images. Huffman coding 
and run Length coding is combined to give a better com-
pression. 
 
 
EFFICIENT WAVELET IMAGE COMPRESSION ALGO-
RITHM (EWICA) 
 
Analysis of Energy Consumption 
 
To determine the energy efficiency of each algorithm, we 
use a metric that is independent of the detailed imple-
mentation of the algorithm. We analyze energy efficiency 
by determining the number of times certain basic opera-
tions are performed for a given input, which in turn deter-
mines the amount of switching activity, and hence the 
energy consumption. For example, in the forward wavelet 
decomposition using the above filter, 8 shift and 8 add 
operations are required to convert the sample image pixel 
into a low-pass coefficient. Similarly, high-pass decom-
position requires 2 shift and 4 adds. 

 We model the energy consumption of the low/high-pass 
decomposition by counting the number of operations and 
denote this as the computational load. 
  
Computational load: 
 

 

 
 
 
 
Data- access load: 
 

 
 
The overall computation energy is computed as a wei-
ghted sum of the computational load and data-access 
load. From our implementation experiments, we found 
that the add operation requires two times more energy 
consumption than the shift operation, and the energy cost 
of the data-access load is 2.7 times more than the com-
putational load. 

We also estimate the communication energy by C*R, 
where C is the size of the compressed image (in bits) and 
R is the per bit transmission energy consumed by the RF 
transmitter. Having analyzed the sources and magnitude 
of energy consumption in the wavelet transform, we next 
present techniques to minimize the computation energy 
as well as communication energy needed in wavelet-
based image compression and wireless transmission. 
 
 
Algorithm (EWICA) 
 
EWICA exploits the numerical distribution of the high-
pass coefficients to judiciously eliminate a large number  
of samples from consideration in the image compression 
process. The figure below illustrates the distribution of 
high-pass coefficients after applying a 2 level wavelet 
transform to the 512 *�512 Lena image sample. We ob-
serve that the high-pass coefficients are generally repre-
sentted by small integer values. For example, 80 % of the 
high-pass coefficients for level 1 are less than 5. Because 
of the numerical distribution of the high-pass coefficients 
and the effect of the quantization step on small valued 
coefficients, we can estimate the high-pass coefficients to 
be zeros (and hence avoid computing them) and incur 
minimal image quality loss. This approach has two main 
advantages. First, because the high-pass coefficients do 
not have to be computed, EWICA helps to reduce the 
computation energy consumed during the wavelet image 
compression process by reducing the number of exe-
cuted operations. Second, because the encoder and de-
coder are aware of the estimation technique, no informa-
tion needs to be transmitted across the wireless channel, 
thereby reducing the communication energy re-quired. 

Two techniques attempting to conserve energy by 
avoiding the computation and communication of high-
pass coefficients (Graph 1). The first technique attempts 
to conserve energy by eliminating the least significant 
subband. Among the four subbands, we find that the 
diagonal sub-band (HHi) is least significant, making it the 
best candi-date for elimination during the wavelet 
transform step. We call this technique “HH elimination”. In 
the second scheme, only the most significant subband 
(low-resolu-tion information, LLi) is kept and all high-pass 
subbands (LHi, HLi, and HHi) are removed. We call this  



 
 
 
 

 
 
Figure 4. Data flow of the wavelet transform step with HH/H* 

 
 
 

“H* elimination”, because all high-pass subbands are 
eliminated in the transform step. We next present details 
of the HH and H* elimination techniques, and compare 
the energy efficiency of these techniques with the original 
AWIC algorithm which refers to the wavelet transform 
algorithm without elimination as described above. 
 
 
Efficiency of elimination techniques 
 
To implement the HH and H* elimination techniques 
(EWICA), we modified the wavelet transform step as 
shown in Figure 4. As explained in Section II-B, during 
the wavelet transform, each input image goes through the 
row and column transform decomposing the image into 
four subbands (LL, LH, HL and HH). However, to imple-
ment the HH elimination technique, after the row trans-
form, the high-pass coefficients are only fed into the low-
pass filter, and not the high-pass filter in the following co--
lumn transform step (denoted by the lightly shaded areas 
as shown in Figure 4 under <HH Elimination>). This 
avoids the generation of a diagonal subband (HH). 

To implement the H* elimination technique, the input 
image is processed through only the low-pass filter during 
both the row and column transform steps (shown by the 
lightly shaded areas under <H* Elimination>). We can 
therefore remove all high-pass decomposition steps du-
ring the transform by using the H* elimination technique. 

We assume the elimination techniques are applied to 
the first E transform levels out of the L total transform le-
vels. This is because the advantage of eliminating high-
pass coefficients is more significant at lower transform le-
vels. In the HH elimination technique, the computation 
load during the row transform is the same as with the 
AWIC algorithm. However, during the column transform 
of the high-pass subband resulting from the previous row 
transform, the high-pass subband (HH) is not computed. 
The results in Section II-C show that this leads to a 
savings of 1/4 MN (4A+2S) operation units of computa-
tional load (7.4 % compared to the AWIC algorithm). 

Therefore, computational load when using HH elimina- 
tion is represented as: 

Kanvel and Monie        199 
 
 
 

Computational load: 
 

 
 
Because the high-pass subband resulting from the row 
transform is still required to compute the HL subband du-
ring the column transform, we cannot save on “read” ace-
sses using the HH elimination technique. However, we 
can save on a quarter of “write” operations (12.5 % sa-
vings) during the column transform since the results of 
HH subband are pre-assigned to zeros before the trans-
form is computed. Thus, the total data-access load is gi-
ven by: 
 
Data-access load: 
    

 
 
 
NARROW BAND TRANSMISSION SYSTEM 
 
Network specifications and connection management 
 
Professional remote imaging applications of the past re-
lied mostly on analogue technology over fixed cable con-
nections, or when required, leased terrestrial and satellite 
links. The level of services in this case was limited to au-
dio and video broadcast in PAL/NTSC quality. Such solu-
tions are costly and the service management is hardly 
viable, especially when interactive co-operation of multi-
ple participants is required.  Digital communications allow 
more flexibility to the applications at only a fraction of a 
cost. Certain class of network protocols (ISDN, GSM and 
also ATM) allows bandwidth reservation [Russell, 93] that 
enables a smooth service to the user of the application. 
ISDN, and also the GSM Phase 2 HSCSD circuit-swit-
ched connection provides a user-re-quested, fixed n_64 
kbps (n_9:6 kbps for HSCSD) band-width. Multi-point 
connections could be realized over a specialized service 
provider, to which point-to-point connections of individual 
participants are to be made.  

A connection of fixed bandwidth is usually established 
before starting a session, and due to severe variations in 
network traffic, imposed by remote imaging services, a 
much higher bandwidth is to be allocated (and paid for) to 
a service that it would be statistically required. On the 
other side, statistical multiplexing and bandwidth sharing 
(Ethernet, Internet) makes higher data throughput over a 
physical line but adds additional limitations in terms of 
uncontrolled queuing delays, buffer overflows etc. that 
may seriously degrade the overall quality of service. Such 
approach is known as a packet-switched network app-
roach. It has been widely accepted for non-real time data 
transfer. The traffic variance of voice, image and data tra-
ffic  makes  this  approach hard for real-time applications;  
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Figure 5. Optimised DWT network image transfer. 

 
 
 
however bandwidth exploitation may be much higher 
(Venkatesh et al., 1998). 

The ideal solution would be to let the service itself to 
control network behaviour and to maintain the underlying 
traffic throughput according to the type of the correspond-
ding data source. According to the literature, a new active 
network structure of the future is proposed, that combines 
the above mentioned approaches into a so called smart–
packet data transport (Decina). The future of teleworking, 
image-supported applications is definitively in the new 
arising integrated teleinformation systems that integrate 
user terminals, applications, service and data providers 
with the access and backbone network in-frastructure 
(Bergen, 1987). 

The step towards such systems leads over the network-
aware user applications that may efficiently exploit, allo-
cate, or even control the network resources. An efficient 
remote imaging application should therefore not only 
handle data requests but also maintain good compre-
ssion rate. To provide an optimal level of service, the 
application itself has to monitor network behaviour and to 
adapt the level of services to the momentarily available 
network resources (Figure 5). No matter what communi-
cation media, protocol or traffic routing we select, the dy-
namic of bandwidth allocation is a crucial part of an opti-
mal application, or service [Jayant93]. Of a particular inte-
rest is a class of applications that allow at least partial 
user mobility. Wireless communications remain the area 
where specific care about network bandwidth and res-
ponsiveness should be taken care of; the resources are 
more limited and the  cost  per  bit  transferred  is  higher. 
A specific user may be given access to a public network, 

local private network or even a wired connection, and the 
application itself should maintain the present resources in 
the best possible way in terms of cost and availability. 
 
 
EXPERIMENTAL RESULTS AND DISCUSSIONS 
 
The adaptive and new efficient wavelet image 
compression is applied to some of the standard test 
images. The compression is performed using the 
MATLAB. The images are subjected to different levels of 
variations of the parameters namely transform level (TL), 
quantization level (QL) and elimination level during the 
process of compression. The simulation results obtained 
shows the compression of the images with their corres-
ponding image quality. 

The images from the database selected include the 
natural images cameraman. The tables representing the 
computation time, compression ratio and peak signal to 
noise ratio varying the different parameters are presented 
for various images taken as the test image. The Figure 6 
represents the input image (camera man) used as a test 
image and Figure 7 shows the 9/7 reconstructed image. 
Figure 8 shows the validation for 9/7 reconstructed image 
which indicates the decoding time, encoding time PSNR 
and Compression ratio for the test image. For the same 
input image (as in Figure 6) the Figure 9 shows the 5/3 
reconstructed image and Figure 10 shows the validation 
for 5/3 reconstructed image. Another test image used is 
the Rice image. Figure 11 shows the original rice image 
and the 9/7 Reconstructed rice image. Figure 12 shows 
the original rice image and the 5/3 Reconstructed rice 
image.
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Figure 6. Input image. 

 
 
 

 
 
Figure 7. 9/7 Reconstructed image. 
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VALIDATION 

 
 
Figure 8. Validation of 9/7 Reconstructed Image. 

 
 
 
 
 

 
 
Figure 9. 5/3 Reconstructed Image. 
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Figure 10. Validation of 5/3 Reconstructed Image. 

 
 
 
 

 
 
Figure 11. 9/7 reconstructed image. 
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Figure 12. 5/3 reconstructed image. 
+-* 

 
 
 

 
Table 2. Compression results for 512x512 barbara image. 
 

PSNR(dB) Bit rate(bpp) Compression Ratio (:1) 
CZQ-WV CZQ-WP New method (AEWICNBTS) 

1.0 7.8 34.14 36.45 36.75 
0.8 10.2 32.10 34.15 35.10 
0.6 14.50 32.00 32.86 33.45 
0.4 21.00 28.10 29.95 30.42 
0.2 41.00 25.45 27.46 30.01 
0.1 81.20 24.25 23.12 25.25 

 
 
 
 
OBJECTIVE RESULTS 
 
PSNR and RMSE (root mean square error) offer a more 
objective way to compare various algorithms’ perfor-
mance with formulae for these metrics. Bit rates and 
PSNR values have been provided in Tables 1 and 2 the 
rate distortion curve for the Lena image is shown these 
are nominal values for bit rates of the various codecs that 
illustrate what might constitute typical operation in a 
desktop computing environment. 
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