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This study examines the feasibility of applying adaptive fuzzy sliding mode control (AFSMC) strategies 
to reduce the dynamic responses of buildings constructed using a lead rubber bearing (LRB) isolation 
hybrid protective system. Recently developed control devices for civil engineering structures, 
including hybrid systems and semi-active systems, have been found to have inherent nonlinear 
properties. It is thus necessary to develop non-linear control methods to deal with such properties. 
Generally, controller fuzziness increases the robustness of the control system 75 to counter uncertain 
system parameters and input excitation, and the non-linearity of the control rule increases the 
effectiveness of the controller relative to linear controllers. AFSMC is a combination of sliding mode 
control (SMC) and fuzzy control. The performance and robustness of these proposed control methods 
are all verified by numerical simulation. The results demonstrate the viability of the presented methods. 
The attractive control strategy derived there-from is applied to seismically excited buildings using LRB 
isolation.  
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INTRODUCTION 
 
The theory of structural control has been proposed as a 
means to protect the safety and integrity of structures. 
Control schemes can be divided into roughly three types, 
passive, active and hybrid. Hybrid control methods, 
which possess the advantages of both passive and active 
control systems, have recently received considerable 
attention (Housner et al., 1997). In particular, hybrid 
protective systems comprised of a combination of 
passive base-isolation systems and active control 
devices, as shown in Figure 1, have been shown to be 
quite effective in reducing structural responses to strong 
earthquakes. Several base-isolation hybrid protective 
systems exist. These include lead rubber bearings (LRBs) 
and actuators, LRBs and variable dampers, and frictional 
sliding bearings and actuators. 

Currently, elastomeric bearings are the most widely 
used of the common LRB isolation systems. The 
elastomer is made of either natural rubber or neoprene, 
as shown in Figure 2. The bearings are formed by 
vulcanization bonding of sheets of rubber to thin steel 
reinforcing plates. The bearings are extremely stiff in the 
vertical direction but highly  flexible  in  the  
horizontal direction. This approach works by interposing 

a layer with low horizontal stiffness between the building 
and the foundation which decouples the building motion 
from the horizontal components of the earthquake 
ground motion.  

The disadvantage of LRB isolation is the possibility of 
damage to the bearings or the superstructures resulting 
from large lateral displacement. Hybrid control aims to 
exploit the advantages of both active and passive control 
systems. The LRB isolation system is used to reduce the 
inertial loading transmitted by the ground motion to the 
building, while active control devices are used to reduce 
the response of the superstructure. The dynamic 
behavior of LRB isolation systems can be either highly 
nonlinear or inelastic. Nonlinear systems require a 
nonlinear control method. The concept of structural 
control in civil engineering applications originated in the 
early 1970s (Yao, 1972). Some commonly used 
structural control methods include LQR optimal control 
(Yang, 1975), pole assignment (Abdel-Rohman et al., 
1981), and instantaneous optimal control (Yang et al., 
1987). Recently, other methods such as H2 (Suhardjo et 
al., 1992) H ∞  

(Schmitendorf  et  al.,  1994)   optimal 

control,  sliding-mode   control    (Yang et al., 1995),     
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Figure 2. Lead rubber bearings (Skinner et al., 1993). 

 
 
 
LQG/LTR (Lu et al., 1998), fuzzy control (Yeh et al., 
1996), and fuzzy sliding mode control (Alli and Oguz, 
2005, 2007) have been introduced to deal with structural 
control problems. 

In this study, an adaptive fuzzy sliding mode control 
method is proposed for the structural control of buildings 
with LRB isolation. Systems with complex mechanisms, 
such as are commonly found in the industrial sector, that 
are non-linear, and/or ill-defined, are difficult to model 
mathematically, but can be adequately controlled and 
operated in real world situations. Operator control 
strategies for such systems, are developed based on 
intuition and experience, and can be considered as 
comprised of a set of heuristic decision rules. Fuzzy  set 
theory and fuzzy algorithms can be used to directly and 

effectively assess such imprecise linguistic statements. 
However, fuzzy control design still involves several 
difficulties: (1) the large number of fuzzy rules required 
for multi-dimension systems make analysis very complex; 
(2) suitable parameters must be determined for the 
membership functions using a time-consuming trial and 
error procedure; (3) no stability analysis tools can be 
applied to fuzzy control systems (Lo et al., 1998). In 
order to solve these problems, Chen et al., (2007) Chen 
(2006), Hsiao et al. (2005), Liu et al. (2010) and Yeh et 
al., (2008) proposed a stability condition for a nonlinear 
structural system based on both linear matrix inequality 
(LMI) transformation  and  the T-S fuzzy model. 
Although, the controller design problem can be 
transformed into a solvable LMI  problem,  the  control 



 
 
 
 
approach has to be enhanced to be effective for real 
engineering applications. Here, we consider adaptive 
fuzzy sliding mode control (AFSMC) strategies for a real 
building structure with an LRB isolation hybrid protective 
system. 

Generally, even if the system parameters are difficult 
to define precisely, the bounds on the uncertain 
parameters may be known. It is certain that sliding mode 
control is useful for uncertain and nonlinear dynamic 
systems (Hui et al., 1992). This approach can 
systematically solve the problem of maintaining stability 
and consistent performance. Yager et al. (1994) 
determined some fuzzy rules based on the sliding mode 
condition. The sliding surface can dominate the dynamic 
behaviors of the control system and reduce the number 
of rules in the fuzzy rule base. Palm (1992) 
demonstrated that fuzzy control can be considered an 
extension of the conventional sliding mode controller with 
a boundary layer. Adaptive fuzzy control (Wang, 1993; 
Wang, 1994)

 
uses a linear combination of fuzzy basic 

functions. The consequent parameters are tuned via an 
adaptive mechanism. The adaptive law for the method of 
adaptive fuzzy sliding mode control presented in this 
study is derived from the Lyapunov theory. The adaptive 
law is used to tune the centers of the consequences of 
the membership functions. A stable adaptive fuzzy 
sliding mode control is developed for affine highly 
nonlinear systems (Hwang et al., 2001). The desired 
control behavior is achieved by developing an equivalent 
control using the unknown part of the system dynamics 
and the fuzzy learning model. Lhee et al. (2001) 
described sliding mode-like fuzzy logic control with fast 
self-tuning of the dead-zone parameters given parameter 
variations in the controlled system.  

Fischle et al. (1999) extended the method of stable 
adaptive fuzzy control to a broader group of nonlinear 
plants. They achieved this by using an improved 
controller structure adopted from the neural network 
domain. Their controllers (Palm, 1992; Lhee et al., 2001; 
Fischle et al., 1999) were designed for application to a 
high order single output system. However, since civil 
structures are multi-output systems, the response 
information from sensors may include a wide variety of 
data such as displacements, velocities and accelerations. 
The coefficients of the sliding surface (Palm, 1992; 
Hwang et al., 2001; Lhee et al., 2001; Fischle et al., 1999) 
are selected so that s(t) = 0 is Hurwitz. In this study, the 
optimal sliding mode method is used to determine the 
sliding surface. The controller’s sliding surface (Palm, 
1992; Hwang et al., 2001; Lhee et al., 2001; Fischle et al., 
1999) can ensure system stability. Notably, the optimal 
sliding mode method not only ensures system stability, 
but can also adjust the weighting matrices according to 
the control objective. The method discussed in this paper 
is more efficient than other types of controllers (Palm, 
1992; Hwang et al., 2001; Lhee et al., 2001; Fischle et al., 
1999). The aim of this study  is  thus  to  develop  a 
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systematic AFSMC design procedure capable of 
controlling the behavior of seismically excited buildings 
constructed with LRB isolation systems. The 
effectiveness of the developed algorithm is illustrated 
using several examples applied to LRB isolated 
buildings. 
 
 
Equation of motion for the structural system 

 

The equation of motion for a building modeled by an 
n-degrees-of-freedom system controlled by actuators and subjected to 

ground excitation g
x&&  can be expressed as follows: 

 

M Z&& (t)+C Z& (t)+KZ(t)+ H f(t)= B U(t)-M r gx&&              (1) 

 
where Z=[x1,x2,…xn]

T ∈ R
n
 = n-vector; and xi denotes the relative 

displacement of the designed ith element. Matrices M, C, and K=n× n 
represent the mass, damping, and stiffness matrices, respectively; 

r = n-vector is the influence of the earthquake excitation; H = 

n-vector denotes the locations of the isolators; and B =n× m matrix 
represents the locations of the m control forces. The m-dimensional 
control force vector U(t) corresponds to the actuator forces (which are 
generated via an active tendon system or mass damper, for example); 
and f(t) is the force from the isolators. 
The hysteretic stiffness of an isolator can be modeled by Yang et al., 
(1992). 
 
Fsb=akbxb+(1-a)kbDyv                                    (2) 
 
where Fsb denotes the stiffness of the isolator; a represents the ratio of 
the post yielding to pre-yielding stiffness; kb is the elastic stiffness of 
the isolator; xb denotes the isolator displacement; Dy represents the 
yielding deformation; and v is the hysteretic variable, where: 
 

)()(
'1''1' ηη

γβα vxvvxxDtv
bbby

−−=
−−

        (3) 
 

Parameter α, β, γ and η determine the scale, general shape, and 
smoothness of the hysteretic loop, respectively. 
In Equation (2), akbxb denotes the linear elastic stiffness that appears 
in the K matrix of Equation (1). The nonlinear or hysteretic stiffness 
appearing in the nonlinear or hysteretic, f of Equation 1 is thus 
expressed by: 
  
f(t)=(1-a)kbDyv                                          (4) 
 
For this controller design, the standard first-order state equation 
corresponding to Equation (1) is  
 

X& (t)=AX(t)-Hf(t)+BU(t)+L gx&&
                             

 (5) 

 

where X
T
=[Z
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Adaptive fuzzy sliding mode control 

 
Design of the sliding surface 

 
The complete account of the sliding mode control theory is seen in 
Decarlo et al. (1988) and Utkin (1992). This theory is based on the 
concept that the controller changes its structure according to the 
position of the state trajectory with respect to a selected sliding 
surface. The control is designed to force the state trajectory of the 
system onto the sliding surface and maintain it there. This is achieved 
with a high speed switching law. This discontinuous component of the 
sliding control is used to develop fuzzy logic control. 

The design of the sliding surface is detailed subsequently. The 
equation of the system has the form 
 

X& =AX+BU+F+E                                         (7) 
 

where X(t) denotes an n state vector; A represents an n×n system 

matrix; B is an n×m controller location matrix; F denotes an n vector 
containing the system uncertainty and nonlinearity; and E is an n 
excitation vector. 

Suppose { x | S(X) = 0 } is the selected sliding surface.  
 

S(X)=PX                                               (8) 
 

where P is an m×n sliding surface coefficient matrix. 
Consider the nominal system (Hsiao et al., 2005) 

 

X& =AX+BU                                              (9) 

 
From which we obtain the sliding surface of the nominal system. First, 
the state equation of motion (Equation 9) is converted into the 
so-called regular form via the following transformation: 
Let; 
  

Y=JX or X=J
1−

Y                                         (10) 
 
where J is a transformation matrix 
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and where B 1  and B 2  are the (n-m)×m and m×m submatrices 

obtained by partitioning the B matrix, as in Equation (9), as follows: 
 

B=

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
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

2
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B

B                                              (12) 

 

Matrix B 2  should be nonsingular. 

With the transformation J, the state Equation (7), and the sliding 
surface (Equation 8). 
Hence 

 

Y& = A Y+ B U 

S= P Y                                              (13) 
 

where P =PJ
-1

, A =JAJ
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where Y 1  and Y 2 are the n-m and m vector, respectively; and 
11

A , 

12
A ,

1
P  and 

2
P , are the (n-m)×  (n-m), (n-m)×m, m× (n-m) and 

m × m matrices, respectively. Substituting Equation (14) into 
(Equation 13) we obtain the equations of motion on the sliding surface 
 

1
Y& =

11
A Y1+ 12

A Y2                                         (15) 

 

S=
1

P  Y1+ 2
P Y2=0.                                   (16) 

 

For simplicity, 
2

P  is set to be an identity matrix, that is, 
2

P =Im and 

thus, 
 

Y2= - 
1

P  Y1                                              (17) 

 

and 
 

1
Y& =(

11
A  -

12
A

1
P ) Y1                                   (18) 

 

The 
1

P  matrix can be calculated from (Equation 18) such that the 

matrix Y=[
T

Y
1


T
Y

2
]
T
 on the sliding surface is stable. The optimal sliding 

mode method is used to determine the 1P  matrix and P is also 

obtained. The method for obtaining the optimal sliding mode (Yang et 
al., 1995)

 
is described subsequently. 

The sliding surface is derived by minimizing the integral of the 
quadratic function of the state vector 
 

I= ∫
∞

0

QXdtX
T                                          (19) 

 
Where Q denotes a (2n × 2n) positive definite weighting matrix. In 
terms of the transformed state vector Y, (Equation 19) becomes 
 

I= [ ]∫
∞










0
2

1

21
dt

Y

Y
TYY

TTT
                       (20) 

 

where T=(J
-1

)
T
QJ

-1
 ; T= 









2221

1211

TT

TT
                       (21) 

 

and T11 and T22 are the (2n-m) × (2n-m) and (m × m)matrices, 
respectively. 
Minimizing the performance index I subjected to the equations of 
motion (Equation 15) we obtain 
 

Y2=-0.5
1

22

−
T (

12
A T P̂ +2

21
T ) Y1                             (22) 

 

where P̂ is a (2n-m) × (2n-m) Riccati matrix that satisfies the 
following matrix Riccati equation: 
 

Â T P̂ + P̂ Â -0.5 P̂
12

A T22
-1

12
A T P̂ =-2(T11-T12T22

-1
T12

T
)      (23) 

 

where Â =
11

A -
12

A  T22
-1

T21                              (24) 



 
 
 
 
A comparison between Equations (17) and (22) indicates that  
 

1
P =0.5

1

22

−
T (

12
A T P̂ +2

21
T ).                                (25) 

 
Finally, the sliding surface is obtained 
 

P= P J=[
1

P   Im]J                                          (26) 

 
 
Design of an adaptive fuzzy sliding mode controller 

 

The second step is to design the controller. The controllers are 
designed to drive the state trajectory into the sliding surface S=0. 
Define a Lyapunov function V such that 
 

V=0.5S
T

S                                              (27) 
 
The sufficient condition for the sliding mode S=0 occurring as t ∞→  

is 
 

V& =S
T S& <-η�||S||                                     (28) 

 

whereη  is a positive real value. In (Equation 7), F is an n vector 
containing the system uncertainty and nonlinearity, while E is an n 
excitation vector. Generally, it is difficult to know system parameters 
exactly, but the bounds on the uncertainty are knowable.  
 

F
F δ≤ ，

W
E δ≤                                    (29) 

 
Let  
 

U = Ueq –(γ+η)sgn(S
T
PB)

T 
                            (30) 

 

where γ =δ/||Β||, δ=δΦ+δΩ ,  Υεθ=−(ΠΒ)−1ΠΑΞ 

V& =ΣΤΠ(ΑΞ+ΒΥ
 
+Φ+Ε) 

=ΣΤΠ(ΑΞ �  Β(ΠΒ)−1ΠΑΞ − Β (γ+η)σγν(ΣΤΠΒ)Τ+Φ+Ε) 
=ΣΤΠ(−Β(γ+η)σγν(ΣΤΠΒ)Τ+Φ+Ε)  
= ΣΤΠΒ(−(γ+η)σγν(ΣΤΠΒ)Τ)+ ΣΤΠ(Φ+Ε)  
= − η || ΣΤΠΒ || − γ || ΣΤΠΒ ||+ ΣΤΠ(Φ+Ε) 
= − η || ΣΤΠΒ || − γ || ΣΤΠΒ || ( 1 � ( ΣΤΠ(Φ+Ε))/γ  || ΣΤΠΒ ||) 
< − η || ΣΤΠΒ ||  

 

Λετ Κ=η+γ (Εθυατιον 30) ανδ τηε χοντρολ φορχε Υ = Υεθ Κσγν(ΣΤΠ
Β)Τ. Σταβιλιτψ χαν βε οβταινεδ ωηεν 

 

Κ ≥ η+δ/ ||Β||                                              (31) 
 

where
 

denotes the Euclidean norm. Since PB is a constant matrix, 

S  be used to represent S
T
PB. 

A disadvantage of the control law given in Equation (30) is that it is 
discontinuous and tends to excite the high frequency modes of the 
plant, also called the controlled system. The problem can be alleviated 
using a fuzzy inference mechanism. 

A fuzzy inference mechanism is used to estimate the second part of 

Equation (30), that is, 
f

u . The range of 
f

u obtained from Equation 

(31) is [ -K , K]. The fuzzy rule is (Chen, 2006). 

If S  is PB and S ’is PB, then 
f

u  is NB. 

PB: Positive Big; NB: Negative Big 
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All the rule bases are listed in Table 1. The characteristic U=f( S ) of 

the sliding mode controller with a boundary layer is linear, while that of 
the fuzzy sliding mode controller is nonlinear. The fuzzy sliding mode 

controller determines different actions for different S  regions. For 

example, the fuzzy sliding mode controller uses slow reaction control 

for small S  values, and quick control for large S  values. 

In existing studies concerning the membership functions of 
controlled systems, various types of fuzzy numbers are suggested for 
use, such as trapezoidal, triangular, and Gaussian functions (Chen et 
al., 2004, 2007; Hsiao et al., 2005) and the references therein). For 
convenience, the triangular membership function is used for each 

fuzzy number in this paper. Fuzzy output 
f

u  can be calculated 

based on the center of the area of dufuzzification (Hsiao et al., 2005) 
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                  (32) 

 

where [ ]
l

ccv .....1=  denotes a adjustable parameter vector; 
i

c  

represents the center of the consequent part of the membership 
function; and wi represents the firing strength of the ith rule. 

Meanwhile =
[ ]

∑
=

l

l

i
iw

ww

1

....1
 is a firing strength vector. 

From Equation (29), we see that the sliding mode controller requires 
an upper bound to the uncertainty. When the uncertainty increases, 
the control cost also increases. However, the optimal value of the 
uncertainty cannot be precisely obtained owing to a lack of knowledge 
regarding the structure or system complexity. Therefore, an adaptive 
fuzzy control is developed to deal with the problem and to estimate the 
minimum control cost. 

Assume that there exists a specific 
fû which achieves the 

minimum control cost and that 
fû  satisfies the sliding mode 

condition. 

From Equation (32), fû  can be rewritten as follows: 

 

fû =
T

v̂                                               (33) 

 

where v̂  denotes the optimal vector with which the minimum control 

cost is achieved. 
Define the parameter vector as: 
 

v~ = v- v̂                                               (34) 

 
Let the Lyapunov function for each controller be 
 

V=
2

1 ( s 2
+

α

1
v~ T v~ )                                  (35) 

 

where αis a positive constant. Now, 

V& = s Pbiuf+ s P(F+E)+
α

1
v~ T v&  
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Table 1. Rule base of the adaptive sliding mode controller. 

 

S ’ \ S  PB PM PS Z NS NM NB 

PB NB NB NM NS NS Z Z 

PM NB NM NM NS Z Z PS 

PS NM NM NS NS Z PS PS 

Z NM NS NS Z PS PS PM 

NS NS NS Z PS PS PM PM 

NM NS Z Z PS PM PM PB 

NB Z Z PS PS PM PB PB 
 

PB: Positive Big; PM: Positive Medium; PS: Positive Small; Z: Zero; NB: Negative Big; NM: Negative Medium; NS: 
Negative Small. 

 
 
 

= s Pbi(uf- fû )+� s Pbi fû + s P(F+E)+
α

1 v~ T v&  

= s Pbi(ϖ
 Τ − v̂ Τ)ψ+ s Πβι fû + s Π(Φ+Ε)+

α

1
v~ Τ v&  

= s Πβι v
~ Τψ+ s Πβι fû + s Π(Φ+Ε)+

α

1
v~  v&  

=
α

1
v~ Τ( v& +α s Πβιψ)+ s Πβι fû + s Π(Φ+Ε) 

<−ηι| s Πβι| ( fû σατισφιεσ τηε σλιδινγ µοδε χονδιτιον ανδ λετ v& =−

α s Πβιψ). Φιναλλψ, τηε αδαπτιϖε λαω οβταινεδ ισ v& =−α s Πβι

 (36) 
 
The adaptive law adjusts the centers of the membership function of 
the consequent part. This adaptive law is derived from Lyapunov 

theory, so V → 0 as t → ∞ . IF V → 0, then v~ → 0.  As 

v~ → 0, the minimum control cost fû  can be achieved. The design 

procedure for the AFSMC can be briefly summarized as follows: 
 
Step 1:  Determine the state and control variables. 
Step 2:  Use the optimal sliding modes method to determine the 
sliding surface. 
Step 3:  Select thickness of the boundary layer based on the 
allowable responses. 
Step 4:  Calculate the value of K according to Equation (31) 
Step 5:  Define the fuzzy sets for both the input and output of the 
fuzzy inference mechanism. 
Step 6: Perform on-line AFSMC. 

 
Some examples are used to illustrate the AFSMC for LRB isolated 
buildings. Here we examine the application of AFSMC to prevent 
extreme earthquake induced oscillations of the building. The proposed 
AFSMC can be easily applied in multiple degrees-of-freedom systems. 
A six based-isolated building involving oscillations is simulated to 
demonstrate the effects discussed in this study. 

 
 
NUMERICAL SIMULATION AND RESULTS 
 
The AFSMC is applied to control the building with LRB 
isolators. An  base-isolated six floor building is 
illustrated in Figure 1. The nominal values of each floor 

mass, base mass, stiffness of each floor, and damping 
ratio are 345600 kg, 450000 kg, 3.1e8 N/m, and 0.02, 
respectively. Moreover, the nominal value of LRB elastic 
stiffness is 9.6e6 N/m, the LRB yield stiffness is 1.968e6 
N/m and the yielding deformation Dy is 1 cm. The optimal 
sliding mode method is used to determine the sliding 
surface with a diagonal weighting matrix Q; Q77 =0.01 Qii 

= 5e5, for i= 1, 2....6 and Qii= 1. for I = 8, 9....14. and Q33 

= Q44 = 1. This fuzzy controller has 49 fuzzy rules, as 
listed in Table 1. The triangular membership function is 
used for each fuzzy number. f(t) are determined by 
Equations (3) and (4). The parametric values are as 

follows: kb= 9.6e3; Dy = 1 cm; α�= 1; β =γ�= 0.5 �and� η=3.The 
AFSMC discussed in this paper are compared using real 
earthquake data, consisting of acceleration records from 
Chi  Chi  (1999)  earthquakes. 

The acceleration records of the Chi Chi earthquake are 
shown in Figure 3. The base and six floor displacements 
of the considered building after the application of AFSMC 
are indicated in Figures 4 and 5. The relationship 
between the LRB shear force and deformation with no 
control, and AFSMC, is shown in Figure 6. The 
maximum response quantities of the building with LRB 
isolation, excited by Chi Chi earthquake acceleration, are 
listed in Table 2. 

As shown in the Figures 3 to 6, AFSMC control ler 
suppresses the earthquake induced vibrations. The 
maximum displacement, control force and acceleration 
responses of the considered isolated-building (with and 
without the controllers) are all shown in Tables 2. The 
results show that the AFSMC performs excellent 
responses s as well as more effective control forces.  
These results indicate that the proposed controller is an 
effective method for seismic isolation of structures. 

The effectiveness of this algorithm is further 
demonstrated by the simulation results for a long-period 
artificial earthquake, scaled to have a peak ground 
acceleration of 0.3 g as the input excitation. The time 
history of the long-period artificial earthquake is 
displayed in Figure 7. The frequencies of these artificial 
earthquakes  are  shown  in  Figure 8. The maximum  
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Figure 3. Acceleration records for the Chi Chi earthquake. 
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Figure 4. AFSMC controlled and uncontrolled base displacement history. 
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Figure 5. AFSMC controlled and uncontrolled six floor displacement history. 

 
 
 
response quantities of the buildings for the simulated 
earthquakes are listed in Table 3. Compared to the case 
without  control, the building displacement and the shear 

force of LRB are significantly reduced. This phenomenon 
demonstrates that the adaptive fuzzy sliding mode 
control works well with long-period contents.  
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Figure 6. Relationship of LRB shear force and deformation.  

 
 
 

Table 2. Maximum response quantities of building with LRB isolation. 
 

 No control, Umax = 0 kN AFSMC control, Umax = 2152 kN 

 xi (m) 
i

x&& (m/s
2
) xi (m) 

i
x&& (m/s

2
) 

B 1.12 5.32E-01 1.72E-01 3.07E-01 

1 3.09E-03 5.29 E-01 1.73E-03 3.05E-01 

2 2.74E-03 5.30 E-01 1.58E-03 3.03E-01 

3 2.29E-03 5.24 E-01 1.25E-03 3.00E-01 

4 1.75E-03 5.31 E-01 8.06E-04 3.04E-01 

5 1.17E-03 5.27 E-01 5.27E-04 2.99E-01 

6 5.52E-04 5.28 E-01 3.43E-04 2.97E-01 

 
 
 

 
 

Figure 7. Time history of the long-period artificial earthquake. 

 
 
 
Conclusions 
 
In this study we develop an efficient adaptive fuzzy 
sliding mode control (AFSMC) algorithm for stability 
problems in buildings constructed with  lead  rubber  
bearing (LRB) isolation hybrid protective systems. The 

simulation results indicate that a building equipped with 
an LRB isolation system has reduced base displacement 
relative to the ground, and the absolute acceleration. 
Moreover, AFSMC can  reduce  the  floor  
displacement  and  all of the aforementioned response 
quantities. The maximum control forces of he  AFSMC   
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Figure 8. Frequency content of the long-period artificial earthquake. 

 
 
 

Table 3. Maximum response quantities of building with LRB isolation. 
 

 LRB (no control), Umax= 0 kN LRB (AFSMC control), Umax = 2143 kN 

 xi (m ) i
x&& (m/s

2
) xi (m ) i

x&& (m/s
2
) 

B 2.16 9.66E-01 5.85E-01 4.24E-01 

1 5.31E-03 9.65E-01 3.05E-3 4.22E-01 

2 4.42E-03 9.53E-01 2.53E-03 4.20E-01 

3 3.52E-03 9.58E-01 2.04E-03 4.17E-01 

4 2.59E-03 9.56E-01 1.56E-03 4.03E-01 

5 1.65E-03 9.65E-01 1.05E-03 4.21E-01 

6 9.90E-04 9.64E-01 5.56E-04 4.22E-01 

 
 
 
are relatively low, all being less than 11% of the 
superstructure weight. The results in Table 3 reveal that 
the adaptive fuzzy sliding mode control is not sensitive to 
long-period contents. The effectiveness and feasibility of 
the proposed controller design method is demonstrated 
using numerical simulations of seismically excited 
buildings with LRB isolation. The example demonstrates 
that the proposed methodology can be applied to 
practical control systems. Besides reducing oscillations 
that could be considered in the AFSMC approach, some 
important issues still remain open, such as stability 
analysis, stabilization problems and the control 
performance. Here, the focus is on the development of 
the AFSMC for seismically excited buildings. The 
proposed control strategies could be extended to 
time-delay problems and time-varying multi-floor 
structures in future. Another direction for future research 
would be to extend the proposed control strategies to 
time-varying tall building  structures. 
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